Incremental Inductive Verification

slides adapted from the ones by Luca Geatti

University of Udine, Italy

FBK, Trento, Italy

In order to prove that P(x) is \mathcal{M} -invariant, one possibility is to check if P is inductive. With 2 SAT-solver calls, we check the validity of:

(initiation) $I \Rightarrow P$ (consecution) $P \land T \Rightarrow P'$ In order to prove that P(x) is \mathcal{M} -invariant, one possibility is to check if P is inductive. With 2 SAT-solver calls, we check the validity of:

(initiation) $I \Rightarrow P$ (consecution) $P \land T \Rightarrow P'$

It is a sufficient condition to prove invariance for P. It is not also a necessary condition.

Q: Why?

In order to prove that P(x) is \mathcal{M} -invariant, one possibility is to check if P is inductive. With 2 SAT-solver calls, we check the validity of:

(initiation) $I \Rightarrow P$ (consecution) $P \land T \Rightarrow P'$

It is a sufficient condition to prove invariance for P. It is not also a necessary condition.

Q: Why?

Remember the discussion about k-induction we did on the $5^{\mbox{th}}$ lecture?

The set of states in P could be must larger than the ones in I and contain states unreachable from I via T.

 Monolithic approach: look for a stronger assertion F such that F ∧ P is inductive. F ∧ P is called an inductive strenghtening.

- Monolithic approach: look for a stronger assertion F such that F ∧ P is inductive. F ∧ P is called an inductive strenghtening.
- Incremental proof: look for a sequence of lemmata $\phi_1, \phi_2, \ldots, \phi_k = P$ such that ϕ_i is inductive relative to $\phi_1 \wedge \cdots \wedge \phi_{i-1}$, for all $1 < i \le k$, *i.e.*,

•
$$I \Rightarrow \phi_i$$

• $\phi_1 \wedge \cdots \wedge \phi_{i-1} \wedge \phi_i \wedge T \Rightarrow \phi'_i$

- Monolithic approach: look for a stronger assertion F such that F ∧ P is inductive. F ∧ P is called an inductive strenghtening.
- Incremental proof: look for a sequence of lemmata $\phi_1, \phi_2, \ldots, \phi_k = P$ such that ϕ_i is inductive relative to $\phi_1 \wedge \cdots \wedge \phi_{i-1}$, for all $1 < i \le k$, *i.e.*,

•
$$I \Rightarrow \phi_i$$

• $\phi_1 \land \dots \land \phi_{i-1} \land \phi_i \land T \Rightarrow \phi'_i$
It follows that $P \land \bigwedge_{i=1}^{k-1} \phi_i$ is an inductive strengthening.

Note that:

 both methods do not compute a formula R for the exact set of reachable states in M; Note that:

- both methods do not compute a formula R for the exact set of reachable states in M;
- rather, they find a formula *F* ∧ *P* that represents a larger set of states all satisfying *F* ∧ *P*:
 - \Rightarrow this *F* is a much smaller formula than *R*.

Naïve algorithm for finding an inductive strengthening:

1. IS := P

Naïve algorithm for finding an inductive strengthening:

- 1. IS := P
- 2. if *IS* is inductive, then we have found an inductive strengthening; stop.

Naïve algorithm for finding an inductive strengthening:

- 1. IS := P
- 2. if *IS* is inductive, then we have found an inductive strengthening; stop.
- 3. else find a CTI *err* (counterexample to inductiveness):

 $err \models IS \land T \land \neg IS'$

Naïve algorithm for finding an inductive strengthening:

- 1. IS := P
- 2. if *IS* is inductive, then we have found an inductive strengthening; stop.
- 3. else find a CTI *err* (counterexample to inductiveness):

$$err \models IS \land T \land \neg IS'$$

3.1 if $err \wedge I$ is SAT, then stop: *P* is NOT invariant;

Naïve algorithm for finding an inductive strengthening:

- 1. IS := P
- 2. if *IS* is inductive, then we have found an inductive strengthening; stop.
- 3. else find a CTI *err* (counterexample to inductiveness):

$$err \models IS \land T \land \neg IS'$$

3.1 if $err \wedge I$ is SAT, then stop: *P* is NOT invariant; 3.2 else set $IS := IS \wedge \neg err$ and go to Item 2.

Naïve algorithm for finding an inductive strengthening:

- 1. IS := P
- 2. if *IS* is inductive, then we have found an inductive strengthening; stop.
- 3. else find a CTI *err* (counterexample to inductiveness):

$$err \models IS \land T \land \neg IS'$$

3.1 if $err \wedge I$ is SAT, then stop: *P* is NOT invariant; 3.2 else set $IS := IS \wedge \neg err$ and go to Item 2.

