nuXmyv introduction

Enrico Magnago

University of Trento,
Fondazione Bruno Kessler

1/49

Introduction

Introduction

SMV
Symbolic Model Verifier developed by McMillan in 1993.

NuSMV
Open-source symbolic model checker for SMV models. It has

been developed by FBK, Carnegie Mellon University, University of
Genoa and University of Trento.

nuXmv
Extends NUSMYV for infinite state and timed (since v2) systems.

Binary available for non-commercial or academic purposes only.
Developed and maintained by the Embedded Systems unit of FBK.

3/49

nuXmv

NUXMV allows for the verification of:

e finite-state systems through SAT and BDD based algorithms;

e infinite-state systems (e.g. systems with real and integer
variables) through SMT-based techniques running on top of
MathSATS;

e timed systems (e.g. allows clock type) via reduction to
infinite state model checking.

NUXMV supports synchronous systems;
asynchronous systems are no longer supported!

4/49

nuXmv interactive shell

Interactive shell [1/3]

e nuxmv -int (or NuSMV -int) activates an interactive shell

e help shows the list of all commands (if a command name is
given as argument, detailed information for that command will
be provided).
note: option —h prints the command line help for each
command.

e reset resets the whole system (in order to read in another
model and to perform verification on it).

e readmodel [-i filename] sets the input model and
reads it.

e go, go_bmc, go_msat initialize NUXMV for verification or
simulation with a specific backend engine.

6/49

Interactive shell [2/3]

e pick_state [-v] [-a]l [-r | -i] picks a state from the
set of initial states.
e —v prints the chosen state.
e —r picks a state from the set of the initial states randomly.
e —1 picks a state from the set of the initial states interactively.
e —a displays all state variables (requires —1).

e simulate [-p | -v] [-a] [-r | —-1i] -k N generates a
sequence of at most N transitions starting from the current
state.

e —p prints the changing variables in the generated trace;
e —v prints changed and unchanged variables in the generated
trace;

e —a prints all state variables (requires —1i);
e —r at every step picks the next state randomly.
e —i at every step picks the next state interactively.

e print_current_state [-h] [-V] prints out the current

state.
e —v prints all the variables.
7/49

Interacting Shell [2/3] - Output Example

nuXmv > reset
nuXmv > read_model -i exampleOl.smv ; go
nuXmv > pick_state -v; simulate -v
Trace Description: Simulation Trace
Trace Type: Simulation

-> State: 1.1 <-

b0 = FALSE

*%xxx*x%+% Simulation Starting From State 1.1 kKK KK KK
Trace Description: Simulation Trace
Trace Type: Simulation

-> State: 1.1 <-

b0 = FALSE
—> State: 1.2 <-
b0 = TRUE

-> State: 1.3 <-
b0 = FALSE

—-> State: 1.4 <-
b0 = TRUE

=> State: 1.5 <=
b0 = FALSE

-> State: 1.6 <-
b0 = TRUE

8/49

Interacting Shell [3/3]

e goto_state state_label makes state_label the
current state (it is used to navigate along traces).

e show_traces [-t] [-v] [-a | TN[.FS[:[TS]]] prints
the trace TN starting from state FS up to state TS
e —t prints the total number of stored traces
e —v verbosely prints traces content;
e —a prints all the currently stored traces

e showvars [-s] [-f] [-i] [-t] [-v] prints the
variables content and type
e —s print state variables;
—f print frozen variables;
—1 print input variables;
—t prints the number of variables;
—v prints verbosely;

e quit stops the program.

