
nuXmv Bounded Model Checking

Enrico Magnago

University of Trento,
Fondazione Bruno Kessler

1 / 24

Bounded Model Checking

Bounded Model Checking

Idea

• look for a counter-example path of increasing length k

• bug oriented: is there a bad behaviour?

• for each k: build a boolean formula that is satisfiable iff there
is a counter-example of length k
(can be expressed using k · |s| variables)

• use of a SAT procedure to check the satisfiability of the
boolean formula

• can manage complex formulas on several 100K variables
• returns satisfying assignment (i.e. a counter-example)

3 / 24

Bounded Model Checking

Idea

• look for a counter-example path of increasing length k

• bug oriented: is there a bad behaviour?

• for each k: build a boolean formula that is satisfiable iff there
is a counter-example of length k
(can be expressed using k · |s| variables)

• use of a SAT procedure to check the satisfiability of the
boolean formula

• can manage complex formulas on several 100K variables
• returns satisfying assignment (i.e. a counter-example)

4 / 24

Bounded Model Checking

Idea

• look for a counter-example path of increasing length k

• bug oriented: is there a bad behaviour?

• for each k: build a boolean formula that is satisfiable iff there
is a counter-example of length k
(can be expressed using k · |s| variables)

• use of a SAT procedure to check the satisfiability of the
boolean formula

• can manage complex formulas on several 100K variables
• returns satisfying assignment (i.e. a counter-example)

5 / 24

Commands for Bounded Model Checking

NuSMV/ nuXmv

• go bmc: initializes the system for the BMC verification.

• bmc pick state, bmc simulate [-k]: simulate the system

• check ltlspec bmc checks LTL specifications

• check invar bmc checks INVAR specifications

nuXmv only

• go msat: initializes the system so as to use the MathSAT 5
SMT Solver as back-end

• msat pick state, msat simulate [-k]: simulate the
system

• msat check ltlspec bmc: checks LTL specifications

• msat check invar bmc: checks INVAR specifications

6 / 24

Example: BMC simulation

modulo 8 counter

MODULE main
VAR
b0 : boolean;
b1 : boolean;
b2 : boolean;
ASSIGN
init(b0) := FALSE;
init(b1) := FALSE;
init(b2) := FALSE;
next(b0) := !b0;
next(b1) := (!b0 & b1)
| (b0 & !b1);
next(b2) := ((b0 & b1) & !b2)
| (!(b0 & b1) & b2);
DEFINE
out := toint(b0)
+ 2*toint(b1)
+ 4*toint(b2);

NuSMV > read_model -i counter8.smv
NuSMV > bmc_go;
NuSMV > bmc_pick_state;
NuSMV > bmc_simulate -k 3 -p
-> State: 1.1 <-
b0 = FALSE
b1 = FALSE
b2 = FALSE
out = 0
-> State: 1.2 <-
b0 = TRUE
out = 1
-> State: 1.3 <-
b0 = FALSE
b1 = TRUE
out = 2
-> State: 1.4 <-
b0 = TRUE
out = 3

7 / 24

Checking LTL specifications

The following specification is false:

LTLSPEC G (out = 3 -> X out = 5)

0 1 2 3 4

• It is an example of safety property: nothing bad ever happens.

– the counterexample is a finite trace (of length 4)
– important: there are no counterexamples of length up to 3

8 / 24

Checking LTL specifications

Output
NuSMV > check_ltlspec_bmc -p "G (out = 3 -> X out = 5)"
-- no counterexample found with bound 0 for specification ...
-- no counterexample found with bound 1 for specification ...
-- no counterexample found with bound 2 for specification ...
-- no counterexample found with bound 3 for specification ...
-- specification G (out = 3 -> X out = 5) is false
-- as demonstrated by the following execution sequence
-> State 1.1 <-
...
out = 0
-> State 1.2 <-
...
out = 1
-> State 1.3 <-
...
out = 2
-> State 1.4 <-
...
out = 3
-> State 1.5 <-
...
out = 4

9 / 24

Checking LTL specifications

The following specification is false:

LTLSPEC ! G (F (out = 2));
LTLSPEC F (G ! (out = 2));

0 1 2 3 4 5 6 7

• It is an example of liveness property: something desirable will
eventually happen

– the counterexample is an infinite trace (loop of length 8)
– since the state where out = 2 is entered infinitely often,

the property is false

10 / 24

Bounded Model Checking: counter-examples

Looping counterexample

0 k−2 k−1 k

k+2 k+3 k+4 k+5

l−1 l l+1 l+2

=

k+1k
...

prefix : assignments from 0 to l − 1,

loop : infinitely repeat assignments l to k − 1,

loop-back : kth assignment, always identical to lth assignment.

11 / 24

Length and loopback condition

• check ltlspec bmc looks for counterexamples of length up
to k.

• check ltlspec bmc onepb looks for counterexamples of
length k.

• To set the loopback conditions use: -l bmc loopback.
• bmc loopback >=0 : loop to a precise time point
• bmc loopback < 0 : loop length
• bmc loopback = ’X’: no loopback
• bmc loopback = ’*’: all possible loopbacks

• To set the bounded length use: -k bmc length.

• Default values: bmc loopback = ’*’, bmc length = 10

• Default values can be changed using:
• set bmc length k sets the length to k
• set bmc loopback l sets the loopback to l

12 / 24

Checking LTL specifications

Let us consider again the specification ! G (F (out = 2))

NuSMV > check_ltlspec_bmc_onepb -k 9 -l 0 -p "! G (F (out = 2))"
-- no counterexample found with bound 9

and loop at 0 for specification ...

