
nuXmv for planning

Enrico Magnago

University of Trento,
Fondazione Bruno Kessler

1 / 50

Planning problem

Planning Problem

Planning Problem
Given 〈I,G, T 〉, where

• I: (representation of) initial state

• G: (representation of) goal state

• T: transition relation

find a sequence of transitions t1, ..., tn leading from the initial state
to the goal state.

Idea
Encode planning problem as a model checking problem, such that
plan is provided as counter-example for the property.

1. impose I as initial state

2. encode T as transition relation system

3. verify the LTL property ! (F goal state)

3 / 50

Example: blocks [1/9]

B B

GOAL

A C

A

INITIAL

C

T

Init : On(A,B), On(B,C), On(C, T), Clear(A)
Goal : On(C,B), On(B,A), On(A, T)
Move(a, b, c)

Precond : Block(a) ∧ Clear(a) ∧On(a, b)∧
(Clear(c) ∨ Table(c))∧
a 6= b ∧ a 6= c ∧ b 6= c

Effect : Clear(b) ∧ ¬On(a, b)∧
On(a, c) ∧ ¬Clear(c)

4 / 50

Example: blocks [2/9]

MODULE block(id, ab, bl)
VAR

above : {none, a, b, c}; -- the block above this one
below : {none, a, b, c}; -- the block below this one

DEFINE
clear := (above = none);

INIT
above = ab &
below = bl

-- a block can’t be above or below itself
INVAR below != id & above != id

MODULE main
VAR

-- at each step only one block moves
move : {move_a, move_b, move_c};
block_a : block(a, none, b);
block_b : block(b, a, c);
block_c : block(c, b, none);

...

5 / 50

Example: blocks [3/9]

• a block cannot move if it has some other block above itself
...
TRANS
(!block_a.clear -> move != move_a) &
(!block_b.clear -> move != move_b) &
(!block_c.clear -> move != move_c)

...

• Q: what’s wrong with following formulation?
...
TRANS
(block_a.clear -> move = move_a) &
(block_b.clear -> move = move_b) &
(block_c.clear -> move = move_c)

...

A:
• move can only have one valid value =⇒ inconsistency

whenever there are two clear blocks at the same time
• any non-clear block would still be able to move
• same for “iff“ formulation

6 / 50

Example: blocks [3/9]

• a block cannot move if it has some other block above itself
...
TRANS
(!block_a.clear -> move != move_a) &
(!block_b.clear -> move != move_b) &
(!block_c.clear -> move != move_c)

...

• Q: what’s wrong with following formulation?
...
TRANS
(block_a.clear -> move = move_a) &
(block_b.clear -> move = move_b) &
(block_c.clear -> move = move_c)

...

A:
• move can only have one valid value =⇒ inconsistency

whenever there are two clear blocks at the same time
• any non-clear block would still be able to move
• same for “iff“ formulation

7 / 50

Example: blocks [3/9]

• a block cannot move if it has some other block above itself
...
TRANS
(!block_a.clear -> move != move_a) &
(!block_b.clear -> move != move_b) &
(!block_c.clear -> move != move_c)

...

• Q: what’s wrong with following formulation?
...
TRANS
(block_a.clear -> move = move_a) &
(block_b.clear -> move = move_b) &
(block_c.clear -> move = move_c)

...

A:
• move can only have one valid value =⇒ inconsistency

whenever there are two clear blocks at the same time
• any non-clear block would still be able to move
• same for “iff“ formulation

8 / 50

Example: blocks [4/9]

• a moving block changes location and remains clear
TRANS
(move = move_a -> next(block_a.clear) &

next(block_a.below) != block_a.below) &
(move = move_b -> next(block_b.clear) &

next(block_b.below) != block_b.below) &
(move = move_c -> next(block_c.clear) &

next(block_c.below) != block_c.below)

• a non-moving block does not change its location
TRANS
(move != move_a -> next(block_a.below) = block_a.below) &
(move != move_b -> next(block_b.below) = block_b.below) &
(move != move_c -> next(block_c.below) = block_c.below)

9 / 50

Example: blocks [5/9]

• a block remains connected to any non-moving block
TRANS
(move != move_a & block_b.above = a

-> next(block_b.above) = a) &
(move != move_a & block_c.above = a

-> next(block_c.above) = a) &
(move != move_b & block_a.above = b

-> next(block_a.above) = b) &
(move != move_b & block_c.above = b

-> next(block_c.above) = b) &
(move != move_c & block_a.above = c

-> next(block_a.above) = c) &
(move != move_c & block_b.above = c

-> next(block_b.above) = c)

• Q: what about “below block”?
A: covered in previous slide!

