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Infinite state transition system



Background

Are you all familiar with computability concepts?

• decidability,

• undecidability,

• reduction.

What about computational models?

• Turing machine,

• 3-counter machine,

• 2-counter machine.
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Finite is nice

Finite models

• Up until now we have seen only finite models: representable
as finite graphs.

• Nice theoretical results: decidability for both reachability and
liveness.

• Sound and complete procedures: if a counter-example exists,
then there exist also a looping counter-example.
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Why infinite?

Sources of infinity

• data manipulation: N, Z, Q, R;

• control structures: procedures, process creation;

• async communication: unbounded FIFOs;

• parameterised models: check correctness for all possible
parameters;

• time: timed/hybrid systems;

• . . . .
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Infinite transition systems

Infinite state

• Represent an infinite graph (infinite number of states).

• There might be no looping counter-example, does not imply
that the property holds. Why?

Where are the problems?

• M |= ψ

• L(M) ⊆ L(Tψ)
• L(M) ∩ L(T¬ψ) = ∅
• L(M × T¬ψ) = ∅
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A nice pair of innocent looking types

nuXmv
supports the description of infinite state transition systems through
the types: integer (Z) and real (R).
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Here be dragons

Reachability

• Can you we define a reduction from the halting problem of a
2-counter machine to reachability on an infinite state
transition system?

• What can we conclude?

Liveness

• Can you we define a reduction from the halting problem of a
2-counter machine to LTL/ CTL checking on an infinite
state transition system?

• What can we conclude?

Invariant, LTL and CTL checking are undecidable.
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But Timed automata. . .

Timed Automata

• Infinite state transition system (clock ∈ R).

• Reachability on timed automata is decidable, why?

• Bisimulation with a finite state transition system:
region-abstraction.
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Verification on infinite state systems

BMC and K-induction

• BMC and K-induction can be trivially extended to
infinite-state systems.

• They are still sound, we loose completeness:

• BMC : look for looping counter-example,
• K-induction : bad state reachable by infinite run without

initial states.

• Use an SMT-solver able to handle required theories: integers,
reals.

Other techniques have been adapted for infinite-state systems:
liveness-to-safety, ic3, abstract-interpretation . . . .
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Exercises



Equality using 2-counter machine [1/6]

Check if the 2 counters contain the same value

• Write a program for a 2-counter machine that decides
whether the counters contain the same value.

• Model this program in nuXmv.

• Prove termination and correctness.
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Equality using 2-counter machine [2/6]

pseudocode

while(true):
if c0 == 0:
return c1 == 0

if c1 == 0:
return c0 == 0

c0--;
c1--;
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Equality using 2-counter machine: translate in SMV [3/6]

Straightforward translation into SMV

MODULE main
VAR
c0 : integer;
c1 : integer;
l : {check, decr_c0, decr_c1,

end_equal, end_not_equal};

INVAR c0 >= 0 & c1 >= 0;
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Equality using 2-counter machine: translate in SMV [4/6]

ASSIGN
init(l) := check;
next(l) :=
case

l = check & c0 = 0 & c1 = 0 : end_equal;
l = check & c0 = 0 & c1 != 0 : end_not_equal;
l = check & c0 != 0 & c1 = 0 : end_not_equal;
l = check : decr_c0;
l = decr_c0 : decr_c1;
l = decr_c1 : check;
l = end_equal : end_equal;
l = end_not_equal : end_not_equal;

esac;
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Equality using 2-counter machine: translate in SMV [5/6]

ASSIGN next(c0) :=
case
l = decr_c0 & c0 > 0 : c0 - 1;
TRUE : c0;

esac;

ASSIGN next(c1) :=
case
l = decr_c1 & c1 > 0 : c1 - 1;
TRUE : c1;

esac;
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Equality using 2-counter machine: properties [6/6]

Properties

• The end states are reachable.

INVARSPEC l != end_equal;
INVARSPEC l != end_not_equal;

• Every execution terminates.

LTLSPEC F (l in {end_equal , end_not_equal});

What happens when we ask the system to verify this property?
Do you have an intuition about why this is the case?

22 / 26



Equality using 2-counter machine: properties [6/6]

Properties

• The end states are reachable.

INVARSPEC l != end_equal;
INVARSPEC l != end_not_equal;

• Every execution terminates.

LTLSPEC F (l in {end_equal , end_not_equal});

What happens when we ask the system to verify this property?
Do you have an intuition about why this is the case?

23 / 26



Equality using 2-counter machine: properties [6/6]

Properties

• The end states are reachable.

INVARSPEC l != end_equal;
INVARSPEC l != end_not_equal;

• Every execution terminates.

LTLSPEC F (l in {end_equal , end_not_equal});

What happens when we ask the system to verify this property?
Do you have an intuition about why this is the case?

24 / 26



Thermostat

Model

• a thermostat has 2 states: on and off.

• at every clock tick the thermostat checks the current
temperature:

• if the temperature is below 18 degrees the thermostat switches
on.

• if the temperature is above 18 degrees the thermostat switches
off.

• when the thermostat is off the temperature drops;
the drop in temperature is at most max dt degrees.

• when the thermostat is on the temperature increases;
the increase in temperature is at most max dt degrees.

• the temperature initially is in [18−max dt; 18 +max dt].

Prove that the thermostat keeps the temperature in the range
[18−max dt; 18 +max dt], for all max dt in R.
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Thermostat: solution

MODULE main
DEFINE threshold := 18;
FROZENVAR max_dt : real;
VAR

temperature : real;
state : {on, off};

INIT temperature >= threshold - max_dt;
INIT temperature <= threshold + max_dt;

INVAR temperature < threshold -> state = on;
INVAR temperature > threshold -> state = off;

TRANS state = off -> next(temperature) < temperature &
next(temperature) >= temperature - max_dt;

TRANS state = on -> next(temperature) > temperature &
next(temperature) <= temperature + max_dt;

INVARSPEC temperature >= threshold - max_dt &
temperature <= threshold + max_dt;
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