liveness-to-safety and totalising a transition system

Enrico Magnago
University of Trento,
Fondazione Bruno Kessler

Liveness-to-safety

Objective

Encode the search for a fair path as a reachability problem.

How

Every solution [path] for the reachability problem should represent a fair lasso-shape in the original system.

Single fairness encoding

Fair transition system $M:=\langle S, I, T, F\rangle$

- for $x \in S$, introduce a new symbol $l _x$.
- The assignment of every such symbol $l_{-} x$ is non-deterministally chosen in the initial state and then it never changes (FROZENVAR).
- The loopback state is lback $:=\bigwedge_{x \in S} l _x=x$.
- Boolean symbol $i n_{-} l$, initially false and $i n_{l} l^{\prime}=i n _l \vee l b a c k k^{\prime}$.
- Boolean symbol fair_l, initially false and fair_l $l^{\prime}=f a i r_{-} l \vee\left(i n_{-} l \wedge F\right)$

Find path starting from I that reaches lback \wedge fair_l.

Single fairness encoding: example

Modulo 8 counter

```
MODULE main
    VAR
        b0 : boolean;
        b1 : boolean;
        b2 : boolean;
    ASSIGN
        init(b0) := FALSE;
        init(b1) := FALSE;
        init(b2) := FALSE;
        next(b0) := !b0;
        next(b1) := (!b0 & b1) | (b0 & !b1);
    next (b2) := ((b0 & b1) & !b2) | (!(b0 & b1) & b2);
        DEFINE out := toint(b0) + 2 * toint(b1) + 4 * toint(b2);
        LTLSPEC G F out != 2;
```


Single fairness encoding: solution

Add the following:

```
FROZENVAR
    l_b0 : boolean;
    l_b1 : boolean;
    l_b2 : boolean;
DEFINE out_lback := toint(l_b0) + 2 * toint(l_b1) + 4 * toint(l_b2);
DEFINE lback := l_b0 = b0 & l__b1 = b1 & l_b2 = b2;
DEFINE fair := out = 2;
VAR
    in_loop : boolean;
    fair_loop : boolean;
INIT !in_loop & !fair_loop;
TRANS next(in_loop) = in_loop | next(lback);
TRANS next(fair_loop) = fair_loop | (in_loop & fair);
INVARSPEC !(fair_loop & lback);
```


Multiple fairness conditions

Q: How can we deal with multiple fairness conditions?

Multiple fairness conditions

Q: How can we deal with multiple fairness conditions?
A1 Usual reduction to single fairness. Requires to visit fairness conditions in a predefined order, can cause very long loops even when a shorter one exists.

Multiple fairness conditions

Q: How can we deal with multiple fairness conditions?
A1 Usual reduction to single fairness. Requires to visit fairness conditions in a predefined order, can cause very long loops even when a shorter one exists.
A2 Add one boolean symbol fair $_{-} l_{i}$ for each fairness. Look for a path that reaches $l_{-} b a c k ~ \wedge \bigwedge_{i} f a i r_{-} l_{i}$

Multiple fairness conditions encoding: example

Modulo 8 counters

```
MODULE main
VAR
    c0 : counter();
    c1 : counter();
LTLSPEC (F G co.out != 2) | (F G cl.out != 4);
MODULE counter
VAR
    b0 : boolean;
    b1 : boolean;
    b2 : boolean;
ASSIGN
    init(b0) := FALSE;
    init(b1) := FALSE;
    init(b2) := FALSE;
    next(b0) := !b0;
    next(b1) := (!b0 & b1) | (b0 & !b1);
    next(b2) := ((b0 & b1) & !b2) | (!(b0 & b1) & b2);
DEFINE out := toint(b0) + 2 * toint(b1) + 4 * toint(b2);
```


Multiple fairness conditions encoding: solution

See files in examples for both versions.

Make a transition system total

Q: Given a transition system $M:=\langle S, I, T\rangle$, can we define $M_{t}:=\left\langle S_{t}, I_{t}, T_{t}\right\rangle$, such that every path in M has a corresponding path in M_{t} and T_{t} is total?

Make a transition system total

Q: Given a transition system $M:=\langle S, I, T\rangle$, can we define $M_{t}:=\left\langle S_{t}, I_{t}, T_{t}\right\rangle$, such that every path in M has a corresponding path in M_{t} and T_{t} is total?

- $S_{t}:=S \cap\{e r r\}$,
- $I_{t}:=I \wedge \neg e r r$,
- $T_{t}:=\left((\neg e r r \wedge T) \rightarrow \neg e r r^{\prime}\right) \wedge(e r r \vee \neg T) \rightarrow e r r^{\prime}$.

If $M_{t} \models(G \neg e r r) \wedge \phi$ then $M \models \phi$.
Q: What's the relation between the err states of M_{t} and the deadlocks of M ?

Make a transition system total

Q: Given a transition system $M:=\langle S, I, T\rangle$, can we define $M_{t}:=\left\langle S_{t}, I_{t}, T_{t}\right\rangle$, such that every path in M has a corresponding path in M_{t} and T_{t} is total?

- $S_{t}:=S \cap\{e r r\}$,
- $I_{t}:=I \wedge \neg e r r$,
- $T_{t}:=\left((\neg e r r \wedge T) \rightarrow \neg e r r^{\prime}\right) \wedge(e r r \vee \neg T) \rightarrow e r r^{\prime}$.

If $M_{t} \models(G \neg e r r) \wedge \phi$ then $M \models \phi$.
Q: What's the relation between the err states of M_{t} and the deadlocks of M ?
We are adding a lot of transitions!!