10 / 50

Example: blocks [5/9]

• a block remains connected to any non-moving block
TRANS
(move != move_a & block_b.above = a

-> next(block_b.above) = a) &
(move != move_a & block_c.above = a

-> next(block_c.above) = a) &
(move != move_b & block_a.above = b

-> next(block_a.above) = b) &
(move != move_b & block_c.above = b

-> next(block_c.above) = b) &
(move != move_c & block_a.above = c

-> next(block_a.above) = c) &
(move != move_c & block_b.above = c

-> next(block_b.above) = c)

• Q: what about “below block”?

A: covered in previous slide!

11 / 50

Example: blocks [5/9]

• a block remains connected to any non-moving block
TRANS
(move != move_a & block_b.above = a

-> next(block_b.above) = a) &
(move != move_a & block_c.above = a

-> next(block_c.above) = a) &
(move != move_b & block_a.above = b

-> next(block_a.above) = b) &
(move != move_b & block_c.above = b

-> next(block_c.above) = b) &
(move != move_c & block_a.above = c

-> next(block_a.above) = c) &
(move != move_c & block_b.above = c

-> next(block_b.above) = c)

• Q: what about “below block”?
A: covered in previous slide!

12 / 50

Example: blocks [6/9]

• positioning of blocks is symmetric: above and below relations
must be symmetric.
INVAR
(block_a.above = b <-> block_b.below = a)

& (block_a.above = c <-> block_c.below = a)
& (block_b.above = a <-> block_a.below = b)
& (block_b.above = c <-> block_c.below = b)
& (block_c.above = a <-> block_a.below = c)
& (block_c.above = b <-> block_b.below = c)

& (block_a.above = none ->
(block_b.below != a & block_c.below != a))

& (block_b.above = none ->
(block_a.below != b & block_c.below != b))

& (block_c.above = none ->
(block_a.below != c & block_b.below != c))

& (block_a.below = none ->
(block_b.above != a & block_c.above != a))

& (block_b.below = none ->
(block_a.above != b & block_c.above != b))

& (block_c.below = none ->
(block_a.above != c & block_b.above != c))

13 / 50

Example: blocks [7/9]

Remark
A plan is a sequence of transitions/actions leading from the initial
state to an accepting/goal state.

Idea

• assert property p: “goal state is not reachable”

• if a plan exists, nuXmv produces a counterexample for p

• the counterexample for p is a plan to reach the goal

14 / 50

Example: blocks [8/9]

Examples

• get a plan for reaching “goal state”
SPEC
!EF(block_a.below = none & block_a.above = b &

block_b.below = a & block_b.above = c &
block_c.below = b & block_c.above = none)

• get a plan for reaching a configuration in which all blocks are
placed on the table
SPEC
!EF(block_a.below = none & block_b.below = none &

block_c.below = none)

15 / 50

Example: blocks [8/9]

Examples

• get a plan for reaching “goal state”
SPEC
!EF(block_a.below = none & block_a.above = b &

block_b.below = a & block_b.above = c &
block_c.below = b & block_c.above = none)

• get a plan for reaching a configuration in which all blocks are
placed on the table
SPEC
!EF(block_a.below = none & block_b.below = none &

block_c.below = none)

16 / 50

Example: blocks [9/9]

• at any given time, at least one block is placed on the table
INVARSPEC
block_a.below = none | block_b.below = none |
block_c.below = none

• at any given time, at least one block has nothing above
INVARSPEC
block_a.above = none | block_b.above = none |
block_c.above = none

• we can always reach a configuration in which all nodes are
placed on the table
SPEC
AG EF (block_a.below = none & block_b.below = none &

block_c.below = none)

• we can always reach the goal state
SPEC
AG EF(block_a.below = none & block_a.above = b &

block_b.below = a & block_b.above = c &
block_c.below = b & block_c.above = none)

17 / 50

Example: blocks [9/9]

• at any given time, at least one block is placed on the table
INVARSPEC
block_a.below = none | block_b.below = none |
block_c.below = none

• at any given time, at least one block has nothing above
INVARSPEC
block_a.above = none | block_b.above = none |
block_c.above = none

• we can always reach a configuration in which all nodes are
placed on the table
SPEC
AG EF (block_a.below = none & block_b.below = none &

block_c.below = none)

