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Inductive Verification

In order to prove that P(x) is M-invariant, one possibility is to
check if P is inductive. With 2 SAT-solver calls, we check the
of:

(initiation) / = P
(consecution) PA T = P’

It is a condition to prove invariance for P. It is not also a
necessary condition.

Q: Why?

Remember the discussion about k-induction we did on the 5"
lecture?

The set of states in P could be must larger than the ones in / and
contain states unreachable from [/ via T.
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Incremental vs Monolithic

If consecution fails, then:

e Monolithic approach: look for a stronger assertion F such
that F A P is inductive. F A P is called an

e Incremental proof: look for a sequence of lemmata

o1, 02, ...,0x = P such that ¢; is
p1 AN N1, forall 1 < i<k, ie,
o [ = ¢;
° (;51/\-~-/\¢,',1/\¢,'/\T:>¢:-
k—1
/\ i is an inductive strengthening.
i=1

=

It follows that P A
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Abstraction

Note that:

e both methods do not compute a formula R for the exact set of
reachable states in M:;

e rather, they find a formula F A P that represents a larger set of
states all satisfying F N\ P:

e = this F is a much smaller formula than R.
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Monolithic Approach - Naive algorithm

Naive algorithm for finding an inductive strengthening:

1. IS:=P
2. if IS'is , then we have found an
; stop.
3. else find a err (counterexample to inductiveness):

err EISATA-IS

3.1 if err A l'is SAT, then stop: P is NOT invariant;
3.2 else set IS :== IS A —err and go to Item 2.

At the end, the inductive strengthening (if any) will be:

P A /\ —err
erreCTI 4
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Incremental Proof - Example

Consider the program Mji:

1 x,y = 1,1
2 while x:
3 X,y = x+1,y+x
We want to prove that is Mi-invariant:

e x=1Ny=1=y>1
—

— ——
I P
ey >IN =x+1AY =y+xA&y >1
— —
P T P
Q: why?

We are not saying anything about x.
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Incremental Proof - Example

We establish the first lemma ¢1 == x > 0:

e x=1ANy=1=x2>0
e x>0AX =x+1Ay' =y+x=x">0

Now, ¢p =y > 1 is inductive o1:

e x=1ANy=1=y>1
e x>0NYy>IAX =x+1Ay =y+x=y >1
¢
1

We have found the inductive strengthening ¢1 A ¢, by means of an
incremental proof.
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Limitation of incremental proofs

Consider the program Mo:

1 x,y = 1,1
2 while x:
8 X,y 1= X+Yy,y+x

We want to prove ¢p ==y > 1.
Like before, ¢ is inductive on its own.
-+ but now neither is ¢ == x > 0:
e x=1ANy=1=x2>0
e x>0AX =x+yAy =y+xAxXx' >0

Monolithic approach = worst case of incremental proofs.



FSIS - Algorithm

° : Finite-State Inductive Strengthening. It follows the
incremental methodology [BM07].



FSIS - Algorithm

° : Finite-State Inductive Strengthening. It follows the
incremental methodology [BM07].

e “this algorithm is a result of asking the question: if the
incremental method is often better for humans, might it be
better for algorithms as well?" [Bral2];



FSIS - Algorithm

° : Finite-State Inductive Strengthening. It follows the
incremental methodology [BM07].

e “this algorithm is a result of asking the question: if the
incremental method is often better for humans, might it be
better for algorithms as well?" [Bral2];

e the core of the algorithm is the
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FSIS - Example - 1* iteration

Check if P is inductive (relative to nobody). Check the validity of:

v |I=P
X PAT=P

State s is a

T
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FSIS - Example - 1* iteration

e sisa returned by the SAT-solver; —s is a encoding
all states different from s;
° of error state s: find a clause ¢; such that
e ¢ C —s; (it excludes s)
e ¢, is inductive (relative to its own); (it includes at least all the
reachable states)
e ¢ is minimal. (it excludes the maximal number of
non-reachable states)

o if @1 does exist, it becomes the first

11



FSIS - Example - 1* iteration

¢1 can be thought as a "boolean" cutting plane.

ll—><> ,'I $1

F X
7N ;S
/\/‘\\ EREY
N Y N\~
% L

\/

Which states are excluded by ¢17 (i) those who can reach s
(i) states “similar" to s (they share with s the dropped literals).
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FSIS - Example - 2" iteration

