nuXmyv introduction

Enrico Magnago

University of Trento,
Fondazione Bruno Kessler

1/49

Introduction

Introduction

SMV
Symbolic Model Verifier developed by McMillan in 1993.

NuSMV
Open-source symbolic model checker for SMV models developed

by FBK, Carnegie Mellon University, University of Genoa and
University of Trento.

nuXmv

Extends NUSMV.

Binary available for non-commercial or academic purposes only.
Developed and maintained by the Embedded Systems unit of FBK.

3/49

nuXmv

NUXMV allows for the verification of:

e finite-state systems through SAT and BDD based algorithms;

e infinite-state systems (e.g. systems with real and integer
variables) through SMT-based techniques running on top of
MathSATS;

NUXMV supports synchronous systems;
asynchronous systems are no longer supported!

4/49

nuXmv interactive shell

Interactive shell [1/3]

e nuxmv -int (or NuSMV -int) activates an interactive shell

e help shows the list of all commands (if a command name is
given as argument, detailed information for that command will
be provided).
note: option —h prints the command line help for each
command.

e reset resets the whole system (in order to read in another
model and to perform verification on it).

e readmodel [-i filename] sets the input model and
reads it.

e go, go_bmc, go_msat initialize NUXMV for verification or
simulation with a specific backend engine.

6/49

Interactive shell [2/3]

e pick_state [-v] [-a]l [-r | -i] picks a state from the
set of initial states.
e —v prints the chosen state.
e —r picks a state from the set of the initial states randomly.
e —1 picks a state from the set of the initial states interactively.
e —a displays all state variables (requires —1).

e simulate [-p | -v] [-a] [-r | —-1i] -k N generates a
sequence of at most N transitions starting from the current
state.

e —p prints the changing variables in the generated trace;
e —v prints changed and unchanged variables in the generated
trace;

e —a prints all state variables (requires —1i);
e —r at every step picks the next state randomly.
e —i at every step picks the next state interactively.

e print_current_state [-h] [-V] prints out the current

state.
e —v prints all the variables.
7/49

Interacting Shell [2/3] - Output Example

nuXmv > reset
nuXmv > read_model -i exampleOl.smv ; go
nuXmv > pick_state -v; simulate -v
Trace Description: Simulation Trace
Trace Type: Simulation

-> State: 1.1 <-

b0 = FALSE

*%xxx*x%+% Simulation Starting From State 1.1 kKK KK KK
Trace Description: Simulation Trace
Trace Type: Simulation

-> State: 1.1 <-

b0 = FALSE
—> State: 1.2 <-
b0 = TRUE

-> State: 1.3 <-
b0 = FALSE

—-> State: 1.4 <-
b0 = TRUE

=> State: 1.5 <=
b0 = FALSE

-> State: 1.6 <-
b0 = TRUE

8/49

Interacting Shell [3/3]

e goto_state state_label makes state_label the
current state (it is used to navigate along traces).

e show_traces [-t] [-v] [-a | TN[.FS[:[TS]]] prints
the trace TN starting from state FS up to state TS
e —t prints the total number of stored traces
e —v verbosely prints traces content;
e —a prints all the currently stored traces

e showvars [-s] [-f] [-i] [-t] [-v] prints the
variables content and type
e —s print state variables;
—f print frozen variables;
—1 print input variables;
—t prints the number of variables;
—v prints verbosely;

e quit stops the program.

9/49

nuXmv Modeling

First SMV model

e an SMYV model is composed by a number of modules;

e cach module can contain:

e state variable declarations;
e formulae defining the valid initial states;
e formulae defining the transition relation;

Example:

MODULE main

VAR
b0 : boolean; FALSE TRUE
ASSIGN @ @
init (b0) := FALSE;
next (b0) := !'b0;

11/49

Basic Types [1/3]

boolean: TRUE, FALSE, ...
X : boolean;

enumerative:
s : {ready, busy, waiting, stopped};

bounded integers* (intervals):
m 3 oo8p

*: integer numbers must be within C/C++ INT_MIN and INT_MAX bounds

12 /49

Basic Types [2/3]

integers™: -1, 0, 1, ...

n : integer;
rationals: 1.66, f'2/3, 2e3, 10e-1, ...
r : real;

words: used to model arrays of bits supporting bitwise logical and
arithmetic operations.

e unsigned word[3];

e signed word[7];

*: integer numbers must be within C/C++ INT_MIN and INT_MAX bounds

13/49

Basic Types [3/3]

arrays:
declared with a couple of lower/upper bounds for the index and a

type

VAR
—-— array of 11 elements
x : array 0..10 of boolean;
—-— array of 3 elements
y : array -1..1 of {red, green, orange};
—-— array of array

z : array 1..10 of array 1..5 of boolean;
ASSIGN

init (x[5]) := bool(1l);

—-— any value in the set

init(y[0]) := {red, green};

init(z[3]1[2]) := TRUE;

Array indexes must be constants;
14 /49

Adding a state variable

MODULE main
VAR
b0 : boolean;
bl : boolean;

ASSIGN
init (b0) := FALSE;
next (b0) := !'b0;

e the FSM is the result of the synchronous
composition of the “subsystems” for b0 and bl

Remarks: \'i)

e the new state space |.s the cartesian product of \\;\,/
the ranges of the variables.

