nuXmv: model checking timed systems

Enrico Magnago
University of Trento,
Fondazione Bruno Kessler

Timed systems

Real time systems

- Correctness depends not only on the logical result but also on the time required to compute it.
- Common in safety-critical domains like: defense, transportation, health-care, space and avionics.

Timed Transition System (TTS)

transitions are either discrete or discrete time-elapses, all clocks increase of the same amount in time-elapses.
Model checking for TTS is undecidable.

Timed Automata (TA)

 decidable restriction of TTS, finite time abstraction: clocks compared only to constants.
Timed systems: representation

Timed Automata (TA)

Explicit graph representation of discrete states (nodes) and transitions (edges). Symbolic representation of temporal aspects via (convex) constraints (location invariants, transition guards and resets).

Symbolic TTS

Logical formulae represent sets of states: $p:=\{s \mid s \models p)\}$.
Transition system symbolically represented by formula $\varphi\left(X, X^{\prime}\right)$.
There is a discrete transition from

$$
\begin{aligned}
& l=\ell_{0} \rightarrow c \leq 5 \wedge \\
& l=\ell_{1} \rightarrow c<15 \wedge \\
& \left(l=\ell_{1} \wedge l^{\prime}=\ell_{0}\right) \rightarrow c>3 \wedge \\
& \left(l=\ell_{0} \wedge l^{\prime}=\ell_{1}\right) \rightarrow\left(c \geq 5 \wedge c^{\prime}=0\right)
\end{aligned}
$$ s_{0} to s_{1} iff $s_{0}(X), s_{1}\left(X^{\prime}\right) \models \varphi\left(X, X^{\prime}\right)$.

Timed nuXmv

nuXmv for timed system: architecture

Timed nuXmv: input language [1/4]

Overview

- Must start with @time_DOMAIN continuous;
- Symbolic description of infinite transition system using: INIT, INVAR and TRANS to specify initial, invariant and transition conditions.
- Model described as a synchronous composition of MODULE instances.
- Clock variables,
- time: built-in clock variable,
- convex invariants over clocks,
- URGENT: forbid time elapse.

Timed nuXmv: input language [2/4]

Timed nuXmv adds

- clock variable type, all clocks increase of the same amount during timed transitions;
- time: built-in clock, can be used only in comparisons with constants;
- noncontinuous type modifier: symbol can change its assignment during timed transitions;
- URGENT: freeze time: when one of the URGENT conditions is satisfied only discrete transitions are allowed;
- $\mathrm{MTL}_{0, \infty}$ specifications, by "extending" LTL;

Timed nuXmv: input language [3/4]

Timed nuXmv updates

- TRANS constrain the discrete behaviour only,
- INVAR: clocks allowed in invariants with shape:
no_clock_expr -> convex_clock_expr;
- LTL operators: X, Y, U, S,
- Bounded LTL operators.

Timed nuXmv: input language [4/4]

Specification

- Different operators to refer to the timed next and discrete next: X, X~; symmetrically for the past: Y, Y~.
- Time interval semantic to handle open intervals: a predicate p might hold in an interval $(a, b]$ for $a, b \in \mathbb{R}$.
- Operators to retrieve value of expression the next/last time an expression will hold/held: time_until, time_since, @F~ and @O~.

Timed nuXmv: untiming

Timed to untimed model

- clock symbols and time: variables of type real.
- δ : continuous positive variable, prescribes the amount of time elapse for every transition.
- ι : prescribes the alternation of singular [.] and open (-) time intervals.
discrete

Timed nuXmv: untiming

Properties rewriting

MTL
fragment

$$
F_{[0,5]} p
$$

LTL ${ }_{\text {timed }}$

$$
\begin{aligned}
& ((\neg p U p) \wedge \text { time_until }(p) \leq 5) \vee \\
& ((\neg p U \tilde{X} p) \wedge \text { time_until }(p)<5)
\end{aligned}
$$

\downarrow untime

LTL untimed

$$
\begin{aligned}
& ((\neg p U p) \wedge(\text { time } @ \tilde{F} p)-\text { time } \leq 5) \vee \\
& ((\neg p U((\neg \iota \wedge p) \vee X(\neg \iota \wedge p))) \wedge(\text { time } @ \tilde{F} p)-\text { time }<5)
\end{aligned}
$$

Timed and infinite traces

Timed and infinite traces

From untimed model execution to timed trace.

