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Inductive Verification

In order to prove that P(x) isM-invariant, one possibility is to
check if P is inductive. With 2 SAT-solver calls, we check the
validity of:

(initiation) I ⇒ P
(consecution) P ∧ T ⇒ P ′

It is a sufficient condition to prove invariance for P. It is not also a
necessary condition.
Q: Why?
Remember the discussion about k-induction we did on the 5th

lecture?
The set of states in P could be must larger than the ones in I and
contain states unreachable from I via T .
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Incremental vs Monolithic

If consecution fails, then:

• Monolithic approach: look for a stronger assertion F such
that F ∧ P is inductive. F ∧ P is called an inductive
strenghtening.

• Incremental proof: look for a sequence of lemmata
φ1, φ2, . . . , φk = P such that φi is inductive relative to
φ1 ∧ · · · ∧ φi−1, for all 1 < i ≤ k, i.e.,

• I ⇒ φi

• φ1 ∧ · · · ∧ φi−1 ∧ φi ∧ T ⇒ φ′i

It follows that P ∧
k−1∧
i=1

φi is an inductive strengthening.
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Abstraction

Note that:

• both methods do not compute a formula R for the exact set of
reachable states inM;

• rather, they find a formula F ∧ P that represents a larger set of
states all satisfying F ∧ P:

• ⇒ this F is a much smaller formula than R.
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Monolithic Approach - Naïve algorithm

Naïve algorithm for finding an inductive strengthening:

1. IS := P

2. if IS is inductive, then we have found an inductive
strengthening; stop.

3. else find a CTI err (counterexample to inductiveness):

err |= IS ∧ T ∧ ¬IS ′

3.1 if err ∧ I is SAT, then stop: P is NOT invariant;
3.2 else set IS := IS ∧ ¬err and go to Item 2.

At the end, the inductive strengthening (if any) will be:

P ∧
∧

err∈CTI
¬err
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Incremental Proof - Example

Consider the programM1:
1 x , y := 1 ,1
2 w h i l e ∗ :
3 x , y := x+1,y+x

We want to prove that y ≥ 1 isM1-invariant:

• x = 1 ∧ y = 1︸ ︷︷ ︸
I

⇒ y ≥ 1︸ ︷︷ ︸
P

• y ≥ 1︸ ︷︷ ︸
P

∧x ′ = x + 1 ∧ y ′ = y + x︸ ︷︷ ︸
T

6⇒ y ′ ≥ 1︸ ︷︷ ︸
P′

Q: why?
We are not saying anything about x .
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Incremental Proof - Example

We establish the first inductive incremental lemma φ1 := x ≥ 0:

• x = 1 ∧ y = 1⇒ x ≥ 0
• x ≥ 0 ∧ x ′ = x + 1 ∧ y ′ = y + x ⇒ x ′ ≥ 0

Now, φ2 := y ≥ 1 is inductive relative to φ1:

• x = 1 ∧ y = 1⇒ y ≥ 1
• x ≥ 0︸ ︷︷ ︸

φ1

∧ y ≥ 1 ∧ x ′ = x + 1 ∧ y ′ = y + x ⇒ y ′ ≥ 1

We have found the inductive strengthening φ1 ∧ φ2, by means of an
incremental proof.
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Limitation of incremental proofs

Consider the programM2:
1 x , y := 1 ,1
2 w h i l e ∗ :
3 x , y := x+y , y+x

We want to prove φ2 := y ≥ 1.

Like before, φ2 is not inductive on its own.

· · · but now neither is φ := x ≥ 0:

• x = 1 ∧ y = 1⇒ x ≥ 0
• x ≥ 0 ∧ x ′ = x + y ∧ y ′ = y + x 6⇒ x ′ ≥ 0

Monolithic approach = worst case of incremental proofs.
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FSIS - Algorithm

• FSIS: Finite-State Inductive Strengthening. It follows the
incremental methodology [BM07].

• “this algorithm is a result of asking the question: if the
incremental method is often better for humans, might it be
better for algorithms as well?" [Bra12];

• the core of the algorithm is the generalization of an error state.

8



FSIS - Algorithm

• FSIS: Finite-State Inductive Strengthening. It follows the
incremental methodology [BM07].

• “this algorithm is a result of asking the question: if the
incremental method is often better for humans, might it be
better for algorithms as well?" [Bra12];

• the core of the algorithm is the generalization of an error state.

8



FSIS - Algorithm

• FSIS: Finite-State Inductive Strengthening. It follows the
incremental methodology [BM07].