15 /49

Initial States [1/2]

Example:

init (x) := FALSE; —-— x must be FALSE

init(y) := {1, 2, 3}; —-— y can be either 1, 2 or 3
init (<variable>) := <simple_expression>;

e constrains the initial value of <variable> to satisfy the
<simple_expression>;

e the initial value of an unconstrained variable can be any of
those allowed by its domain;

set of initial states

is given by the set of states whose variables satisfy all the init ()
constraints in a module.

16 / 49

Initial States [2/2]

Example:

MODULE main
VAR
b0 : boolean;
bl : boolean;

ASSIGN
init (b0) = FALSE;
next (b0) := !'b0;
init (bl) = FALSE;

17 /49

Expressions [1/3]

e arithmetic operators:

+ - * / mod - (unary)
e comparison operators:

= 1= > < <K= >=
e logic operators:

& \ XOT ! (not) —> <>
e bitwise operators:

<< >>
e set operators: {vl,v2,...,vn}

e in: tests a value for membership in a set (set inclusion)
e union: takes the union of 2 sets (set union)

e count operator: counts number of true boolean expressions
count (b1 + b2 + ... + bn)

18 /49

Expressions [2/3]

® Case expression o

case C/C++ equivalent:
cl :el; if (cl) then el;
cz ot eZ; else if (c2) then e2;
TRUE : en; clse en;

esac

e if-then-else expression:

cond_expr ? basic_epxr 1 : basic_expr?2

e conversion operators: toint, bool, floor, and
e swconst, uwconst: convert an integer to a signed and an

unsigned word respectively.

e wordl converts boolean to a single word bit.

e unsigned and signed convert signed word to unsigned
word and vice-versa.

19/49

Expressions [3/3]

e expressions in SMV do not necessarily evaluate to one value.
In general, they can represent a set of possible values.

init (var) := {a,b,c} union {x,y,z};

e The meaning of := in assignments is that the lhs can
non-deterministically be assigned to any value in the set of
values represented by the rhs.

e A constant c is considered as a syntactic abbreviation for {c}
(the singleton containing c).

20/49

Transition Relation [1/2]

Transition Relation
specifies a constraint on the values that a variable can assume in

the next state, given the value of variables in the current state.

next (<variable>) := <next_expression>;
e <next_expression> can depend both on “current” and
“next” variables:

next (a) := { a, a+l } ;
next (b) := b + (next(a) - a) ;

e <next_expression> must evaluate to values in the
domain of <variable>;

e the next value of an unconstrained variable evolves
non-deterministically;

21/49

Transition Relation [2

Example:
modulo-4 counter

MODULE main

VAR
b0 : boolean;
bl : boolean;

ASSIGN

init (b0) = FALSE;

next (b0) := !b0;

init (bl) = FALSE;

next (bl) = case
b0 . !'bl;
TRUE : bl;

esac;

22/49

Output Variable [1/2]

output variable
is a variable whose value deterministically depends on the value of

other “current” state variables and for which no init () or
next () are defined.

<variable> := <simple_expression>;

e <simple_expression> must evaluate to values in the
domain of the <variable>.

e used to model outputs of a system;

23 /49

Output Variable [2/2]

Example:

MODULE main

VAR
b0 : boolean;
bl : boolean;
out : 0..3;

ASSIGN
init (b0) := FALSE;
next (b0) := !b0;
init (bl) = FALSE;
next (bl) := ((!b0 & bl) | (b0 & !'bl));
out := toint (b0) + 2*toint (bl);

24 /49

Assignment Rules (:=)

e single assignment rule — each variable may be assigned only
once; lllegal examples:

init (var) ready; var := ready; next (var) := ready;
init (var) := busy; var := busy; var := busy;

next (var) := ready; init(var) := ready;

next (var) = busy; var := busy;

25 /49

Assignment Rules (:=)

e single assignment rule — each variable may be assigned only
once; lllegal examples:

init (var) := ready; var := ready; next (var) := ready;
init (var) := busy; var := busy; var := busy;
next (var) := ready; init(var) := ready;

next (var)

busy; var := busy;

e circular dependency rule — a set of equations must not have

“cycles” in its dependency graph, unless broken by delays;
lllegal examples:

next (x) := next (y); x 1= (x + 1) mod 2; next (x) := x & next (x);
next (y) := next (x);