• we can always reach the goal state
SPEC
AG EF(block_a.below = none & block_a.above = b &

block_b.below = a & block_b.above = c &
block_c.below = b & block_c.above = none)

18 / 50

Example: blocks [9/9]

• at any given time, at least one block is placed on the table
INVARSPEC
block_a.below = none | block_b.below = none |
block_c.below = none

• at any given time, at least one block has nothing above
INVARSPEC
block_a.above = none | block_b.above = none |
block_c.above = none

• we can always reach a configuration in which all nodes are
placed on the table
SPEC
AG EF (block_a.below = none & block_b.below = none &

block_c.below = none)

• we can always reach the goal state
SPEC
AG EF(block_a.below = none & block_a.above = b &

block_b.below = a & block_b.above = c &
block_c.below = b & block_c.above = none)

19 / 50

Example: blocks [9/9]

• at any given time, at least one block is placed on the table
INVARSPEC
block_a.below = none | block_b.below = none |
block_c.below = none

• at any given time, at least one block has nothing above
INVARSPEC
block_a.above = none | block_b.above = none |
block_c.above = none

• we can always reach a configuration in which all nodes are
placed on the table
SPEC
AG EF (block_a.below = none & block_b.below = none &

block_c.below = none)

• we can always reach the goal state
SPEC
AG EF(block_a.below = none & block_a.above = b &

block_b.below = a & block_b.above = c &
block_c.below = b & block_c.above = none)

20 / 50

Examples

Example: tower of hanoi [1/4]

Game with 3 poles and N disks of
different sizes:

• initial state: stack of disks with
decreasing size on pole A

• goal state: move stack on pole C

• rules:
• only one disk may be moved at

each transition
• only the upper disk can be moved
• a disk can not be placed on top

of a smaller disk

22 / 50

Example: tower of hanoi [2/4]

• base system model
MODULE main
VAR
d1 : {left,middle,right}; -- largest
d2 : {left,middle,right};
d3 : {left,middle,right};
d4 : {left,middle,right}; -- smallest
move : 1..4; -- possible moves

• disk i is moving
DEFINE
move_d1 := (move = 1);
move_d2 := (move = 2);
move_d3 := (move = 3);
move_d4 := (move = 4);

...

• disk di can move iff ∀j > i.di 6= dj
clear_d1 := (d1!=d2 & d1!=d3 & d1!=d4);
clear_d2 := (d2!=d3 & d2!=d4);
clear_d3 := (d3!=d4);
clear_d4 := TRUE;

23 / 50

Example: tower of hanoi [2/4]

• base system model
MODULE main
VAR
d1 : {left,middle,right}; -- largest
d2 : {left,middle,right};
d3 : {left,middle,right};
d4 : {left,middle,right}; -- smallest
move : 1..4; -- possible moves

• disk i is moving
DEFINE
move_d1 := (move = 1);
move_d2 := (move = 2);
move_d3 := (move = 3);
move_d4 := (move = 4);

...

• disk di can move iff ∀j > i.di 6= dj
clear_d1 := (d1!=d2 & d1!=d3 & d1!=d4);
clear_d2 := (d2!=d3 & d2!=d4);
clear_d3 := (d3!=d4);
clear_d4 := TRUE;

24 / 50

Example: tower of hanoi [2/4]

• base system model
MODULE main
VAR
d1 : {left,middle,right}; -- largest
d2 : {left,middle,right};
d3 : {left,middle,right};
d4 : {left,middle,right}; -- smallest
move : 1..4; -- possible moves

• disk i is moving
DEFINE
move_d1 := (move = 1);
move_d2 := (move = 2);
move_d3 := (move = 3);
move_d4 := (move = 4);

...

• disk di can move iff ∀j > i.di 6= dj
clear_d1 := (d1!=d2 & d1!=d3 & d1!=d4);
clear_d2 := (d2!=d3 & d2!=d4);
clear_d3 := (d3!=d4);
clear_d4 := TRUE;

25 / 50

Example: tower of hanoi [3/4]

• initial state
INIT
d1 = left &
d2 = left &
d3 = left &
d4 = left;

• move description for disk 1
TRANS
move_d1 ->

-- disks location changes
next(d1) != d1 &
next(d2) = d2 &
next(d3) = d3 &
next(d4) = d4 &
-- d1 can move only if it is clear
clear_d1 &
-- d1 can not move on top of smaller disks
next(d1) != d2 &
next(d1) != d3 &
next(d1) != d4

