
nuXmv exercises

Enrico Magnago

University of Trento,
Fondazione Bruno Kessler

1 / 29



Exercise: Dining Philosophers [1/2]

Five philosophers sit around a circular table and spend their life
alternatively thinking and eating. Each philosopher has a large
plate of noodles and a fork on either side of the plate. The right
fork of each philosopher is the left fork of his neighbor. Noodles
are so slippery that a philosopher needs two forks to eat it.
When a philosopher gets hungry, he tries to pick up his left and
right fork, one at a time. If successful in acquiring two forks, he
eats for a while (preventing both of his neighbors from eating),
then puts down the forks, and continues to think.

2 / 29



Exercise: Dining Philosophers [2/2]

Exercise

1. Implement in SMV a system that encodes the philosophers
problem. Assume that when a philosopher gets hungry, he
tries to pick up his left fork first and then the right one.
Hint: you might consider an altruist philosopher, which can
resign his fork in a deadlock situation.

2. Verify the correctness of the system, by specifiying and
checking the following properties:

• Never two neighboring philosophers eat at the same time.
• No more than two philosophers can eat at the same time.
• Somebody eats infinitely often.
• If every philosopher holds his left fork, sooner or later

somebody will get the opportunity to eat.

3 / 29



Exercise: Insertion Sort [1/2]

Exercise

• encode the following code in nuXmv:
void isort(arr) {

// init: i = 1, j = 1;
l1: while (i < 5) {
l2: j = i;
l3: while (j > 0 & array[j] < array[j-1]) {
l4: swap(array[j], array[j-1]);
l5: j--;

}
l6: i++;

}
l7: // done!

}

• set arr equal to { 9, 7, 5, 3, 1 }
• verify the following properties:

• the algorithm always terminates
• eventually in the future, the array will be sorted forever
• the algorithm is not done (pc = l7) until the array is sorted

4 / 29



Exercise: Insertion Sort [2/2]

Hints

• use ‘pc’ to keep track of the possible state values { l1,
l2, l3, l4, l5, l6, l7 }

• declare ‘i’ in 1..5, initialize 1

• declare ‘j’ in 0..4, initialize 1

• ensure that the content of ‘arr‘ does never change when ‘pc
!= l4’

• ensure that the content of ‘arr‘ that is not involved in a
‘swap’ operation does not change even when ‘pc = l4’

• (easier?) encode the constraints over ‘arr’ with
constraint-style modelling

• (easier?) encode the evolution of ‘pc’, ‘i’ and ‘j’ with
assignment-style modelling

5 / 29



Exercise: Cleaning Robot [1/5]

Exercise

Model a rechargeable cleaning robot which task is to move around
a 10× 10 room and clean it.

The robot state is so composed:

• variables “x” and “y”, ranging from 0 to 9, keep track of the
robot’s position;

• variable “state”, with values in MOVE, CHECK, CHARGE,

CLEAN, OFF, keeps track of the next action taken by the
robot;

• variable “budget” in { 0..100 } which signals the remaining
power;

• output variable “pos”, defined to be equal y · 10 + x.

6 / 29



Exercise: Cleaning Robot [2/5]

• At the beginning, the robot is in state “CHECK” and all other
vars are 0.

• The budget is decreased by a single unit each time the robot
is in state “MOVE” or “CLEAN” (and budget > 0)

• The budget is restored to 100 if the robot is in “CHARGE”
state.

• Otherwise, the budget doesn’t change.

7 / 29



Exercise: Cleaning Robot [3/5]

The robot changes state according to this ordered set of rules:

• if the robot is in “pos” 0 and the budget is smaller than 100,
then the next state is “CHARGE”

• if the budget is 0, then the next state is “OFF”

• if the robot is in state “CHARGE” or “MOVE”, then the next
state is “CHECK”

• if the robot is in state “CHECK”, then the next state is either
“CLEAN” or “MOVE”

• otherwise, the next state is “MOVE”.

8 / 29



Exercise: Cleaning Robot [4/5]

Encode, using the constraint-style (easier!), the following
constraints:

• if the state is different than “MOVE”, then the position of the
robot never changes.

• if the state is equal to “MOVE”, then the robot moves by a
single square in one of the cardinal directions: it increases or
decreases either “x” or “y”, but not both at the same time.