Issue

nUXMV traces must have shape: $\alpha \beta^{\omega}$,
α and β sequences of states.
Complete for finite state systems.
TTS: time monotonically
increasing, infinite state system, undecidable.
Identify traces expressible as: $\alpha \beta(i)^{\omega}$. Same problem can be found in infinite state transition systems.

Solution

Value assigned to variables at
discrete
 state s is function of the previous configuration assignments.
e.g. next(time) $:=$ time $+\delta$

Timed and infinite traces: operations

Three main operations on traces: simulation, execution and completion.

Simulation

Build a possible execution of the model. The trace can be built automatically by the system or the user can choose each state from the list of possible ones.
Exploit SMT-solver to perform a discrete transition or time-elapse to obtain next configuration.

Timed and infinite traces: operations

Execution

Check if a trace belongs to the language of the model.
Exploit SMT-solver to prove that for all possible iterations all prescribed transition can be performed.

Completion
A partial trace is completed so that it belongs to the model language.
Sound and complete technique requires to check if there exists a possible completion so that the completed trace belongs to the model language: quantifier alternation $(\exists \forall)$.
Adopt sound but incomplete approach.

How to run: model [1/3]

- ./nuXmv -time -int: start NUXMV interactively and enable commands for timed models.
- go_time: process the model.
- write_untimed_model: dump SMV model corresponding to the input timed system.

How to run: verify [2/3]

- timed_check_invar: check invariants.
- timed_check_ltlspec: check LTL.

Mostly the same command line options of the corresponding commands for untimed models.

How to run: simulation and traces [3/3]

- timed_pick_state: pick initial state.
- timed_simulate: simulate the model starting from a given state.
- execute_traces: re-execute stored traces.
- execute_partial_traces: try to complete stored traces.

Semantics of temporal operators

Formally nuXmV uses a super-dense weakly-monotonic time model $T \subset \mathbb{N} \times \mathbb{R}_{0}^{+}$.
A time point is a pair $\langle i, r\rangle$ where $i \in \mathbb{N}$ "counts the discrete steps" and $r \in \mathbb{R}_{0}^{+}$is the time.
We say that $\langle i, r\rangle<\left\langle i^{\prime}, r^{\prime}\right\rangle$ iff $i<i^{\prime}$ or $i=i^{\prime}$ and $r<r^{\prime}$.
$\sigma, t \models \phi$ is defined recursively on the structure of ϕ : usual definition for predicates, conjunction and negation.
$\sigma, t \equiv \phi_{1} U \phi_{2}$ iff there exists $t^{\prime} \geq t, \sigma, t^{\prime} \models \phi_{2}$ and for all $t^{\prime \prime}, t \leq t^{\prime \prime}<t^{\prime}, \sigma, t^{\prime \prime} \models \phi_{1}$
$\sigma, t \equiv \phi_{1} S \phi_{2}$ iff there exists $t^{\prime} \leq t, \sigma, t^{\prime} \models \phi_{2}$ and for all $t^{\prime \prime}, t^{\prime}<t^{\prime \prime} \leq t, \sigma, t^{\prime \prime} \mid=\phi_{1}$
$\sigma, t \models X \phi$ iff there exists $t^{\prime}>t, \sigma, t^{\prime} \models \phi$ and there exists no $t^{\prime \prime}, t<t^{\prime \prime}<t^{\prime}$
$\sigma, t \equiv \tilde{X} \phi$ iff for all $t^{\prime}>t$, there exists $t^{\prime \prime}, t<t^{\prime \prime}<t^{\prime}, \sigma, t^{\prime \prime} \models \phi$ $\sigma, t \models Y \phi$ iff $t>0$ and there exists $t^{\prime}<t, \sigma, t^{\prime} \models \phi$ and there exists no $t^{\prime \prime}, t^{\prime}<t^{\prime \prime}<t$
$\sigma, t \mid=\tilde{Y} \phi$ iff $t>0$ and for all $t^{\prime}<t$, there exists $t^{\prime \prime}, t^{\prime}<t^{\prime \prime}<t^{\prime}, \sigma, t^{\prime \prime} \models \phi$

LTL- MTL properties [1/2]

Let $k, k 1$ and $k 2$ be some constant real values such that $0 \leq k \leq k 1<k 2$ and let b a boolean symbol. The following properties true or false?