26 / 50

Example: tower of hanoi [3/4]

• initial state
INIT
d1 = left &
d2 = left &
d3 = left &
d4 = left;

• move description for disk 1
TRANS
move_d1 ->
-- disks location changes
next(d1) != d1 &
next(d2) = d2 &
next(d3) = d3 &
next(d4) = d4 &
-- d1 can move only if it is clear
clear_d1 &
-- d1 can not move on top of smaller disks
next(d1) != d2 &
next(d1) != d3 &
next(d1) != d4

27 / 50

Example: tower of hanoi [4/4]

• get a plan for reaching “goal state”
SPEC
! EF (d1=right & d2=right & d3=right & d4=right)

INVARSPEC
!(d1=right & d2=right & d3=right & d4=right)

• nuXmv execution:
nuXmv > read_model -i hanoi.smv
nuXmv > go
nuXmv > check_ctlspec
-- specification !(EF (((d1 = right & d2 = right) & d3 = right)

& d4 = right)) is false
-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
-> State: 2.1 <-

d1 = left
d2 = left
d3 = left
d4 = left

...

28 / 50

Example: tower of hanoi [4/4]

• get a plan for reaching “goal state”
SPEC
! EF (d1=right & d2=right & d3=right & d4=right)

INVARSPEC
!(d1=right & d2=right & d3=right & d4=right)

• nuXmv execution:
nuXmv > read_model -i hanoi.smv
nuXmv > go
nuXmv > check_ctlspec
-- specification !(EF (((d1 = right & d2 = right) & d3 = right)

& d4 = right)) is false
-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
-> State: 2.1 <-
d1 = left
d2 = left
d3 = left
d4 = left

...

29 / 50

Example: ferryman [1/4]

A ferryman has to bring a sheep, a cabbage, and a wolf safely
across a river.

• initial state: all animals are on the right side

• goal state: all animals are on the left side

• rules:
• the ferryman can cross the river with at most one passenger on

his boat
• the cabbage and the sheep can not be left unattended on the

same side of the river
• the sheep and the wolf can not be left unattended on the same

side of the river

Q: can the ferryman transport all the goods to the other side
safely?

30 / 50

Example: ferryman [2/4]

• base system model
MODULE main
VAR
cabbage : {right,left};
sheep : {right,left};
wolf : {right,left};
man : {right,left};
move : {c, s, w, e}; -- possible moves

DEFINE
carry_cabbage := (move = c);
carry_sheep := (move = s);
carry_wolf := (move = w);
no_carry := (move = e);

• initial state
ASSIGN
init(cabbage) := right;
init(sheep) := right;
init(wolf) := right;
init(man) := right;

31 / 50

Example: ferryman [2/4]

• base system model
MODULE main
VAR
cabbage : {right,left};
sheep : {right,left};
wolf : {right,left};
man : {right,left};
move : {c, s, w, e}; -- possible moves

DEFINE
carry_cabbage := (move = c);
carry_sheep := (move = s);
carry_wolf := (move = w);
no_carry := (move = e);

• initial state
ASSIGN
init(cabbage) := right;
init(sheep) := right;
init(wolf) := right;
init(man) := right;

32 / 50

Example: ferryman [3/4]

• ferryman carries cabbage
TRANS
carry_cabbage ->
cabbage = man &
next(cabbage) != cabbage &
next(man) != man &
next(sheep) = sheep &
next(wolf) = wolf

• ferryman carries sheep
TRANS
carry_sheep ->

sheep = man &
next(sheep) != sheep &
next(man) != man &
next(cabbage) = cabbage &
next(wolf) = wolf

• ferryman carries wolf
TRANS

carry_wolf ->
wolf = man &
next(wolf) != wolf &
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage

• ferryman carries nothing
TRANS

no_carry ->
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage &
next(wolf) = wolf

33 / 50

Example: ferryman [3/4]

• ferryman carries cabbage
TRANS
carry_cabbage ->
cabbage = man &
next(cabbage) != cabbage &
next(man) != man &
next(sheep) = sheep &
next(wolf) = wolf

• ferryman carries sheep
TRANS
carry_sheep ->

sheep = man &
next(sheep) != sheep &
next(man) != man &
next(cabbage) = cabbage &
next(wolf) = wolf

• ferryman carries wolf
TRANS

carry_wolf ->
wolf = man &
next(wolf) != wolf &
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage

• ferryman carries nothing
TRANS

no_carry ->
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage &
next(wolf) = wolf

34 / 50

Example: ferryman [3/4]