At the end, the inductive strengthening (if any) will be:

$$P \land \bigwedge_{err \in CTI} \neg err$$

1	х,у := 1,1
2	while *:
3	x,y := x+1,y+x

We want to prove that $y \ge 1$ is \mathcal{M}_1 -invariant:

1	x,y := 1,1
2	while *:
3	x,y := x+1,y+x

We want to prove that $y \ge 1$ is \mathcal{M}_1 -invariant:

•
$$\underbrace{x = 1 \land y = 1}_{I} \Rightarrow \underbrace{y \ge 1}_{P}$$

1	х,у := 1,1
2	while *:
3	x,y := x+1,y+x

We want to prove that $y \ge 1$ is \mathcal{M}_1 -invariant:

1	х,у := 1,1
2	while *:
3	x,y := x+1,y+x

We want to prove that $y \ge 1$ is \mathcal{M}_1 -invariant:

Q: why?

1	х,у := 1,1
2	while *:
3	x,y := x+1,y+x

We want to prove that $y \ge 1$ is \mathcal{M}_1 -invariant:

Q: why?

We are not saying anything about x.

We establish the first inductive incremental lemma $\phi_1 := x \ge 0$:

•
$$x = 1 \land y = 1 \Rightarrow x \ge 0$$

• $x \ge 0 \land x' = x + 1 \land y' = y + x \Rightarrow x' \ge 0$

We establish the first inductive incremental lemma $\phi_1 := x \ge 0$:

•
$$x = 1 \land y = 1 \Rightarrow x \ge 0$$

•
$$x \ge 0 \land x' = x + 1 \land y' = y + x \Rightarrow x' \ge 0$$

Now, $\phi_2 \coloneqq y \ge 1$ is inductive relative to ϕ_1 :

•
$$x = 1 \land y = 1 \Rightarrow y \ge 1$$

•
$$\underbrace{x \ge 0}_{\phi_1} \land y \ge 1 \land x' = x + 1 \land y' = y + x \Rightarrow y' \ge 1$$

We establish the first inductive incremental lemma $\phi_1 := x \ge 0$:

•
$$x = 1 \land y = 1 \Rightarrow x \ge 0$$

•
$$x \ge 0 \land x' = x + 1 \land y' = y + x \Rightarrow x' \ge 0$$

Now, $\phi_2 \coloneqq y \ge 1$ is inductive relative to ϕ_1 :

•
$$x = 1 \land y = 1 \Rightarrow y \ge 1$$

•
$$\underbrace{x \ge 0}_{\phi_1} \land y \ge 1 \land x' = x + 1 \land y' = y + x \Rightarrow y' \ge 1$$

We have found the inductive strengthening $\phi_1 \wedge \phi_2$, by means of an incremental proof.

1 x,y := 1,1 2 while *: 3 x,y := x+y,y+x

We want to prove $\phi_2 \coloneqq y \ge 1$.

1	х,у := 1,1
2	while *:
3	x , y $:=$ x+y , y+x

We want to prove $\phi_2 \coloneqq y \ge 1$.

Like before, ϕ_2 is not inductive on its own.

1	х,у := 1,1
2	while *:
3	x , y $:=$ x+y , y+x

We want to prove $\phi_2 \coloneqq y \ge 1$.

Like before, ϕ_2 is not inductive on its own.

 \cdots but now neither is $\phi \coloneqq x \ge 0$:

•
$$x = 1 \land y = 1 \Rightarrow x \ge 0$$

• $x \ge 0 \land x' = x + y \land y' = y + x \not\Rightarrow x' \ge 0$

1	х,у := 1,1
2	while *:
3	x , y $:= x+y$, y+x

We want to prove $\phi_2 \coloneqq y \ge 1$.

Like before, ϕ_2 is not inductive on its own.

 \cdots but now neither is $\phi \coloneqq x \ge 0$:

•
$$x = 1 \land y = 1 \Rightarrow x \ge 0$$

• $x \ge 0 \land x' = x + y \land y' = y + x \Rightarrow x' \ge 0$

Monolithic approach = worst case of incremental proofs.

• FSIS: Finite-State Inductive Strengthening. It follows the incremental methodology [BM07].

- FSIS: Finite-State Inductive Strengthening. It follows the incremental methodology [BM07].
- "this algorithm is a result of asking the question: if the incremental method is often better for humans, might it be better for algorithms as well?" [Bra12];

- FSIS: Finite-State Inductive Strengthening. It follows the incremental methodology [BM07].
- "this algorithm is a result of asking the question: if the incremental method is often better for humans, might it be better for algorithms as well?" [Bra12];
- the core of the algorithm is the generalization of an error state.