NuSMV > check_ltlspec_bmc_onepb -k 8 -l 1 -p "! G (F (out = 2))"
-- no counterexample found with bound 8

and loop at 1 for specification ...

NuSMV > check_ltlspec_bmc_onepb -k 9 -l 1 -p "! G (F (out = 2))"
-- specification ! G F out = 2 is false
-- as demonstrated by the following execution sequence
...

0 1 2 3 4 5 6 7 0

13 / 24

Checking LTL specifications

Let us consider again the specification ! G (F (out = 2))

NuSMV > check_ltlspec_bmc_onepb -k 9 -l 0 -p "! G (F (out = 2))"
-- no counterexample found with bound 9

and loop at 0 for specification ...

NuSMV > check_ltlspec_bmc_onepb -k 8 -l 1 -p "! G (F (out = 2))"
-- no counterexample found with bound 8

and loop at 1 for specification ...

NuSMV > check_ltlspec_bmc_onepb -k 9 -l 1 -p "! G (F (out = 2))"
-- specification ! G F out = 2 is false
-- as demonstrated by the following execution sequence
...

0 1 2 3 4 5 6 7 0

14 / 24

Checking LTL specifications

Let us consider again the specification ! G (F (out = 2))

NuSMV > check_ltlspec_bmc_onepb -k 9 -l 0 -p "! G (F (out = 2))"
-- no counterexample found with bound 9

and loop at 0 for specification ...

NuSMV > check_ltlspec_bmc_onepb -k 8 -l 1 -p "! G (F (out = 2))"
-- no counterexample found with bound 8

and loop at 1 for specification ...

NuSMV > check_ltlspec_bmc_onepb -k 9 -l 1 -p "! G (F (out = 2))"
-- specification ! G F out = 2 is false
-- as demonstrated by the following execution sequence
...

0 1 2 3 4 5 6 7 0

15 / 24

Checking LTL specifications

Let us consider again the specification !G (F (out =2))

NuSMV > check_ltlspec_bmc_onepb -k 9 -l X -p "! G (F (out =2))"
-- no counterexample found with bound 9 and no loop for specification ...

NuSMV > check_ltlspec_bmc_onepb -k 10 -l -8 -p "! G (F (out =2))"
-- specification ! G F out = 2 is false
-- as demonstrated by the following execution sequence
...

0 1 2 3 4 5 6 7 0 1 2

loop length = 8

16 / 24

Checking LTL specifications

Let us consider again the specification !G (F (out =2))

NuSMV > check_ltlspec_bmc_onepb -k 9 -l X -p "! G (F (out =2))"
-- no counterexample found with bound 9 and no loop for specification ...

NuSMV > check_ltlspec_bmc_onepb -k 10 -l -8 -p "! G (F (out =2))"
-- specification ! G F out = 2 is false
-- as demonstrated by the following execution sequence
...

0 1 2 3 4 5 6 7 0 1 2

loop length = 8

17 / 24

Checking invariants

• Bounded model checking can be used also for checking
invariants

• Invariants are checked via the check invar bmc command

• Invariants are checked via an inductive reasoning, i.e.
nuXmv tries to prove that:

• the property holds in every initial state
• the property holds in every state that is reachable from

another state in which the property holds

18 / 24

Checking invariants

Consider the following example:

MODULE main
VAR
out : 0..15;

ASSIGN
init(out) := 0;

TRANS
case
out = 7 : next(out) = 0;
TRUE : next(out) = ((out + 1) mod 16);
esac

INVARSPEC out in 0..10
INVARSPEC out in 0..7

0 1 2 3

4

567

8 9 10

11

121314

15

19 / 24

Checking invariants

NuSMV > check_invar_bmc
-- cannot prove the invariant out in (0 .. 10) : the induction fails
-- as demonstrated by the following execution sequence
-> State 1.1 <-
out = 10
-> State 1.2 <-
out = 11
-- invariant out in (0 .. 7) is true

• The invariant out in 0..10 is true, but the the induction
fails because a state in which out=11 can be reached from a
state in which out=10

• Thus: if an invariant cannot be proved by inductive reasoning,
it does not necessarily mean that the formula is false

• The stronger invariant out in 0..7 is proved true by
BMC, therefore also the invariant out in 0..10 is true

20 / 24

Exercises

Exercises [1/3]

Cannibals

Three missionaries and three cannibals want to cross a river but
they have only one boat that holds two. If the cannibals ever
outnumber the missionaries on either bank, the missionaries will be
eaten. The boat cannot cross the river by itself with no people on
board. The problem consists of finding a strategy to make them
cross the river safely.

Goals

• model the problem in SMV

• use nuXmv or NuSMV to prove that there exists a solution to
the planning problem

22 / 24

Exercises [2/3]

Numbers Paranoia

Encode and solve the following puzzle as a planning problem using
nuXmv or NuSMV

23 / 24

Exercises [3/3]

Leaping frogs

The puzzle involves seven rocks and six frogs. The seven rocks are
laid out in a horizontal line and the six frogs are evenly divided into
a green trio and a brown trio. The green frogs sit on the rocks on
the right side and the brown frogs sit on the rocks on the left side.
The rock in the middle is vacant. Can you move the frogs to the
opposite side? Notice that you can only move one frog at a time,
and they can only move forward to an empty rock or jump over
one (and only one) frog, to reach an empty rock.

Goals

• model the problem in SMV

• use nuXmv or NuSMV to prove that there exists a solution to
the planning problem

24 / 24

	Bounded Model Checking
	Exercises