• ferryman carries cabbage
TRANS
carry_cabbage ->
cabbage = man &
next(cabbage) != cabbage &
next(man) != man &
next(sheep) = sheep &
next(wolf) = wolf

• ferryman carries sheep
TRANS
carry_sheep ->

sheep = man &
next(sheep) != sheep &
next(man) != man &
next(cabbage) = cabbage &
next(wolf) = wolf

• ferryman carries wolf
TRANS

carry_wolf ->
wolf = man &
next(wolf) != wolf &
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage

• ferryman carries nothing
TRANS

no_carry ->
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage &
next(wolf) = wolf

35 / 50

Example: ferryman [3/4]

• ferryman carries cabbage
TRANS
carry_cabbage ->
cabbage = man &
next(cabbage) != cabbage &
next(man) != man &
next(sheep) = sheep &
next(wolf) = wolf

• ferryman carries sheep
TRANS
carry_sheep ->

sheep = man &
next(sheep) != sheep &
next(man) != man &
next(cabbage) = cabbage &
next(wolf) = wolf

• ferryman carries wolf
TRANS

carry_wolf ->
wolf = man &
next(wolf) != wolf &
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage

• ferryman carries nothing
TRANS

no_carry ->
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage &
next(wolf) = wolf

36 / 50

Example: ferryman [4/4]

• get a plan for reaching “goal state”
DEFINE
safe_state := (sheep = wolf | sheep = cabbage) -> sheep = man;
goal := cabbage = left & sheep = left & wolf = left;

SPEC
! E[safe_state U goal]

• nuXmv execution:
nuXmv > read_model -i ferryman.smv
nuXmv > go
nuXmv > check_ctlspec
-- specification !E [safe_state U goal] is false
-- as demonstrated by the following execution sequence
-> State: 1.1 <-

cabbage = right
sheep = right
wolf = right
man = right

...

37 / 50

Example: ferryman [4/4]

• get a plan for reaching “goal state”
DEFINE
safe_state := (sheep = wolf | sheep = cabbage) -> sheep = man;
goal := cabbage = left & sheep = left & wolf = left;

SPEC
! E[safe_state U goal]

• nuXmv execution:
nuXmv > read_model -i ferryman.smv
nuXmv > go
nuXmv > check_ctlspec
-- specification !E [safe_state U goal] is false
-- as demonstrated by the following execution sequence
-> State: 1.1 <-

cabbage = right
sheep = right
wolf = right
man = right

...

38 / 50

Example: tic-tac-toe [1/5]

Tic-tac-toe is a turn-based game for two adversarial players (X and
O) marking the squares of a board (→ a 3×3 grid). The player
who succeeds in placing three respective marks in a horizontal,
vertical or diagonal row wins the game.

• Example: O wins • we model tic-tac-toe puzzle
as an array of size nine

1 | 2 | 3
____|___|____

4 | 5 | 6
____|___|____

7 | 8 | 9
| |

39 / 50

Example: tic-tac-toe [2/5]

• base system model
MODULE main
VAR
B : array 1..9 of {0,1,2};
player : 1..2;
move : 0..9;

• initial state
INIT
B[1] = 0 &
B[2] = 0 &
B[3] = 0 &
B[4] = 0 &
B[5] = 0 &
B[6] = 0 &
B[7] = 0 &
B[8] = 0 &
B[9] = 0;

INIT
move = 0;

40 / 50

Example: tic-tac-toe [2/5]

• base system model
MODULE main
VAR
B : array 1..9 of {0,1,2};
player : 1..2;
move : 0..9;

• initial state
INIT
B[1] = 0 &
B[2] = 0 &
B[3] = 0 &
B[4] = 0 &
B[5] = 0 &
B[6] = 0 &
B[7] = 0 &
B[8] = 0 &
B[9] = 0;

INIT
move = 0;

41 / 50

Example: tic-tac-toe [3/5]

• turns modeling
ASSIGN
init(player) := 1;
next(player) :=
case

player = 1 : 2;
player = 2 : 1;

esac;

• move modeling
TRANS
next(move=1) ->

B[1] = 0 & next(B[1]) = player &
next(B[2])=B[2] &
next(B[3])=B[3] &
next(B[4])=B[4] &
next(B[5])=B[5] &
next(B[6])=B[6] &
next(B[7])=B[7] &
next(B[8])=B[8] &
next(B[9])=B[9]

42 / 50

Example: tic-tac-toe [3/5]