9/49

nuXmv Modeling

First SMV model

e an SMYV model is composed by a number of modules;

e cach module can contain:

e state variable declarations;
e formulae defining the valid initial states;
e formulae defining the transition relation;

Example:

MODULE main

VAR
b0 : boolean; FALSE TRUE
ASSIGN @ @
init (b0) := FALSE;
next (b0) := !'b0;

11/49

Basic Types [1/3]

boolean: TRUE, FALSE, ...
X : boolean;

enumerative:
s : {ready, busy, waiting, stopped};

bounded integers* (intervals):
m 3 oo8p

*: integer numbers must be within C/C++ INT_MIN and INT_MAX bounds

12 /49

Basic Types [2/3]

integers™: -1, 0, 1, ...

n : integer;
rationals: 1.66, f'2/3, 2e3, 10e-1, ...
r : real;

words: used to model arrays of bits supporting bitwise logical and
arithmetic operations.

e unsigned word[3];

e signed word[7];

*: integer numbers must be within C/C++ INT_MIN and INT_MAX bounds

13/49

Basic Types [3/3]

arrays:
declared with a couple of lower/upper bounds for the index and a

type

VAR
—-— array of 11 elements
x : array 0..10 of boolean;
—-— array of 3 elements
y : array -1..1 of {red, green, orange};
—-— array of array

z : array 1..10 of array 1..5 of boolean;
ASSIGN

init (x[5]) := bool(1l);

—-— any value in the set

init(y[0]) := {red, green};

init(z[3]1[2]) := TRUE;

Array indexes must be constants;
14 /49

Adding a state variable

MODULE main
VAR
b0 : boolean;
bl : boolean;

ASSIGN
init (b0) := FALSE;
next (b0) := !'b0;

e the FSM is the result of the synchronous
composition of the “subsystems” for b0 and bl

Remarks: \'i)

e the new state space |.s the cartesian product of \\;\,/
the ranges of the variables.

15 /49

Initial States [1/2]

Example:

init (x) := FALSE; —-— x must be FALSE

init(y) := {1, 2, 3}; —-— y can be either 1, 2 or 3
init (<variable>) := <simple_expression>;

e constrains the initial value of <variable> to satisfy the
<simple_expression>;

e the initial value of an unconstrained variable can be any of
those allowed by its domain;

set of initial states

is given by the set of states whose variables satisfy all the init ()
constraints in a module.

16 / 49

Initial States [2/2]

Example:

MODULE main
VAR
b0 : boolean;
bl : boolean;

ASSIGN
init (b0) = FALSE;
next (b0) := !'b0;
init (bl) = FALSE;

17 /49

Expressions [1/3]

e arithmetic operators:

+ - * / mod - (unary)
e comparison operators:

= 1= > < <K= >=
e logic operators:

& \ XOT ! (not) —> <>
e bitwise operators:

<< >>
e set operators: {vl,v2,...,vn}

e in: tests a value for membership in a set (set inclusion)
e union: takes the union of 2 sets (set union)

e count operator: counts number of true boolean expressions
count (b1, b2, ..., bn)

18 /49

Expressions [2/3]

® Case expression o

case C/C++ equivalent:
cl :el; if (cl) then el;
cz ot eZ; else if (c2) then e2;
TRUE : en; clse en;

esac

e if-then-else expression:

cond_expr ? basic_epxr 1 : basic_expr?2

e conversion operators: toint, bool, floor, and
e swconst, uwconst: convert an integer to a signed and an

unsigned word respectively.

e wordl converts boolean to a single word bit.

e unsigned and signed convert signed word to unsigned
word and vice-versa.

19/49

Expressions [3/3]

e expressions in SMV do not necessarily evaluate to one value.
In general, they can represent a set of possible values.

init (var) := {a,b,c} union {x,y,z};

e The meaning of := in assignments is that the lhs can
non-deterministically be assigned to any value in the set of
values represented by the rhs.

e A constant c is considered as a syntactic abbreviation for {c}
(the singleton containing c).

20/49

Transition Relation [1/2]

Transition Relation
specifies a constraint on the values that a variable can assume in

the next state, given the value of variables in the current state.

next (<variable>) := <next_expression>;
e <next_expression> can depend both on “current” and
“next” variables:

next (a) := { a, a+l } ;
next (b) := b + (next(a) - a) ;

e <next_expression> must evaluate to values in the
domain of <variable>;

e the next value of an unconstrained variable evolves
non-deterministically;

21/49

Transition Relation [2

Example:
modulo-4 counter

MODULE main

VAR
b0 : boolean;
bl : boolean;

ASSIGN

init (b0) = FALSE;

next (b0) := !b0;

init (bl) = FALSE;

next (bl) = case
b0 . !'bl;
TRUE : bl;

esac;

22/49

Output Variable [1/2]

output variable
is a variable whose value deterministically depends on the value of

other “current” state variables and for which no init () or
next () are defined.

