
nuXmv debugging models

Enrico Magnago

University of Trento,
Fondazione Bruno Kessler

1 / 14

Debugging models

Debugging a model: inspect finite state transition system

check fsm
check if there are deadlocks in the fsm.

MODULE main
VAR
x : 0..2;
y : {a, b, c};

TRANS x = 2 -> next(x) = 0;
TRANS y = a -> next(x) = 1;

Q: Is there a dead-lock? Where?

3 / 14

Deadlock? Ask nuXmv

nuXmv > go
nuXmv > check_fsm

##
The transition relation is not total. A state without
successors is:
x = 2
y = a
The transition relation is not deadlock-free.
A deadlock state is:
x = 2
y = a
##

4 / 14

What about this mutual exclusion protocol?

MODULE Mutex(signal, shared, id)
VAR

pc : {l0, l1, l2};

ASSIGN
init(pc) := l0;
next(pc) :=

case
pc = l0 & signal & shared = 0 : l1;
pc = l1 & !signal & shared = id : l2;
pc = l2 : l0;
TRUE : pc;

esac;

TRANS pc = l0 & next(pc) = l1 -> next(shared) = id;
TRANS pc = l2 & next(pc) = l0 -> next(shared) = 0;

MODULE main
VAR

signal : boolean;
shared : 0..2;
m0 : Mutex(signal, shared, 1);
m1 : Mutex(signal, shared, 2);

INVARSPEC NAME SAFE := m0.pc != l2 | m1.pc != l2;

Q: is there a dead-lock?

5 / 14

Guess what, ask nuXmv

The transition relation is not total. A state without
successors is:
signal = TRUE
shared = 0
m0.pc = l2
m1.pc = l0
The transition relation is not deadlock-free.
A deadlock state is:
signal = TRUE
shared = 0
m0.pc = l0
m1.pc = l0

Q: what’s the difference between the two states?

The first one is
not reachable.
Q: why?

6 / 14

Guess what, ask nuXmv

The transition relation is not total. A state without
successors is:
signal = TRUE
shared = 0
m0.pc = l2
m1.pc = l0
The transition relation is not deadlock-free.
A deadlock state is:
signal = TRUE
shared = 0
m0.pc = l0
m1.pc = l0

Q: what’s the difference between the two states? The first one is
not reachable.
Q: why?

7 / 14

Get reachable states

print reachable states
prints number of reachable states and total number of states.

system diameter: 1
reachable states: 6 (2ˆ2.58496) out of 54 (2ˆ5.75489)

Only 6 states are reachable, this is fishy.
Can we list them?

8 / 14

print reachable states -v

------- State 1 ------
signal = TRUE
shared = 2
m0.pc = l0
m1.pc = l0
------- State 2 ------
signal = FALSE
shared = 2
m0.pc = l0
m1.pc = l0
------- State 3 ------
signal = TRUE
shared = 0
m0.pc = l0
m1.pc = l0

------- State 4 ------
signal = FALSE
shared = 0
m0.pc = l0
m1.pc = l0
------- State 5 ------
signal = TRUE
shared = 1
m0.pc = l0
m1.pc = l0
------- State 6 ------
signal = FALSE
shared = 1
m0.pc = l0
m1.pc = l0

print reachable states -f

((m0.pc = l0 & m1.pc = l0) & (shared = 2 | (shared = 1 | shared = 0)))

9 / 14

Fix it

Let’s try and fix the model

Q: What are the issues of this mutual exclusion model?
Q: Can we fix them?
Q: How?

10 / 14

Correctness of the model

Is the model correct?
We hope so, but we cannot be sure.
We can increase our confidence by trying to verify/falsify other
properties.

Distance between states
We might want to compute the number of steps required to go
from one set of states to another.

11 / 14

COMPUTE

COMPUTE MIN [start, end];
minimum number of steps required to reach a state in end,
starting from a state in start. infinity if unreachable.

COMPUTE MAX [start, end];
maximum number of steps required to reach a state in end,
starting from a state in start. infinity if unbounded,
undefined if unreachable.

• start and end can be CTL formulae.

• check compute command tells nuXmv to evaluate the
COMPUTE statements.

12 / 14

COMPUTE example

Recall our simple mutual exclusion protocol

• Q What’s the value of
COMPUTE MIN [m0.pc = l0, m0.pc = l2]; ?

• Q What’s the value of
COMPUTE MAX [m0.pc = l0, m0.pc = l2]; ?

13 / 14

Finally, TEST!

We have seen some automated ways to increase our confidence in
the correctness of the model.
All these techniques help us if we know what to look for.
Otherwise we can always perform simulations and look at what is
happening.

• pick state, simulate: we have already seen these ones.

• read trace: load a trace from a file.

• execute traces: checks whether all stored traces are in the
language of the model.

• execute partial traces: tries to complete the trace such
that it is a valid execution of the model.

14 / 14

	Debugging models

