nuXmv: model checking timed systems

Enrico Magnago

University of Trento, Fondazione Bruno Kessler

Real time systems

- Correctness depends not only on the logical result but also on the time required to compute it.
- Common in safety-critical domains like: defense, transportation, health-care, space and avionics.

Timed Transition System (TTS)

transitions are either discrete or dis time-elapses, all clocks increase of the same amount in time-elapses. Model checking for TTS is **undecidable**.

Timed Automata (TA) decidable restriction of TTS, finite time abstraction:

clocks compared only to constants.

Timed Automata (TA)

Explicit graph representation of discrete states (nodes) and transitions (edges). Symbolic representation of temporal aspects via (convex) constraints (location invariants, transition guards and resets).

Symbolic TTS

Logical formulae represent sets of states: $p := \{s \mid s \models p\}$. Transition system symbolically represented by formula $\varphi(X, X')$. There is a discrete transition from s_0 to s_1 iff $s_0(X), s_1(X') \models \varphi(X, X')$.

$$l = \ell_0 \rightarrow c \leq 5 \quad \land$$

$$l = \ell_1 \rightarrow c < 15 \quad \land$$

$$(l = \ell_1 \land l' = \ell_0) \rightarrow c > 3 \quad \land$$

$$(l = \ell_0 \land l' = \ell_1) \rightarrow (c \geq 5 \land c' = 0)$$

Timed nuXmv

nuXmv for timed system: architecture

Overview

- Must start with TIME_DOMAIN continuous;
- Symbolic description of infinite transition system using: INIT, INVAR and TRANS to specify initial, invariant and transition conditions.
- Model described as a synchronous composition of MODULE instances.
- Clock variables,
- time: built-in clock variable,
- convex invariants over clocks,
- URGENT: forbid time elapse.

Timed nuXmv adds

- clock variable type, all clocks increase of the same amount during timed transitions;
- time: built-in clock, can be used only in comparisons with constants;
- non continuous type modifier: symbol can change its assignment during timed transitions;
- URGENT: freeze time: when one of the URGENT conditions is satisfied only discrete transitions are allowed;
- $MTL_{0,\infty}$ specifications, by "extending" LTL;

Timed nuXmv updates

- TRANS constrain the discrete behaviour only,
- INVAR: clocks allowed in invariants with shape: no_clock_expr -> convex_clock_expr;
- LTL operators: X, Y, U, S,
- Bounded LTL operators.

Specification

- Different operators to refer to the *timed* next and *discrete* next: X, X~; symmetrically for the past: Y, Y~.
- Time interval semantic to handle open intervals: a predicate p might hold in an interval (a, b] for $a, b \in \mathbb{R}$.
- Operators to retrieve value of expression the next/last time an expression will hold/held: time_until, time_since, @F~ and @O~.

Timed nuXmv: untiming

Timed to untimed model

- clock symbols and time: variables of type real.
- $\delta:$ continuous positive variable, prescribes the amount of time elapse for every transition.
- *i*: prescribes the alternation of singular [•] and open (-) time intervals.

10/22

Properties rewriting

Timed and infinite traces

From untimed model execution to timed trace.

Issue

NUXMV traces must have shape: $\alpha\beta^{\omega}$,

 α and β sequences of states.

Complete for finite state systems.

TTS: time monotonically increasing, infinite state system, **undecidable**.

Identify traces expressible as: $\alpha\beta(i)^{\omega}$. Same problem can be found in infinite state transition systems.

Solution

Value assigned to variables at state s is function of the previous configuration assignments. e.g. $next(time) := time + \delta$ discrete

Three main operations on traces: **simulation**, **execution** and **completion**.

Simulation

Build a possible execution of the model. The trace can be built automatically by the system or the user can choose each state from the list of possible ones.

Exploit SMT-solver to perform a discrete transition or time-elapse to obtain next configuration.

Execution

Check if a trace belongs to the language of the model. Exploit SMT-solver to prove that **for all** possible iterations all prescribed transition can be performed.

Completion

A partial trace is completed so that it belongs to the model language.

Sound and complete technique requires to check if there **exists** a possible completion so that the completed trace belongs to the model language: quantifier alternation $(\exists \forall)$. Adopt sound but incomplete approach.

- ./nuXmv -time -int: start NUXMV interactively and enable commands for timed models.
- go_time: process the model.
- \bullet write_untimed_model: dump $\rm SMV$ model corresponding to the input timed system.

- timed_check_invar: check invariants.
- timed_check_ltlspec: check LTL.

Mostly the same command line options of the corresponding commands for untimed models.

- timed_pick_state: pick initial state.
- timed_simulate: simulate the model starting from a given state.
- execute_traces: re-execute stored traces.
- execute_partial_traces: try to complete stored traces.

Exercises

Simple timed automaton

Write the ${\rm SMV}$ model corresponding to the timed automaton in the figure.

Properties

- from location ℓ_0 we always reach ℓ_1 within 5 time units;
- if we are in ℓ_1 then for the next 3 time units we remain in ℓ_1 ;
- if just arrived in ℓ_1 then for the next 3 time units we remain in $\ell_1.$

- a thermostat has 2 states: on and off;
 - if the temperature is below 18 degrees the thermostat switches *on*.
 - if the temperature is above 18 degrees the thermostat switches *off.*
- at every time unit the temperature increases (if on) or decreases (if off) by 1;
- the thermostat measures the temperature at most (<) every $max_{-}dt$ time units.
- the temperature initially is in $[18 max_{-}dt; 18 + max_{-}dt]$.

Verify that the temperature is always in $[18 - 2max_{dt}; 18 + 2max_{dt}]$

1:	procedure FISCHER(<i>pid</i> , <i>c</i> , <i>id</i>)
2:	Іоор
3:	while $id \neq 0$ do
4:	skip
5:	$x \leftarrow random(0,c)$
6:	$wait_at_most(c)$
7:	$id \leftarrow pid$
8:	$wait_at_least(c)$
9:	if $id = pid$ then
10:	Critical Section
11:	$id \leftarrow 0$

Verify the mutual exclusion property. $_{\rm NUXMV}$ does not support asynchronous composition: model scheduler explicitly.