<variable> := <simple_expression>;

e <simple_expression> must evaluate to values in the
domain of the <variable>.

e used to model outputs of a system;

23 /49

Output Variable [2/2]

Example:

MODULE main

VAR
b0 : boolean;
bl : boolean;
out : 0..3;

ASSIGN
init (b0) := FALSE;
next (b0) := !b0;
init (bl) = FALSE;
next (bl) := ((!b0 & bl) | (b0 & !'bl));
out := toint (b0) + 2*toint (bl);

24 /49

Assignment Rules (:=)

e single assignment rule — each variable may be assigned only
once; lllegal examples:

init (var) ready; var := ready; next (var) := ready;
init (var) := busy; var := busy; var := busy;

next (var) := ready; init(var) := ready;

next (var) = busy; var := busy;

25 /49

Assignment Rules (:=)

e single assignment rule — each variable may be assigned only
once; lllegal examples:

init (var) := ready; var := ready; next (var) := ready;
init (var) := busy; var := busy; var := busy;
next (var) := ready; init(var) := ready;

next (var)

busy; var := busy;

e circular dependency rule — a set of equations must not have

“cycles” in its dependency graph, unless broken by delays;
lllegal examples:

next (x) := next (y); x 1= (x + 1) mod 2; next (x) := x & next (x);
next (y) := next (x);

Legal example:
next (x) := next(y);
next (y) := vy & x;

26/ 49

DEFINE declarations

DEFINE <id> := <simple_expression>;

e similar to C/C++ macro definitions: each occurrence of the
defined symbol is replaced with the body of the definition
e provide an alternative way of defining output variables;

Example:

MODULE main
VAR
b0 : boolean;
bl : boolean;

ASSIGN

init (b0) = FALSE;

next (b0) := !b0;

init (bl) = FALSE;

next (bl) ((!b0 & bl) | (O & 'bl));
DEFINE

out := toint (b0) + 2xtoint (bl);

27 /49

Example: modulo 4 counter with reset

The counter can be reset by an external “uncontrollable” signal

MODULE main

VAR
b0 : boolean; bl boolean; reset boolean;
ASSIGN
init (b0) := FALSE; '
init (bl) FALSE; o 0
next (b0) case
reset = TRUE FALSE;
reset = FALSE 'b0;
esac;
next (bl) case ° 0
reset FALSE;
TRUE (('b0 & b1l) | (b0 & !'b1));
esac;
DEFINE
out := toint (b0) + 2*toint (bl);

28 /49

Exercise 1

Exercise:
simulate the system with NUXMV and draw the FSM.

MODULE main

VAR
request : boolean;
state : { ready, busy };
ASSIGN
init (state) := ready;
next (state) =
case
state = ready & request : busy;
TRUE : { ready, busy };
esac;

29 /49

Exercise 1

Exercise:
simulate the system with NUXMV and draw the FSM.

MODULE main

VAR
request : boolean;
state : { ready, busy };
ASSIGN
init (state) := ready;
next (state) =
case
state = ready & request : busy;
TRUE : { ready, busy };
esac;

30,49

Constraint Style Modeling [1/4]

MODULE main

VAR
request : boolean; state : {ready,busy};
ASSIGN
init (state) := ready;
next (state) := case
state = ready & request : busy;
TRUE : {ready,busy};
esac;

Every program can be alternatively defined in a constraint style:

MODULE main

VAR
request : boolean; state : {ready,busy};
INIT
state = ready
TRANS
(state = ready & request) —-> next(state) = busy

31,49

Constraint Style Modeling [2/4]

e a model can be specified by zero or more constraints on:
e initial states:
INIT <simple_expression>
e transitions:
TRANS <next_expression>
e invariant states:
INVAR <simple_expression>

e constraints can be mixed with assignments;
e any propositional formula is allowed as constraint;

e not all constraints can be easily rewritten in terms of
assignments!