• “this algorithm is a result of asking the question: if the
incremental method is often better for humans, might it be
better for algorithms as well?" [Bra12];

• the core of the algorithm is the generalization of an error state.

8



FSIS - Example

I

9



FSIS - Example - 1st iteration

Check if P is inductive (relative to nobody). Check the validity of:

3 I ⇒ P
7 P ∧ T ⇒ P ′

State s is a CTI.

I

s

10



FSIS - Example - 1st iteration

• s is a cube returned by the SAT-solver; ¬s is a clause encoding
all states different from s;

• generalization of error state s: find a clause φ1 such that
• φ1 ⊆ ¬s; (it excludes s)
• φ1 is inductive (relative to its own); (it includes at least all the

reachable states)
• φ1 is minimal. (it excludes the maximal number of

non-reachable states)

• if φ1 does exist, it becomes the first incremental lemma.
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FSIS - Example - 1st iteration

φ1 can be thought as a "boolean" cutting plane.

I

ss

φ1

Which states are excluded by φ1? (i) those who can reach s
(ii) states “similar" to s (they share with s the dropped literals).
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FSIS - Example - 2nd iteration

Check if P is inductive relative to φ1:

3 I ⇒ P
7 φ1 ∧ P ∧ T ⇒ P ′

State r is a CTI.

I

ss

φ1

r

13



FSIS - Example - 2nd iteration

• generalization of error state r :
• φ2 ⊆ ¬r ;
• φ2 is inductive relative to φ1;
• φ2 is minimal;

• φ2 is the second incremental lemma.

I

ss

φ1

r
φ2
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FSIS - Example - 2nd iteration

Why “inductive relative to"?

• it would have been correct to generate φ2 inductive (relative to
its own), but it’s more than what we need;

• at the end we will consider the AND of all the lemmata;

• in general, it is faster to generate “inductive relative to"
clauses.

• intuitively, we are considering many fewer states of the system.
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FSIS - Example - 3rd iteration

Check if P is inductive relative to φ1 ∧ φ2:

3 I ⇒ P
7 φ1 ∧ φ2 ∧ P ∧ T 6⇒ P ′

State t is a CTI.

I

ss

φ1

r
φ2

t

16



FSIS - Example - 3rd iteration

• generalization of error state t:
• φ3 ⊆ ¬t;
• φ3 is inductive relative to φ1 ∧ φ2;
• φ3 is minimal;

• φ3 is the second incremental lemma.

I

ss

φ1

r
φ2

tφ3
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FSIS - Example - 4th iteration

Check if P is inductive relative to φ1 ∧ φ2 ∧ φ3:

3 I ⇒ P
3 φ1 ∧ φ2 ∧ φ3 ∧ P ∧ T ⇒ P ′

• φ1 ∧ φ2 ∧ φ3 ∧ P is an inductive strengthening.
• P isM-invariant.
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Worst case

• suppose that an error state s does not have a minimal
inductive generalization;

• worst case: we proceed with the monolithic technique;

P := P ∧ ¬s

• eventually,
• either I ∧ ¬P is SAT: P is not invariant;
• or we find an inductive strengthening P ∧

n∧
i=0

φi ;

19
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Complexity and Parallelization

Complexity:

• it is on the convergence of the procedure, not on the calls to
the SAT-solver as before;

• each SAT-solver call is relatively small compared to those made
by BMC.

Parallelization:

• straightforward; "by simply using a randomized decision
procedure to obtain the CTIs, each process is likely to analyze
a different part of the state-space." [BM07]
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IC3

IC3 = Incremental Construction of Inductive Clauses of Indubitable
Correctness

• FSIS sometimes enters a long search for the next relatively
inductive clauses;

• IC3 de-emphasized global information in favor of stepwise
information: we will generate clauses that ensure that an error
is unreachable up to some number of steps.

21
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IC3 - Data Structures

Sequence of frames F0(= I),F1,F2, . . . ,Fk :

• each Fi is an over-approximation of the set of states reachable
in at most k steps;

• each Fi is a set of clauses, i.e., a CNF formula;
• the algorithm stops when Fi ≡ Fi+1. We will maintain the

invariant that clauses(Fi+1) ⊆ clauses(Fi): the equivalence
check is simply a sintactic test: Fi = Fi+1.

22



IC3 - 1st iteration

Check if there are counterexamples of length 0 or 1 with these two
SAT-queries:

7 I ∧ ¬P
7 F0(= I) ∧ T ∧ ¬P ′

Since F0 ∧ T ⇒ P ′, we set F1 := P. (over-approximation)

I

F1

23
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IC3 - 2nd iteration

At iteration k, check if Fk ∧ T ∧ ¬P ′; in this case (k = 1):

3 F1 ∧ T ∧ ¬P ′

i.e., there exists an Fk -state that leads in one step to an error state?