9 / 29



Exercise: Cleaning Robot [5/5]

Encode and verify the following properties:

• in all possible executions, the robot changes position infinitely
many times (false)

• it’s definitely the case that sooner or later the robot exhausts
its budget, turns OFF and stops moving (false)

• it is never the case that the robot’s action is either “MOVE”
or “CLEAN” and the available budget is zero (false)

• if the robot charges infinitely often, then it changes position
infinitely many times (true)

• there exists an execution in which the robot cleans every cell
that it visits (true)

• if the robot is in “pos” 0, then it is necessarily always the case
that in the future it will occupy a different position (true)

• the robot does not move along the diagonals (true)

10 / 29



Exercise: Alarm System [1/4]

Exercise
Model a simple alarm system installed in the safe of a bank.

• The alarm system can be activated and deactivated using a
pin.

• After being activated, the alarm system enters a waiting
period of 10 seconds, time that allows users to evacuate the
safe.

• After this amount of time the alarm is armed.

• The alarm detects an intrusion when someone is inside
the safe and the alarm is armed.

• When an intruder is detected the alarm enters a waiting
period of 5 seconds to allow the intruder to deactivate the
alarm using the pin.

• If the alarm is not deactivated after an intrusion is detected, it
will fire. The alarm remains fired until deactivation.

11 / 29



Exercise: Alarm System [2/4]

The alarm system is comprised by:

• state variable, with domain { OFF, EVACUATE, ARMED,
INTRUSION, FIRED };

• s clock variable with domain equal to 0..59.

Initially, state is OFF and s clock is 0.

The alarm system has two boolean inputs:

• sensor: true iff a person is detected inside the safe

• use pin true iff the pin is being used.

Express the fact that a person must be inside the safe to use the
pin as an invariant of the inputs.

12 / 29



Exercise: Alarm System [3/4]

The alarm changes state according to this ordered set of rules:

• if the state is OFF and the pin is used, then the next state is
EVACUATE

• if the pin is used, then the next state is OFF

• if the state is EVACUATE and the internal clock is 0, then the
next state is ARMED

• if the state is ARMED and a person is detected in the safe,
then the next state is INTRUSION

• if the state is INTRUSION and the internal clock is 0, then
the next state is FIRED

• otherwise, the state does not change

The value of s clock is set to 10 when the state value changes
from OFF to EVACUATE, and it is set to 5 when the state value
changes from ARMED to INTRUSION. Otherwise, its value is
decreased by one unit at each transition until it reaches 0.

13 / 29



Exercise: Alarm System [4/4]

Encode the following LTL properties, and verify with nuXmv that
they are true:

• if the input pin is never used, then the alarm state is always
OFF

• it is always true that, whenever an intrusion is detected then
sooner or later the alarm state will be either OFF or FIRED

• it is always true that “if the alarm is armed in a certain state
sk, but the pin is never used starting from sk onward, then it
is necessarily the case that either the sensor won’t detect any
intruder (starting from sk onward) or the alarm will eventually
fire”

• if the state of the alarm is infinitely often equal to
EVACUATE, then someone must enter the safe infinitely often

14 / 29



Exercise: Gnome Sort [1/3]

Exercise
Model the following code as a module in SMV:

procedure gnomeSort(arr, len):
l0: pos := 0
l1: while (pos < len):
l2: if (pos == 0 or arr[pos] >= arr[pos - 1]):
l3: pos := pos + 1

else:
l4: swap(arr[pos], arr[pos - 1])

pos := pos - 1
l5: return # self-loop here!

}

Declare, inside the main module, the following variables:

• arr: array initialised to { 9, 7, 5, 3, 1 }
• sorter: instance of gnomeSort(arr, 5)

15 / 29



Exercise: Gnome Sort [2/3]

Verify

• the algorithm always terminates;

• eventually in the future, the array will be sorted forever;

• eventually the array is sorted, and the algorithm is not done
until the array is sorted.

16 / 29



Exercise: Gnome Sort [3/3]

Hints

• use ‘pc’ to keep track of the possible state values { l0,
l1, l2, l3, l4, l5 } ;

• declare ‘pos’ in 0..len, initialize to 0;

• ensure that the content of ‘arr‘ does never change when ‘pc
!= l4’;

• ensure that the content of ‘arr‘ that is not involved in a
‘swap’ operation does not change even when ‘pc = l4’;

• (easier?) encode the constraints over ‘arr’ with
constraint-style modelling;

• (easier?) encode the evolution of ‘pc’ and ‘pos’ with
assignment-style modelling.

17 / 29



Exercise: Elevator [1/7]

Exercise

• Given the model of an elevator system for a 4-floors
building, including the complete description of:

• reservation buttons,
• cabin,
• door,
• controller.

• Enrich the model with properties encoding the requirements
that must be met by each component of the system, and
verify that such requirements are satisfied.

18 / 29



Exercise: Elevator - Button [2/7]

Button

• For each floor there is a button to request service, that can be
pressed.

• A pressed button stays pressed unless reset by the controller.