FSIS - Example

FSIS - Example - 1st iteration

Check if P is inductive (relative to nobody). Check the validity of:

State *s* is a CTI.

 s is a cube returned by the SAT-solver; ¬s is a clause encoding all states different from s;

- s is a cube returned by the SAT-solver; ¬s is a clause encoding all states different from s;
- generalization of error state s: find a clause ϕ_1 such that
 - $\phi_1 \subseteq \neg s$; (it excludes s)
 - φ₁ is inductive (relative to its own); (it includes at least all the reachable states)
 - φ₁ is minimal. (it excludes the maximal number of non-reachable states)
- s is a cube returned by the SAT-solver; ¬s is a clause encoding all states different from s;
- generalization of error state s: find a clause ϕ_1 such that
 - $\phi_1 \subseteq \neg s$; (it excludes s)
 - φ₁ is inductive (relative to its own); (it includes at least all the reachable states)
 - φ₁ is minimal. (it excludes the maximal number of non-reachable states)
- if ϕ_1 does exist, it becomes the first incremental lemma.

FSIS - Example - 1st iteration

 ϕ_1 can be thought as a "boolean" cutting plane.

Which states are excluded by ϕ_1 ? (i) those who can reach *s* (ii) states "similar" to *s* (they share with *s* the dropped literals).

FSIS - Example - 2nd iteration

Check if *P* is inductive relative to ϕ_1 :

State *r* is a CTI.

FSIS - Example - 2nd iteration

- generalization of error state r:
 - $\phi_2 \subseteq \neg r;$
 - ϕ_2 is inductive relative to ϕ_1 ;
 - ϕ_2 is minimal;
- ϕ_2 is the second incremental lemma.

FSIS - Example - 2nd iteration

- generalization of error state r:
 - $\phi_2 \subseteq \neg r$;
 - ϕ_2 is inductive relative to ϕ_1 ;
 - φ₂ is minimal;
- ϕ_2 is the second incremental lemma.

Why "inductive relative to"?

- it would have been correct to generate ϕ_2 inductive (relative to its own), but it's more than what we need;
 - at the end we will consider the AND of all the lemmata;

Why "inductive relative to"?

- it would have been correct to generate φ₂ inductive (relative to its own), but it's more than what we need;
 - at the end we will consider the AND of all the lemmata;
- in general, it is faster to generate "inductive relative to" clauses.
 - intuitively, we are considering many fewer states of the system.

FSIS - Example - 3rd iteration

Check if *P* is inductive relative to $\phi_1 \wedge \phi_2$:

State t is a CTI.

FSIS - Example - 3rd iteration

- generalization of error state *t*:
 - $\phi_3 \subseteq \neg t$;
 - ϕ_3 is inductive relative to $\phi_1 \wedge \phi_2$;
 - ϕ_3 is minimal;
- ϕ_3 is the second incremental lemma.

FSIS - Example - 3rd iteration

- generalization of error state *t*:
 - $\phi_3 \subseteq \neg t$;
 - ϕ_3 is inductive relative to $\phi_1 \wedge \phi_2$;
 - φ₃ is minimal;
- ϕ_3 is the second incremental lemma.

Check if *P* is inductive relative to $\phi_1 \wedge \phi_2 \wedge \phi_3$:

Check if *P* is inductive relative to $\phi_1 \wedge \phi_2 \wedge \phi_3$:

- $\phi_1 \wedge \phi_2 \wedge \phi_3 \wedge P$ is an inductive strengthening.
- P is \mathcal{M} -invariant.

 suppose that an error state s does not have a minimal inductive generalization;

- suppose that an error state s does not have a minimal inductive generalization;
- worst case: we proceed with the monolithic technique;

 $P := P \land \neg s$

- suppose that an error state s does not have a minimal inductive generalization;
- worst case: we proceed with the monolithic technique;

$$P \coloneqq P \land \neg s$$

- eventually,
 - either $I \land \neg P$ is SAT: *P* is not invariant;
 - or we find an inductive strengthening $P \wedge \bigwedge_{i=0}^{n} \phi_i$;

Complexity:

- it is on the convergence of the procedure, not on the calls to the SAT-solver as before;
- each SAT-solver call is relatively small compared to those made by BMC.

Complexity:

- it is on the convergence of the procedure, not on the calls to the SAT-solver as before;
- each SAT-solver call is relatively small compared to those made by BMC.