- $\tilde{Y}\rceil$

LTL- MTL properties [1/2]

Let $k, k 1$ and $k 2$ be some constant real values such that $0 \leq k \leq k 1<k 2$ and let b a boolean symbol. The following properties true or false?

- $\tilde{Y} \top$: false in the initial state.
- $(\neg X b) \rightarrow(X \neg b)$

LTL- MTL properties [1/2]

Let $k, k 1$ and $k 2$ be some constant real values such that $0 \leq k \leq k 1<k 2$ and let b a boolean symbol.
The following properties true or false?

- $\tilde{Y} \top$: false in the initial state.
- $(\neg X b) \rightarrow(X \neg b)$: false, the first one holds in every time elapse, the second one holds only in discrete steps where $\neg b$ holds in the next state.
- $(\neg \tilde{X} b) \rightarrow(\tilde{X} \neg b)$

LTL- MTL properties [1/2]

Let $k, k 1$ and $k 2$ be some constant real values such that $0 \leq k \leq k 1<k 2$ and let b a boolean symbol.
The following properties true or false?

- $\tilde{Y} \top$: false in the initial state.
- $(\neg X b) \rightarrow(X \neg b)$: false, the first one holds in every time elapse, the second one holds only in discrete steps where $\neg b$ holds in the next state.
- $(\neg \tilde{X} b) \rightarrow(\tilde{X} \neg b)$: false, as above but for time elapses.
- $(X \neg b) \rightarrow(\neg X b)$

LTL- MTL properties [1/2]

Let $k, k 1$ and $k 2$ be some constant real values such that $0 \leq k \leq k 1<k 2$ and let b a boolean symbol.
The following properties true or false?

- $\tilde{Y} \top$: false in the initial state.
- $(\neg X b) \rightarrow(X \neg b)$: false, the first one holds in every time elapse, the second one holds only in discrete steps where $\neg b$ holds in the next state.
- $(\neg \tilde{X} b) \rightarrow(\tilde{X} \neg b)$: false, as above but for time elapses.
- $(X \neg b) \rightarrow(\neg X b)$: true, the first one holds iff there is a discrete step and $\neg b$ holds in the next state, hence $X b$ is false.
- $(\tilde{X} \neg b) \rightarrow(\neg \tilde{X} b)$

LTL- MTL properties [1/2]

Let $k, k 1$ and $k 2$ be some constant real values such that $0 \leq k \leq k 1<k 2$ and let b a boolean symbol.
The following properties true or false?

- $\tilde{Y} \top$: false in the initial state.
- $(\neg X b) \rightarrow(X \neg b)$: false, the first one holds in every time elapse, the second one holds only in discrete steps where $\neg b$ holds in the next state.
- $(\neg \tilde{X} b) \rightarrow(\tilde{X} \neg b)$: false, as above but for time elapses.
- $(X \neg b) \rightarrow(\neg X b)$: true, the first one holds iff there is a discrete step and $\neg b$ holds in the next state, hence $X b$ is false.
- $(\tilde{X} \neg b) \rightarrow(\neg \tilde{X} b)$: true, as above but for time elapses.
- $(G \tilde{X} \top) \rightarrow((G b) \vee(G \neg b))$

LTL- MTL properties [1/2]

Let $k, k 1$ and $k 2$ be some constant real values such that $0 \leq k \leq k 1<k 2$ and let b a boolean symbol.
The following properties true or false?

- $\tilde{Y} \top$: false in the initial state.
- $(\neg X b) \rightarrow(X \neg b)$: false, the first one holds in every time elapse, the second one holds only in discrete steps where $\neg b$ holds in the next state.
- $(\neg \tilde{X} b) \rightarrow(\tilde{X} \neg b)$: false, as above but for time elapses.
- $(X \neg b) \rightarrow(\neg X b)$: true, the first one holds iff there is a discrete step and $\neg b$ holds in the next state, hence $X b$ is false.
- $(\tilde{X} \neg b) \rightarrow(\neg \tilde{X} b)$: true, as above but for time elapses.
- $(G \tilde{X} \top) \rightarrow((G b) \vee(G \neg b))$: true, the first part implies that we never perform a discrete transition and the truth value of b can only change in discrete transitions.

