liveness-to-safety and totalising a transition
system

Enrico Magnago

University of Trento,
Fondazione Bruno Kessler

1/13

Liveness-to-safety

Objective
Encode the search for a fair path as a reachability problem.

How
Every solution [path] for the reachability problem should represent
a fair lasso-shape in the original system.

2/13

Single fairness encoding

Fair transition system M := (S, [, T, F)

e for x € S, introduce a new symbol [_z.

e The assignment of every such symbol [_z is
non-deterministally chosen in the initial state and then it
never changes (FROZENVAR).

e The Joopback state is lback :== N\ gl-x = .
e Boolean symbol in_i, initially false and in_1’ = in_l V lback’.

e Boolean symbol fair_l, initially false and
fairld = fairlV (ind A F)

Find path starting from [that reaches lback A fair_L.

3/13

Single fairness encoding: example

Modulo 8 counter

MODULE main
VAR
b0 : boolean;
bl : boolean;
b2 : boolean;

ASSIGN

init (b0) = FALSE;

init (bl) = FALSE;

init (b2) = FALSE;

next (b0) := !b0;

next (bl) := (!b0 & bl) | (b0 & !bl);

next (b2) := ((b0 & bl) & !'b2) | (!(b0 & bl) & b2);
DEFINE out := toint(b0) + 2 x toint(bl) + 4 x toint (b2);
LTLSPEC G F out != 2;

4/13

Single fairness encoding: solution

Add the following:

FROZENVAR
1_b0 : boolean;
1 bl : boolean;
1_b2 : boolean;

DEFINE out_lback := toint(1_b0) + 2 x toint(l_bl) + 4 * toint (1l_b2);
DEFINE lback := 1_b0 = b0 & 1_bl = bl & 1_b2 = b2;

DEFINE fair := out = 2;

VAR

in_loop : boolean;
fair_loop : boolean;

INIT !in_loop & !fair_loop;
TRANS next (in_loop) = in_loop | next (lback);
TRANS next (fair_loop) = fair_loop | (in_loop & fair);

INVARSPEC ! (fair_loop & lback);

5/13

Multiple fairness conditions

Q: How can we deal with multiple fairness conditions?

6/13

Multiple fairness conditions

Q: How can we deal with multiple fairness conditions?

A1l Usual reduction to single fairness.
Requires to visit fairness conditions in a predefined order, can
cause very long loops even when a shorter one exists.

7/13

Multiple fairness conditions

Q: How can we deal with multiple fairness conditions?

A1l Usual reduction to single fairness.
Requires to visit fairness conditions in a predefined order, can
cause very long loops even when a shorter one exists.

A2 Add one boolean symbol fair_l; for each fairness. Look for a
path that reaches [_back A \; fair_;

8/13

Multiple fairness conditions encoding: example

Modulo 8 counters

MODULE main

VAR
cO0 : counter();
cl : counter();
LTLSPEC (F G cO.out != 2) | (F G cl.out != 4);

MODULE counter
VAR
b0 : boolean;
bl : boolean;
b2 : boolean;

ASSIGN

init (b0) := FALSE;

init (bl) := FALSE;

init (b2) := FALSE;

next (b0) := !b0;

next (bl) := (!b0 & bl) | (b0 & !bl);

next (b2) := ((b0 & bl) & !'b2) | (!(b0 & bl) & b2);
DEFINE out := toint(b0) + 2 % toint(bl) + 4 * toint (b2);

9/13

Multiple fairness conditions encoding: solution

See files in examples for both versions.

10/13

Make a transition system total

Q: Given a transition system M := (S, 1,T), can we define
My == (S, I1, Ty), such that every path in M has a corresponding
path in M; and T} is total?

11/13

Make a transition system total

Q: Given a transition system M := (S, 1,T), can we define
My == (S, I1, Ty), such that every path in M has a corresponding
path in M; and T} is total?

o Sy:=Sn{err},
o [, :=1AN—err,

o Ti:= ((merr AT) — —err’) A (err vV =T) — err’.

If M; = (G—err) A ¢ then M = ¢.

Q: What's the relation between the err states of M; and the
deadlocks of M?

12/13

Make a transition system total

Q: Given a transition system M := (S, 1,T), can we define
My == (S, I1, Ty), such that every path in M has a corresponding
path in M; and T} is total?

o Sy:=Sn{err},

o [:=1AN—err,

o Ti:= ((merr AT) — —err’) A (err vV =T) — err’.

If M; = (G—err) A ¢ then M = ¢.
Q: What's the relation between the err states of M; and the

deadlocks of M?
We are adding a lot of transitions!!

13/13

	Liveness-to-safety
	Totalisation