TRANS
next (b0) + 2*next (bl) + 4xnext (b2) =
(b0 + 2+xbl + 4xb2 + tick) mod 8

32/49

Constraint Style Modeling [3/4]

assignment style

e by construction, there is always at least one initial state;
e by construction, all states have at least one next state;

e non-determinism is apparent (unassigned variables, set
assignments...).

33,49

Constraint Style Modeling [4/4]

constraint style

e INIT constraints can be inconsistent — no initial state!
e any specification (also SPEC 0) is vacuously true.
e TRANS constraints can be inconsistent: — deadlock state!

Example:
MODULE main
VAR b : boolean;
TRANS b —> FALSE;
e tip: use check_fsm to detect deadlock states

e non-determinism is hidden:
TRANS (state = ready & request) —-> next (state) = busy

34/49

Example: Constraint Style & Case

MODULE main ()
VAR

state : {SO0, S1, S2}; - =

DEFINE
go_sl :=

go_s2 := state != S1; | . ///
, \
\ N

INIT | '
state = S0; AN

|
0
pert
o)}
jart
D
0
N
/
A

TRANS ‘
case \7,//
go_sl : next (state) = S1;

go_s2 : next(state) S2;
esac;

e Q: does it correspond to the FSM?

35,49

Example: Constraint Style & Case

MODULE main ()

VAR
state

DEFINE
go_sl
go_s2

INIT
state

TRANS

case
go_sl
go_s2

esac;

:= state != S2; N

{s0, s1, s2}; “a e N

state != S1; . ///
N

SIOF;

next (state) = S1;
next (state) 828

e Q: does it correspond to the FSM? No: cases are evaluated in
order!

36 /49

Example: Constraint Style & Swap

MODULE main ()
VAR
arr: array 0..1 of {1,2};

i 8 Q@cod \ e

ASSIGN
init (arr[0]) := 1;
init (arr[1l]) := 2; -— -
arr[0] =1 arr[0] =2
init (i) := 0; arr[l] =2 arr[l] =1
next (i) := 1-1; i=0 i=1
TRANS
next (arr[i]) = arr[l-i] &
next (arr[1-1i]) = arr[i];

e Q: does it correspond to the FSM?

3749

Example: Constraint Style & Swap

MODULE main ()
VAR
arr: array 0..1 of {1,2};

d 8 @codg \ —

ASSIGN
init (arr[0]) := 1;
init (arr[1l]) := 2; S
arr[0] =1 arr[0] =1
init (1) := 0; arr[1] = 2 arr[l] =2
next (i) := 1-i; i=0 i=1
TRANS
next (arr[i]) = arr[l-i] &
next (arr[1-i]) = arr[i];

e (): does it correspond to the FSM7 No: everything inside the
next() operator is evaluated within the next state, indexes

included!
38/49

Modules

Modules [1/3]

SMYV program = main module + 0 or more other modules

e a module can be instantiated as a VAR in other modules

e dot notation for accessing variables that are local to a
module instance (e.g., m1.out, m2.out).

Example:

MODULE counter .
VAR out: 0..9; main
ASSIGN next (out) :=

(out + 1) mod 10;

MODULE main ml m2

VAR ml : counter; m2 : counter;
sum: 0..18;
ASSIGN sum := ml.out + m2.out;

40/ 49

Modules [2/3]

A module declaration can be parametric:

e a parameter is passed by reference;

e any expression can be used as parameter;

Example:
MODULE counter (in) et
VAR out: 0..9; out in
ml m2

MODULE main
VAR ml : counter (m2.out);

m2 : counter (ml.out); lin out

41/ 49

Modules [3/3]

e modules can be composed

e modules without parameters and assignments can be seen as
simple records

Example:
MODULE point
VAR MODULE main
x: —=10..10;
VAR c: circle;
y: -10..10;
ASSIGN
MODULE circle 2ot 5 (G, CEmEEEom) 8= Up
AR init (c.center.y) := 0;
init (c.radius) := 5;

center: point;
radius: 0..10;

42 /49

Synchronous composition [1/2]

The composition of modules is synchronous by default:
all modules move at each step.

