
nuXmv: model checking timed systems

Enrico Magnago

University of Trento,
Fondazione Bruno Kessler

1 / 22

Timed systems

Real time systems

• Correctness depends not only on the logical result but also on
the time required to compute it.

• Common in safety-critical domains like: defense,
transportation, health-care, space and avionics.

Timed Transition System (TTS)
transitions are either discrete or
time-elapses,
all clocks increase of the same
amount in time-elapses.
Model checking for TTS is undecidable.

Timed Automata (TA)
decidable restriction of TTS,
finite time abstraction:
clocks compared only to constants.

discrete

time

2 / 22

Timed systems: representation

Timed Automata (TA)

Explicit graph representation of discrete
states (nodes) and transitions (edges).
Symbolic representation of temporal
aspects via (convex) constraints
(location invariants, transition guards
and resets).

c ≤ 5 c < 15

c ≥ 5 c ..= 0

c > 3
`0 `1

Symbolic TTS

Logical formulae represent sets of
states: p ..= {s | s |= p)}.
Transition system symbolically
represented by formula ϕ(X,X ′).
There is a discrete transition from
s0 to s1 iff s0(X), s1(X

′) |= ϕ(X,X ′).

l = `0 → c ≤ 5 ∧
l = `1 → c < 15 ∧
(l = `1 ∧ l′ = `0)→ c > 3 ∧
(l = `0 ∧ l′ = `1)→ (c ≥ 5 ∧ c′ = 0)

3 / 22

Timed nuXmv

nuXmv for timed system: architecture

Timed traces
Timed nuXmv Mt |= ϕt

reduction to untimed
(Mt |= ϕt)⇐⇒(M |= ϕ)

trace timing
(σ ∈M)⇐⇒(σt ∈Mt)

Traces

nuXmv M |= ϕ

5 / 22

Timed nuXmv: input language [1/4]

Overview

• Must start with TIME DOMAIN continuous;

• Symbolic description of infinite transition system using: INIT,
INVAR and TRANS to specify initial, invariant and transition
conditions.

• Model described as a synchronous composition of MODULE
instances.

• Clock variables,

• time: built-in clock variable,

• convex invariants over clocks,

• URGENT: forbid time elapse.

6 / 22

Timed nuXmv: input language [2/4]

Timed nuXmv adds

• clock variable type, all clocks increase of the same amount
during timed transitions;

• time: built-in clock, can be used only in comparisons with
constants;

• non continuous type modifier: symbol can change its
assignment during timed transitions;

• URGENT: freeze time: when one of the URGENT conditions is
satisfied only discrete transitions are allowed;

• MTL0,∞ specifications, by “extending” LTL;

7 / 22

Timed nuXmv: input language [3/4]

Timed nuXmv updates

• TRANS constrain the discrete behaviour only,

• INVAR: clocks allowed in invariants with shape:
no clock expr -> convex clock expr;

• LTL operators: X, Y , U , S,

• Bounded LTL operators.

8 / 22

Timed nuXmv: input language [4/4]

Specification

• Different operators to refer to the timed next and discrete
next: X, X~; symmetrically for the past: Y, Y~.

• Time interval semantic to handle open intervals: a predicate p
might hold in an interval (a, b] for a, b ∈ R.

• Operators to retrieve value of expression the next/last time an
expression will hold/held: time until, time since, @F~
and @O~.

9 / 22

Timed nuXmv: untiming

Timed to untimed model

• clock symbols and time: variables of type real.

• δ: continuous positive variable, prescribes the amount of time
elapse for every transition.

• ι: prescribes the alternation of singular [•] and open (−) time
intervals.

discrete

time

[•]

[•]
(−)

[•]

[•]

[•]
(−)

[•]
(−)

[•]

[•]

10 / 22

Timed nuXmv: untiming

Properties rewriting

MTL fragment F[0,5] p

rewrite

LTL timed
((¬pUp) ∧ time until(p) ≤ 5)∨
((¬pUX̃p) ∧ time until(p) < 5)

untime

LTL untimed

((¬pUp) ∧ (time@F̃ p)− time ≤ 5) ∨
((¬pU((¬ι ∧ p) ∨X(¬ι ∧ p))) ∧ (time@F̃ p)− time < 5)

11 / 22

Timed and infinite traces

Timed and infinite traces

From untimed model execution to timed trace.

Issue
nuXmv traces must have shape: αβω,
α and β sequences of states.
Complete for finite state systems.
TTS: time monotonically
increasing, infinite state system,
undecidable.
Identify traces expressible as: αβ(i)ω.
Same problem can be found in
infinite state transition systems.

Solution
Value assigned to variables at
state s is function of the previous
configuration assignments.
e.g. next(time) ..= time+ δ

discrete

time

α

β(0) β(1)

. . .

13 / 22

Timed and infinite traces: operations

Three main operations on traces: simulation, execution and
completion.

Simulation

Build a possible execution of the model. The trace can be built
automatically by the system or the user can choose each state
from the list of possible ones.
Exploit SMT-solver to perform a discrete transition or time-elapse
to obtain next configuration.

14 / 22

Timed and infinite traces: operations

Execution

Check if a trace belongs to the language of the model.
Exploit SMT-solver to prove that for all possible iterations all
prescribed transition can be performed.

Completion

A partial trace is completed so that it belongs to the model
language.
Sound and complete technique requires to check if there exists a
possible completion so that the completed trace belongs to the
model language: quantifier alternation (∃∀).
Adopt sound but incomplete approach.

15 / 22

How to run: model [1/3]

• ./nuXmv -time -int: start nuXmv interactively and
enable commands for timed models.

• go time: process the model.

• write untimed model: dump SMV model corresponding to
the input timed system.

16 / 22

How to run: verify [2/3]

• timed check invar: check invariants.

• timed check ltlspec: check LTL.

Mostly the same command line options of the corresponding
commands for untimed models.

17 / 22

How to run: simulation and traces [3/3]

• timed pick state: pick initial state.

• timed simulate: simulate the model starting from a given
state.

• execute traces: re-execute stored traces.

• execute partial traces: try to complete stored traces.

18 / 22

Exercises

Simple timed automaton

Write the SMV model corresponding to the timed automaton in
the figure.

c ≤ 5 c < 15

c ≥ 5 c ..= 0

c > 3
`0 `1

Properties

• from location `0 we always reach `1 within 5 time units;

• if we are in `1 then for the next 3 time units we remain in `1;

• if just arrived in `1 then for the next 3 time units we remain in
`1.

20 / 22

Timed thermostat

• a thermostat has 2 states: on and off ;

• if the temperature is below 18 degrees the thermostat switches
on.

• if the temperature is above 18 degrees the thermostat switches
off.

• at every time unit the temperature increases (if on) or
decreases (if off) by 1;

• the thermostat measures the temperature at most (<) every
max dt time units.

• the temperature initially is in [18−max dt; 18 +max dt].

Verify that the temperature is always in
[18− 2max dt; 18 + 2max dt]

21 / 22

Fischer mutual exclusion protocol

1: procedure Fischer(pid, c, id)
2: loop
3: while id 6= 0 do
4: skip

5: x← random(0, c)
6: wait at most(c)
7: id← pid
8: wait at least(c)
9: if id = pid then

10: Critical Section
11: id← 0

Verify the mutual exclusion property.
nuXmv does not support asynchronous composition: model
scheduler explicitly.

22 / 22

	Timed nuXmv
	Timed and infinite traces
	Exercises