• turns modeling
ASSIGN
init(player) := 1;
next(player) :=
case

player = 1 : 2;
player = 2 : 1;

esac;

• move modeling
TRANS
next(move=1) ->
B[1] = 0 & next(B[1]) = player &
next(B[2])=B[2] &
next(B[3])=B[3] &
next(B[4])=B[4] &
next(B[5])=B[5] &
next(B[6])=B[6] &
next(B[7])=B[7] &
next(B[8])=B[8] &
next(B[9])=B[9]

43 / 50

Example: tic-tac-toe [4/5]

• “end” state
DEFINE
win1 := (B[1]=1 & B[2]=1 & B[3]=1) | (B[4]=1 & B[5]=1 & B[6]=1) |

(B[7]=1 & B[8]=1 & B[9]=1) | (B[1]=1 & B[4]=1 & B[7]=1) |
(B[2]=1 & B[5]=1 & B[8]=1) | (B[3]=1 & B[6]=1 & B[9]=1) |
(B[1]=1 & B[5]=1 & B[9]=1) | (B[3]=1 & B[5]=1 & B[7]=1);

win2 := (B[1]=2 & B[2]=2 & B[3]=2) | (B[4]=2 & B[5]=2 & B[6]=2) |
(B[7]=2 & B[8]=2 & B[9]=2) | (B[1]=2 & B[4]=2 & B[7]=2) |
(B[2]=2 & B[5]=2 & B[8]=2) | (B[3]=2 & B[6]=2 & B[9]=2) |
(B[1]=2 & B[5]=2 & B[9]=2) | (B[3]=2 & B[5]=2 & B[7]=2);

draw := !win1 & !win2 &
B[1]!=0 & B[2]!=0 & B[3]!=0 & B[4]!=0 &
B[5]!=0 & B[6]!=0 & B[7]!=0 & B[8]!=0 & B[9]!=0;

TRANS
(win1 | win2 | draw) <-> next(move)=0

44 / 50

Example: tic-tac-toe [5/5]

A strategy is a plan that need to be accomplished for winning the
game “if the opponent has two in a row, play the third to block
them”

• player 2 does not have a “winning” strategy
SPEC
! (AX (EX (AX (EX (AX (EX (AX (EX (AX win2)))))))))

• player 2 has a “non-losing” strategy
SPEC
AX (EX (AX (EX (AX (EX (AX (EX (AX !win1))))))))

Verification:

nuXmv > read_model -i tictactoe.smv
nuXmv > go
nuXmv > check_ctlspec
-- specification !(AX (EX (AX (EX (AX (EX

(AX (EX (AX win2))))))))) is true
-- specification AX (EX (AX (EX (AX (EX

(AX (EX (AX !win1)))))))) is true

45 / 50

Exercises

Exercises [1/4]

Tower of Hanoi

Extend the tower of hanoi to handle five disks, and check that the
goal state is reachable.

47 / 50

Exercises [2/4]

Ferryman

Another ferryman has to bring a fox, a chicken, a caterpillar and a
crop of lettuce safely across a river.

• initial state: all goods are on the right side

• goal state: all goods are on the left side

• rules:
• the ferryman can cross the river with at most two passengers

on his boat
• the fox eats the chicken if left unattended on the same side of

the river
• the chicken eats the caterpillar if left unattended on the same

side of the river
• the caterpillar eats the lettuce if left unattended on the same

side of the river

Can the ferryman bring every item safely on the other side?

48 / 50

Exercises [3/4]

Tic-Tac-Toe
encode and verify the following properties

• player 2 has also a ”non-winning” strategy

• player 2 does not have a ”losing” strategy

• player 2 does not have a ”drawing” strategy

• player 2 has a ”non-drawing” strategy

• player 1 does not have a ”winning” strategy

• player 1 has a ”non-losing” strategy

• player 1 has also a ”non-winning” strategy

• player 1 does not have a ”losing” strategy

• player 1 does not have a ”drawing” strategy

• player 1 has a ”non-drawing” strategy

49 / 50

Exercises [4/4]

Sudoku

Encode in an SMV model the game of Sudoku, write a property so
that nuXmv finds the solution.
You can find the rules on Wikipedia.

Tip

Use a MODULE to avoid repetitions of the same constraints.
220 lines are enough.

50 / 50

https://en.wikipedia.org/wiki/Sudoku

	Planning problem
	Blocks Example

	Examples
	The Tower of Hanoi
	Ferryman
	Tic-Tac-Toe

	Exercises