MODULE cell (input)

VAR
val : {red, green, blue};
ASSIGN input cl val
next (val) := input;
MODULE main val input
VAR input val
c3 c2
cl : cell(c3.val);
c2 : cell(cl.val);
c3 : cell(c2.val);

43 /49

Synchronous composition [2/2]

A possible execution:

step | cl.val | c2.val | c3.val
0 red green | blue
1 blue red green
2 green | blue red
3 red green | blue
4 o
5 red green | blue

44 /49

Asynchronous composition [1/2]

Asynchronous composition can be obtained using keyword

process:
one process moves at each step.

MODULE cell (input)

VAR
val : {red, green, blue};
ASSIGN next (val) := input;

FAIRNESS running

MODULE main

VAR
cl : process cell(c3.val);
c2 : process cell(cl.val);
c3 : process cell(c2.val);

Each process has a boolean running variable:

e true iff the process is selected for execution;

e can be used to guarantee a fair scheduling of processes.
45 /49

Asynchronous composition [2/2]

A possible execution:

step | running | cl.val | c2.val | c3.val
0 - red | green | blue
1 c2 red red blue
2 cl blue red blue
3 cl blue red blue
4 c3 blue red red
5 c2 blue blue red
6 c3 blue blue blue
blue blue blue

Warning: in NUXMV processes are deprecated!

46 /49

Exercise: Adder [1/3]

MODULE bit-adder (inl, in2, cin)
VAR

sum : boolean;

cout : boolean;

ASSIGN
next (sum) := (inl xor 1in2) xor cinj;
next (cout) := (inl & in2) | ((inl | in2) & cin);

MODULE adder (inl, in2)

VAR
bit [0] bit-adder (inl[0], in2[0], bool(0));
bit[1l] : bit-adder(inl[1], in2[1], bit[0].cout);
bit[2] : bit-adder(inl([2], in2[2], bit[l].cout);
bit[3] : bit-adder(inl[3], in2[3], bit[2].cout);
DEFINE
sum[0] = bit[0].sum;
sum[1l] := bit[1l].sum;
sum[2] = bit[2].sum;
sum[3] := bit[3].sum;
overflow := bit[3].cout;

47 /49

Exercise: Adder [2/3]

MODULE main

VAR
inl : array 0..3 of boolean;
in2 : array 0..3 of boolean;
a : adder(inl, in2);
ASSIGN
next (inl1[0]) := inl[0]; next (inl[1]) = inl[1];
next (inl[2]) := inl[2]; next (inl[3]) = inl[3];
next (in2[0]) := in2[0]; next (in2[1]) = in2[1];
next (in2[2]) := in2[2]; next (in2[3]) = in2[3];
DEFINE
opl := toint(inl[0]) + 2xtoint(inl[1]) + 4xtoint(inl[2]) +
8xtoint (inl[31]);
op2 := toint (in2[0]) + 2*t01nt(1n2[1]) + 4xtoint (in2[2]) +
8+xtoint (in2[31])
sum := toint (a. sum[O]) + 2*toint (a.sum[1]) + 4*toint (a.sum[2]) +
8xtoint (a.sum[3]) + 1l6xtoint (a.overflow);

48/ 49

Exercise: Adder [3/3]

Exercise:

e simulate a random execution of the “adder” system;

e after how many steps the adder stores the computed final
sum value?

e add a reset control which changes the values of the
operands and restarts the computation of the sum

49 /49

	Introduction
	nuXmv interactive shell
	nuXmv Modeling
	Basic Types
	Expressions
	Transition Relation
	Miscellany
	Constraint Style Modeling

	Modules
	Modules Definition
	Modules Composition