Parallelization:

 straightforward; "by simply using a randomized decision procedure to obtain the CTIs, each process is likely to analyze a different part of the state-space." [BM07]

$\label{eq:IC3} \mbox{IC3} = \mbox{Incremental Construction of Inductive Clauses of Indubitable} \\ \mbox{Correctness}$

$\label{eq:IC3} \mbox{IC3} = \mbox{Incremental Construction of Inductive Clauses of Indubitable} \\ \mbox{Correctness}$

• FSIS sometimes enters a long search for the next relatively inductive clauses;

- $\label{eq:IC3} \mbox{IC3} = \mbox{Incremental Construction of Inductive Clauses of Indubitable} \\ \mbox{Correctness}$
 - FSIS sometimes enters a long search for the next relatively inductive clauses;
 - IC3 de-emphasized global information in favor of stepwise information: we will generate clauses that ensure that an error is unreachable up to some number of steps.

Sequence of frames $F_0(=I), F_1, F_2, \ldots, F_k$:

- each F_i is an over-approximation of the set of states reachable in at most k steps;
- each F_i is a set of clauses, *i.e.*, a CNF formula;
- the algorithm stops when F_i ≡ F_{i+1}. We will maintain the invariant that clauses(F_{i+1}) ⊆ clauses(F_i): the equivalence check is simply a sintactic test: F_i = F_{i+1}.

IC3 - 1^{st} iteration

Check if there are counterexamples of length 0 or 1 with these two SAT-queries:

$$\begin{array}{l} \bigstar \quad I \land \neg P \\ \bigstar \quad F_0(=I) \land T \land \neg P' \end{array}$$

IC3 - 1^{st} iteration

Check if there are counterexamples of length 0 or 1 with these two SAT-queries:

$$\begin{array}{l} \mathbf{X} \quad I \wedge \neg P \\ \mathbf{X} \quad F_0(=I) \wedge T \wedge \neg P' \end{array}$$

Since $F_0 \wedge T \Rightarrow P'$, we set $F_1 := P$. (over-approximation)

IC3 - 2nd iteration

At iteration k, check if $F_k \wedge T \wedge \neg P'$; in this case (k = 1):

$$\checkmark \quad F_1 \wedge T \wedge \neg P'$$

i.e., there exists an F_k -state that leads in one step to an error state?

IC3 - 2nd iteration

At iteration k, check if $F_k \wedge T \wedge \neg P'$; in this case (k = 1):

$$\checkmark \quad F_1 \wedge T \wedge \neg P'$$

i.e., there exists an F_k -state that leads in one step to an error state?

IC3 - 2nd iteration (blocking phase)

 $\neg s$ is inductive relative to $F_0(= I)$: error state s is not reachable in at least k = 1 step.

IC3 - 2nd iteration (blocking phase)

 $\neg s$ is inductive relative to $F_0(=I)$: error state s is not reachable in at least k = 1 step. We find a minimal $\phi_1 \subseteq \neg s$ such that ϕ_1 is inductive relative to $F_0(=I)$.

 $\Rightarrow \phi_1$ excludes the error state *s* (and similar states) but contains at least all the states reachable in at most k = 1 steps.

IC3 - 2nd iteration (blocking phase)

 $\neg s$ is inductive relative to $F_0(=I)$: error state s is not reachable in at least k = 1 step. We find a minimal $\phi_1 \subseteq \neg s$ such that ϕ_1 is inductive relative to $F_0(=I)$.

 $\Rightarrow \phi_1$ excludes the error state *s* (and similar states) but contains at least all the states reachable in at most k = 1 steps.

We add ϕ_1 to all the previous frames. In this case $F_1 := F_1 \wedge \phi_1$.

We have found a CTI s such that $s \models F_k \land T \land \neg P'$.

 \Rightarrow we want to generalize the error s or to prove that it's reachable from an initial state

We have found a CTI s such that $s \models F_k \land T \land \neg P'$.

 \Rightarrow we want to generalize the error s or to prove that it's reachable from an initial state

if $\neg s$ is inductive relative to F_{k-1} , then generate a minimal subclause $c \subseteq \neg s$ inductive relative to F_{k-1} , *i.e.*, *c* holds for at least all states reachable in *i* steps.

 \Rightarrow add *c* to frames $F_0 \dots F_{k+1}$, *i.e.*, refine the over-approximations.

We create a new frame only when $F_k \wedge T \Rightarrow P'$ is valid.

IC3 - 2nd iteration

We create a new frame only when $F_k \wedge T \Rightarrow P'$ is valid. In this case, $F_1 \wedge T \Rightarrow P'$ is valid. We create a new frame $F_2 := P$.