• A button that is not pressed can become pressed
non-deterministically.

Requirement
The controller must not reset a button that is not pressed.

19 / 29



Exercise: Elevator - Cabin [3/7]

Cabin

• The cabin can be at any floor between 1 and 4.

• The cabin is equipped with an engine that has a direction of
motion, that can be either standing, up or down.

• The engine can receive one of the following commands: nop,
in which case it does not change status; stop, in which case
it becomes standing; up (down), in which case it goes up
(down).

20 / 29



Exercise: Elevator - Cabin [4/7]

Requirements

• The cabin can receive a stop command only if the direction is
up or down.

• The cabin can receive a move command only if the direction
is standing.

• The cabin can move up only if the floor is not 4.

• The cabin can move down only if the floor is not 1.

21 / 29



Exercise: Elevator - Door [5/7]

Door

• The cabin is equipped with a door, that can be either open
or closed.

• The door can receive either open, close or nop commands
from the controller, and it responds by opening, closing, or
preserving the current state.

Requirements

• The door can receive an open command only if the door is
closed.

• The door can receive a close command only if the door is
open.

22 / 29



Exercise: Elevator - Controller [6/7]

Controller

• The controller takes in input (as sensory signals):

• the floor,
• the direction of motion of the cabin,
• the status of the door,
• the status of the four buttons.

• It decides the controls to the engine, to the door and to the
buttons.

23 / 29



Exercise: Elevator - Controller [7/7]

Requirements

• no button can reach a state where it remains pressed forever.

• no pressed button can be reset until the cabin stops at the
corresponding floor and opens the door.

• a button must be reset as soon as the cabin stops at the
corresponding floor with the door open.

• the cabin can move only when the door is closed.

• if no button is pressed, the controller must issue no
commands and the cabin must be standing.

24 / 29



Exercise: Needham-Schroeder Protocol [1/5]

Exercise
Consider the following, simplified, public-key
Needham-Schroeder protocol:

• A initiates the protocol by sending a nonce NA and its
identity IA (both encrypted with B’s public key) to B.

• B deciphers the message and retrieves A’s identity, using its
private key.

• B sends his nonce NB and A’s nonce NA (both encrypted
with A’s public key) back to A.

• A decodes the message and checks that its nonce is returned,
using its private key.

• A returns B’s nonce NB (encrypted with B’s public key) back
to B.

• B decodes the message and checks that its nonce is returned,
using its private key.

25 / 29



Exercise: Needham-Schroeder Protocol [2/5]

In this protocol, the sequence of messages being exchanged is:

• A =⇒ B : {NA, IA}KB

• B =⇒ A : {NA, NB}KA

• A =⇒ B : {NB}KB

26 / 29



Exercise: Needham-Schroeder Protocol [3/5]

A known man-in-the-middle attack exists for this protocol:

• A =⇒ E : {NA, IA}KE
(A wants to talk with E);

• E =⇒ B : {NA, IA}KB
(E wants to convince B that it is A);

• B =⇒ E : {NA, NB}KA
(B returns nonces encrypted by KA);

• E =⇒ A : {NA, NB}KA
(E forwards the encrypted message

to A);

• A =⇒ E : {NB}KE
(A confirms it is talking to E);

• E =⇒ B : {NB}KB
(E returns B’s nonce back).

To prevent this attack, the original protocol was patched as
follows:

• A =⇒ B : {NA, IA}KB
;

• B =⇒ A : {NA, NB, IB}KA
(B also sends its identity back to

A);

• A =⇒ B : {NB}KB
.

27 / 29



Exercise: Needham-Schroeder Protocol [4/5]

Goals [1/2]

• Model an instance of the Needham-Schroeder protocol in
which Alice initiates communication with Bob and the
protocol is successfully completed.

• Write a CTL property s.t. its counterexample is an execution
trace which witnesses this successful attempt.

• Extend the previous model with the addition of a malicious
user, namely Eve, which implements a modified version of the
protocol so as to perform the man-in-the-middle attack.

• Write a CTL property s.t. its counterexample is an execution
trace which witnesses this successful attack.

28 / 29



Exercise: Needham-Schroeder Protocol [5/5]

Goals [2/2]

• Extend the previous model with the suggested patch for the
Needham-Schroeder protocol.

• Write a CTL property which verifies that the
man-in-the-middle attack can no longer be successfully
performed, plus an additional CTL property s.t. its
counterexample is a failed attack attempt.

29 / 29


	Dining Philosophers
	Insertion Sort
	Cleaning Robot
	Alarm System
	Gnome Sort
	Elevator
	Simplified Needham-Schroeder Protocol