LTL- MTL properties [2/2]

See files in examples.

Exercises

Simple timed automaton

Write the SMV model corresponding to the timed automaton in the figure.

Properties

- from location ℓ_{0} we always reach ℓ_{1} within 5 time units;
- if we are in ℓ_{1} then for the next 3 time units we remain in ℓ_{1};
- if just arrived in ℓ_{1} then for the next 3 time units we remain in ℓ_{1}.

Fischer mutual exclusion protocol

```
    1: procedure Fischer(pid, c,id)
    2: loop
    3: while id}\not=0\mathrm{ do
    4: skip
    5: }\quadx\leftarrow\operatorname{random}(0,c
    6: wait_at_most(c)
    7: }\quadid\leftarrow\mathrm{ pid
    8: wait_at_least(c)
    9: if id = pid then
10: Critical Section
11: }\quadid\leftarrow
```

Verify the mutual exclusion property. nUXMV does not support asynchronous composition: model scheduler explicitly.

CSMA-CD [1/4]

In a broadcast network with a multi-access bus, the problem of assigning the bus to only one of many competing stations arises. The CSMA/CD protocol (Carrier Sense, Multiple-Access with Collision Detection) describes one solution. Roughly, whenever a station has data to send, if first listens to the bus. If the bus is idle (i.e., no other station is transmitting), the station begins to send a message. If it detects a busy bus in this process, it waits a random amount of time and then repeats the operation.

There are four events on which the Bus must synchronise with at least one Station: begin, end, cd, busy.

The Bus takes as inputs σ and the number of stations - 1 (N). Each station takes as inputs σ and λ.

Only one among the bus and the stations can move at a time.

CSMA-CD: Bus [2/4]

The Bus has 4 locations (idle, active, collision, transmit), a clock variable x and a station index $j: 0 . . N$ and a IVAR cd_id : 0..N.

- Upon event begin from idle it goes to active resetting the clock and j remains unchanged.
- From active j always remains unchanged and it goes to:
- idle upon end by resetting the clock.
- collision upon begin, provided $x<\sigma$ and by resetting the clock.
- active upon busy, provided $x \geq \sigma$.
- It can remain in collision at most σ (excluded) and from collision it goes to transmit upon cd, provided cd_id = j and $x<\sigma$ by resetting the clock and increasing j by 1 .
- In transmit time cannot elapse and while $j<N$ it remains there increasing j by 1 every time that cd happens and $c d _i d=j$. As soon as $j=N$, upon cd and $c d _i d=j$ it moves to idle resetting j to zero.

CSMA-CD: Station [3/4]

Each Station has 3 locations (wait, transm, retry) and a clock x.

- From wait it goes to:
- wait upon cd by resetting the clock.
- transm upon begin by resetting the clock.
- retry upon cd or busy by resetting the clock.
- The station can never remain in transm more than λ and from there it either goes to wait upon end if $x \geq \lambda$ by resetting the clock, or it moves to retry upon cd if $x \leq 2 \sigma$ by resetting the clock.
- It can remain in retry for at most 2σ, and it remains there upon cd by resetting the clock and it moves to transm upon begin by resetting the clock.

CSMA-CD: Properties [4/4]

Create a system with two stations on a single bus and verify the following hold:

- It is never the case that both stations are transmitting and the clock of the first one is greater than 2σ.
- it is possible for a station to go from transmitting to waiting in a single discrete step.

Timed thermostat

- a thermostat has 2 states: on and off;
- if the temperature is below 18 degrees the thermostat switches on.
- if the temperature is above 18 degrees the thermostat switches off.
- at every time unit the temperature increases (if on) or decreases (if off) by 1 ;
- the thermostat measures the temperature at most $(<)$ every max_dt time units.
- the temperature initially is in $\left[18-\max _{_} d t ; 18+\right.$ max_d $^{2} d t$.

Verify that the temperature is always in
[18-2max_dt; $18+2$ max_dt]