Propagation phase: After creating a new frame $F_{k+1} := P$, we perform the propagation phase: we push forward the clause discovered in frame F_i for some *i*.

Propagation phase: After creating a new frame $F_{k+1} := P$, we perform the propagation phase: we push forward the clause discovered in frame F_i for some *i*.

For all $0 \le i \le k$ and $c \in F_i$, check if

 $F_i \wedge T \Rightarrow c'$

If $c \notin clauses(F_{i+1})$, then set $F_{i+1} := F_{i+1} \cup \{c\}$

 \Rightarrow it propagates forward the errors \Rightarrow it helps the discovery of mutually inductive clauses

IC3 - 3rd iteration

Check if $F_2 \wedge T \wedge \neg P'$ (\checkmark). $\neg s$ is inductive relative to F_1 : error state s is not reachable for at least k = 2 steps.

IC3 - 3rd iteration

Check if $F_2 \wedge T \wedge \neg P'$ (\checkmark). $\neg s$ is inductive relative to F_1 : error state s is not reachable for at least k = 2 steps. Blocking phase: find minimal subclause $\phi_2 \subseteq \neg s$ inductive relative to F_1 . Add ϕ_2 to frames F_0 and F_1 .

Since $F_2 \wedge T \Rightarrow P'$ is valid, we create a new frame $F_3 := P$.

Since $F_2 \wedge T \Rightarrow P'$ is valid, we create a new frame $F_3 := P$.

Again $F_3 \wedge T \wedge \neg P'$ (\checkmark). But now $\neg s$ is not inductive relative to F_2

IC3 - 4rd iteration

Again $F_3 \wedge T \wedge \neg P'$ (\checkmark). But now $\neg s$ is not inductive relative to F_2 : error state s could be reachable in k = 3 steps ...

Instead of generating a clause that excludes s (it is possible), we call the algorithm recursively on the predecessor t of s

 \dots remember that t could still be reachable as far as we know \dots

Instead of generating a clause that excludes s (it is possible), we call the algorithm recursively on the predecessor t of s

 \dots remember that t could still be reachable as far as we know \dots

"t is the new s" ;-)

IC3 - Recursion

We want to remove error state t from F_2 . $\neg t$ is inductive relative to F_1 : find min subclause $\phi_4 \subseteq \neg t$ and add it to F_0, F_1, F_2 .

IC3 - Recursion

We want to remove error state t from F_2 . $\neg t$ is inductive relative to F_1 : find min subclause $\phi_4 \subseteq \neg t$ and add it to F_0, F_1, F_2 .

If in this process we had gone back with recursion until an initial state, then we would have found a counterexample.

IC3 - Termination

Now error state *s* in frame F_3 can be generalized: find min clause $\phi_5 \subseteq \neg s$ inductive relative to F_2 .

IC3 - Termination

Now error state s in frame F_3 can be generalized: find min clause $\phi_5 \subseteq \neg s$ inductive relative to F_2 .

 $F_2 = F_3$: IC3 terminates with True.

- FAIR: IC3 for ω -regular properties (*e.g.*, LTL) [Bra+11];
- IICTL: IC3 for CTL properties [HBS12];
- Infinite-state: software model checking via IC3 [CG12].

- go_msat : initialise the system for infinite state model checking using the SMT solver mathsat5.
- check_invar_ic3 : check invariant using IC3-based algorithm.
- check_ltlspec_ic3 : check LTL using IC3-based algorithm.

But IC3 is for reachability, how do we apply it for checking LTL properties?

References i

References

Aaron R Bradley and Zohar Manna. "Checking safety by inductive generalization of counterexamples to induction". In: *Formal Methods in Computer Aided Design (FMCAD'07)*. IEEE. 2007, pp. 173–180.

Aaron R Bradley, Fabio Somenzi, Zyad Hassan, and Yan Zhang. "An incremental approach to model checking progress properties". In: *2011 Formal Methods in Computer-Aided Design (FMCAD)*. IEEE. 2011, pp. 144–153.

References ii

- Aaron R Bradley. "Understanding ic3". In: International Conference on Theory and Applications of Satisfiability Testing. Springer. 2012, pp. 1–14.
- Alessandro Cimatti and Alberto Griggio. "Software model checking via IC3". In: *International Conference on Computer Aided Verification*. Springer. 2012, pp. 277–293.
- Zyad Hassan, Aaron R Bradley, and Fabio Somenzi. "Incremental, inductive CTL model checking". In: International Conference on Computer Aided Verification. Springer. 2012, pp. 532–547.