Check if P is inductive o1:

v |I=P
X 01 ANPAT =P

State r is a
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FSIS - Example - 2" iteration

e generalization of error state r:
® ¢ C
® ¢ is to ¢1;
e (¢ is minimal;

e ¢ is the second
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FSIS - Example - 2" iteration

Why “ "7

e it would have been correct to generate ¢, inductive (relative to
its own), but it's more than what we need;

e at the end we will consider the AND of all the lemmata;

e in general, it is faster to generate “inductive relative to"
clauses.

e intuitively, we are considering many fewer states of the system.

5



FSIS - Example - 3™ iteration

Check if P is inductive o1 N\ ¢2:

v |I=P
X 01N ANPANT AP

State t is a

S
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FSIS - Example - 3™ iteration

e generalization of error state t:
o ¢3 C t;
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e (3 is the second
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FSIS - Example - 4 iteration

Check if P is inductive o1 N\ P2 A ¢3:

v |I=P
v ¢1/\(Z§2/\(Z)3/\P/\TZ>PI
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FSIS - Example - 4 iteration

Check if P is inductive o1 N\ P2 A ¢3:

v |I=P
v ¢1/\(Z§2/\(Z)3/\P/\TZ>PI

e ¢1 Ao A @3 A P is an inductive strengthening.

e P is M-invariant.

18



Worst case

e suppose that an error state s does not have a minimal
inductive generalization;
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Worst case

e suppose that an error state s does not have a minimal
inductive generalization;

° : we proceed with the monolithic technique;

P:=PA-s

e eventually,
e either I A =P is SAT: P is not invariant;

n
e or we find an inductive strengthening P A A ¢;
i=0

19



Complexity and Parallelization

Complexity:

e it is on the convergence of the procedure, not on the calls to
the SAT-solver as before;

e cach SAT-solver call is relatively small compared to those made
by BMC.
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Complexity and Parallelization

Complexity:

e it is on the convergence of the procedure, not on the calls to
the SAT-solver as before;

e cach SAT-solver call is relatively small compared to those made
by BMC.

Parallelization:

e straightforward; "by simply using a randomized decision
procedure to obtain the CTls, each process is likely to analyze
a different part of the state-space." [BMO07]

20



IC3 = Incremental Construction of Inductive Clauses of Indubitable

Correctness
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IC3 = Incremental Construction of Inductive Clauses of Indubitable

Correctness

e FSIS sometimes enters a long search for the next relatively
inductive clauses;

e |C3 de-emphasized global information in favor of stepwise
information: we will generate clauses that ensure that an error
is unreachable up to some number of steps.

21



IC3 - Data Structures

Sequence of Fo(=1),Fi,Fa, ..., Fk:
e cach F; is an over-approximation of the set of states reachable
in at most k steps;
e cach F; is a set of clauses, i.e., a CNF formula;

e the algorithm stops when F; = F; 1. We will maintain the
invariant that clauses(Fiy1) C clauses(F;): the equivalence
check is simply a sintactic test: F; = Fjy1.

22



IC3 - 1% iteration

Check if there are counterexamples of length 0 or 1 with these two
SAT-queries:

X IN-P
X Fo(=0)ATA-P
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IC3 - 1% iteration

Check if there are counterexamples of length 0 or 1 with these two
SAT-queries:

X IAN=P
X Fo(=N)ATA=P

Since Fo AT = P/, we set F; .= P.

F1

23



IC3 - 2" jteration

At iteration k, check if Fx A T A =P’; in this case (k = 1):
v FATA-P

i.e., there exists an Fj-state that leads in one step to an error state?
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At iteration k, check if Fx A T A =P’; in this case (k = 1):
v FANTA-P

i.e., there exists an Fj-state that leads in one step to an error state?
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IC3 - 2™ iteration (blocking phase)

—s is inductive relative to Fo(= /): error state s is reachable in
at least k = 1 step.
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IC3 - 2" jteration (blocking phase)

—s is inductive relative to Fo(= /): error state s is reachable in
at least k = 1 step. We find a minimal ¢1 C —s such that ¢ is
inductive Fo(=1).