I

s

F1

24
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IC3 - 2nd iteration (blocking phase)

¬s is inductive relative to F0(= I): error state s is not reachable in
at least k = 1 step.

We find a minimal φ1 ⊆ ¬s such that φ1 is
inductive relative to F0(= I).

⇒ φ1 excludes the error state s (and similar states) but contains at
least all the states reachable in at most k = 1 steps.

We add φ1 to all the previous frames. In this case F1 := F1 ∧ φ1.

I

sF1

25
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We add φ1 to all the previous frames. In this case F1 := F1 ∧ φ1.
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IC3 - Blocking phase

We have found a CTI s such that s |= Fk ∧ T ∧ ¬P ′.

⇒ we want to generalize the error s or to prove that it’s reachable
from an initial state

if ¬s is inductive relative to Fk−1, then generate a minimal
subclause c ⊆ ¬s inductive relative to Fk−1, i.e., c holds for at least
all states reachable in i steps.

⇒ add c to frames F0 . . .Fk+1, i.e., refine the over-approximations.
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IC3 - 2nd iteration

We create a new frame only when Fk ∧ T ⇒ P ′ is valid.

In this case, F1 ∧ T ⇒ P ′ is valid. We create a new frame F2 := P.

I

sF1

F2
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IC3 - Propagation phase

Propagation phase: After creating a new frame Fk+1 := P, we
perform the propagation phase: we push forward the clause
discovered in frame Fi for some i .

For all 0 ≤ i ≤ k and c ∈ Fi , check if

Fi ∧ T ⇒ c ′

If c 6∈ clauses(Fi+1), then set Fi+1 := Fi+1 ∪ {c}

⇒ it propagates forward the errors
⇒ it helps the discovery of mutually inductive clauses
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IC3 - 3rd iteration

Check if F2 ∧ T ∧ ¬P ′ (3). ¬s is inductive relative to F1: error
state s is not reachable for at least k = 2 steps.

Blocking phase:
find minimal subclause φ2 ⊆ ¬s inductive relative to F1. Add φ2 to
frames F0 and F1.

I

sF1

F2
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IC3 - 3rd iteration

Check if F2 ∧ T ∧ ¬P ′ (3). ¬s is inductive relative to F1: error
state s is not reachable for at least k = 2 steps. Blocking phase:
find minimal subclause φ2 ⊆ ¬s inductive relative to F1. Add φ2 to
frames F0 and F1.
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IC3 - 4rd iteration

Since F2 ∧ T ⇒ P ′ is valid, we create a new frame F3 := P.

I

sF1

F2 F3
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IC3 - 4rd iteration

Again F3 ∧T ∧¬P ′ (3). But now ¬s is not inductive relative to F2

:
error state s could be reachable in k = 3 steps . . .

I

sF1

F2 F3

t
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IC3 - 4rd iteration

Again F3 ∧T ∧¬P ′ (3). But now ¬s is not inductive relative to F2:
error state s could be reachable in k = 3 steps . . .
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IC3 - 4rd iteration

Instead of generating a clause that excludes s (it is possible), we call
the algorithm recursively on the predecessor t of s

. . . remember that t could still be reachable as far as we know . . .

"t is the new s" ;-)
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IC3 - Recursion

We want to remove error state t from F2. ¬t is inductive relative to
F1: find min subclause φ4 ⊆ ¬t and add it to F0,F1,F2.

I

s
t

F1

F2

If in this process we had gone back with recursion until an initial
state, then we would have found a counterexample.
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IC3 - Termination

Now error state s in frame F3 can be generalized: find min clause
φ5 ⊆ ¬s inductive relative to F2.

I

s
t

F1

F2 F3F3

F2 = F3 : IC3 terminates with True.
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Beyond IC3

• FAIR: IC3 for ω-regular properties (e.g., LTL) [Bra+11];
• IICTL: IC3 for CTL properties [HBS12];
• Infinite-state: software model checking via IC3 [CG12].
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IC3 with nuXmv

• go_msat : initialise the system for infinite state model
checking using the SMT solver mathsat5.

• check_invar_ic3 : check invariant using IC3-based
algorithm.

• check_ltlspec_ic3 : check LTL using IC3-based algorithm.

But IC3 is for reachability, how do we apply it for checking LTL
properties?
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