= ¢1 excludes the error state s (and similar states) but contains at
least all the states reachable in at most kK = 1 steps.

We add ¢ to all the previous frames. In this case F; = F1 A ¢1.

F1 s/

N .



IC3 - Blocking phase

We have found a CTl s such that s = Fx A T A =P,

= we want to the error s or to prove that it's reachable
from an initial state
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IC3 - Blocking phase

We have found a CTl s such that s = Fx A T A =P,

= we want to the error s or to prove that it's reachable

from an initial state
if —s is inductive relative to Fi_1, then generate a minimal

subclause ¢ C —s inductive relative to Fr_1, i.e.,

= add c to frames Fgy... Fiy1, i.e., refine the over-approximations.

26



IC3 - 2" jteration

We create a new frame only when Fy A T = P’ is valid.

F S
=

S

—>

N
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IC3 - 2" jteration

We create a new frame only when Fy A T = P’ is valid.
In this case, F; A T = P’ is valid. We create a new frame F, .= P.

F1

27



IC3 - Propagation phase

Propagation phase: After creating a new frame Fiy1 == P, we
perform the : we push forward the clause
discovered in frame F; for some i.
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IC3 - Propagation phase

Propagation phase: After creating a new frame Fiy1 == P, we
perform the : we push forward the clause
discovered in frame F; for some i.

For all 0 < i< k and ¢ € F;, check if
FENT = c
If ¢ & clauses(Fit1), then set Fi11 = Fiy1 U{c}

= it propagates forward the errors
= it helps the discovery of mutually inductive clauses

28



IC3 - 3 jteration

Check if F, A T A =P’ (/). —s is inductive relative to Fi: error
state s is reachable for at least kK = 2 steps.
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IC3 - 3 jteration

Check if F, A T A =P’ (/). —s is inductive relative to Fi: error
state s is not reachable for at least k = 2 steps. Blocking phase:
find minimal subclause ¢» C —s inductive relative to F1. Add ¢ to

frames Fy and Fi.

5t s/'

29



IC3 - 4 jteration

Since Fo, A T = P’ is valid, we create a new frame F3 := P.

5 s/’
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IC3 - 4 jteration

Since Fo, A T = P’ is valid, we create a new frame F3 := P.

Fi
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IC3 - 4 jteration

Again F3 A T A =P (V). But now —s is not inductive relative to F;




IC3 - 4 jteration

Again F3 A T A =P (V). But now —s is not inductive relative to Fy:
error state s could be reachable in kK = 3 steps ...

Fi




IC3 - 4 jteration

Instead of generating a clause that excludes s (it is possible), we call
the algorithm on the predecessor t of s

. remember that t could still be reachable as far as we know ...
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IC3 - 4 jteration

Instead of generating a clause that excludes s (it is possible), we call
the algorithm on the predecessor t of s

. remember that t could still be reachable as far as we know ...

"t is the s" ;-)

32



IC3 - Recursion

We want to remove error state t from F,. —t is inductive relative to
F1: find min subclause ¢4 C —t and add it to Fg,F1,F>.

A .
TN
F2
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IC3 - Recursion

We want to remove error state t from F,. —t is inductive relative to
F1: find min subclause ¢4 C —t and add it to Fg,F1,F>.

A .
TN
F2

If in this process we had gone back with recursion until an initial

state, then we would have found a counterexample. -



IC3 - Termination

Now error state s in frame F3 can be generalized: find min clause
¢5 C —s inductive relative to F».

Fi




IC3 - Termination

Now error state s in frame F3 can be generalized: find min clause
¢5 C —s inductive relative to F».

F S
R
F3

F> = F3 : IC3 terminates with True.




Beyond I1C3

e FAIR: IC3 for w-regular properties (e.g., LTL) [Bra+11];
e IICTL: IC3 for CTL properties [HBS12];
e Infinite-state: software model checking via IC3 [CG12].

85



IC3 with nuXmv

e go_msat : initialise the system for infinite state model
checking using the SMT solver mathsat5.

e check_invar_ic3 : check invariant using 1C3-based
algorithm.

e check_ltlspec_ic3 : check LTL using IC3-based algorithm.

But IC3 is for reachability, how do we apply it for checking LTL
properties?

36
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