Legal example:
next (x) := next(y);
next (y) := vy & x;

26/ 49

DEFINE declarations

DEFINE <id> := <simple_expression>;

e similar to C/C++ macro definitions: each occurrence of the
defined symbol is replaced with the body of the definition
e provide an alternative way of defining output variables;

Example:

MODULE main
VAR
b0 : boolean;
bl : boolean;

ASSIGN

init (b0) = FALSE;

next (b0) := !b0;

init (bl) = FALSE;

next (bl) ((!b0 & bl) | (O & 'bl));
DEFINE

out := toint (b0) + 2xtoint (bl);

27 /49

Example: modulo 4 counter with reset

The counter can be reset by an external “uncontrollable” signal

MODULE main

VAR
b0 : boolean; bl boolean; reset boolean;
ASSIGN
init (b0) := FALSE; '
init (bl) FALSE; o 0
next (b0) case
reset = TRUE FALSE;
reset = FALSE 'b0;
esac;
next (bl) case ° 0
reset FALSE;
TRUE (('b0 & b1l) | (b0 & !'b1));
esac;
DEFINE
out := toint (b0) + 2*toint (bl);

28 /49

Exercise 1

Exercise:
simulate the system with NUXMV and draw the FSM.

MODULE main

VAR
request : boolean;
state : { ready, busy };
ASSIGN
init (state) := ready;
next (state) =
case
state = ready & request : busy;
TRUE : { ready, busy };
esac;

29 /49

Exercise 1

Exercise:
simulate the system with NUXMV and draw the FSM.

MODULE main

VAR
request : boolean;
state : { ready, busy };
ASSIGN
init (state) := ready;
next (state) =
case
state = ready & request : busy;
TRUE : { ready, busy };
esac;

30,49

Constraint Style Modeling [1/4]

MODULE main

VAR
request : boolean; state : {ready,busy};
ASSIGN
init (state) := ready;
next (state) := case
state = ready & request : busy;
TRUE : {ready,busy};
esac;

Every program can be alternatively defined in a constraint style:

MODULE main

VAR
request : boolean; state : {ready,busy};
INIT
state = ready
TRANS
(state = ready & request) —-> next(state) = busy

31,49

Constraint Style Modeling [2/4]

e a model can be specified by zero or more constraints on:
e initial states:
INIT <simple_expression>
e transitions:
TRANS <next_expression>
e invariant states:
INVAR <simple_expression>

e constraints can be mixed with assignments;
e any propositional formula is allowed as constraint;

e not all constraints can be easily rewritten in terms of
assignments!

TRANS
next (b0) + 2*next (bl) + 4xnext (b2) =
(b0 + 2+xbl + 4xb2 + tick) mod 8

32/49

Constraint Style Modeling [3/4]

assignment style

e by construction, there is always at least one initial state;
e by construction, all states have at least one next state;

e non-determinism is apparent (unassigned variables, set
assignments...).

33,49

Constraint Style Modeling [4/4]

constraint style

e INIT constraints can be inconsistent — no initial state!
e any specification (also SPEC 0) is vacuously true.
e TRANS constraints can be inconsistent: — deadlock state!

Example:
MODULE main
VAR b : boolean;
TRANS b —> FALSE;
e tip: use check_fsm to detect deadlock states

e non-determinism is hidden:
TRANS (state = ready & request) —-> next (state) = busy

34/49

Example: Constraint Style & Case

MODULE main ()
VAR

state : {SO0, S1, S2}; - =

DEFINE
go_sl :=

go_s2 := state != S1; | . ///
, \
\ N

INIT | '
state = S0; AN

|
0
pert
o)}
jart
D
0
N
/
A

TRANS ‘
case \7,//
go_sl : next (state) = S1;

go_s2 : next(state) S2;
esac;

e Q: does it correspond to the FSM?

35,49

Example: Constraint Style & Case

MODULE main ()

VAR
state

DEFINE
go_sl
go_s2

INIT
state

TRANS

case
go_sl
go_s2

esac;

:= state != S2; N

{s0, s1, s2}; “a e N

state != S1; . ///
N

SIOF;

next (state) = S1;
next (state) 828

e Q: does it correspond to the FSM? No: cases are evaluated in
order!

36 /49

Example: Constraint Style & Swap

MODULE main ()
VAR
arr: array 0..1 of {1,2};

i 8 Q@cod \ e

ASSIGN
init (arr[0]) := 1;
init (arr[1l]) := 2; -— -
arr[0] =1 arr[0] =2
init (i) := 0; arr[l] =2 arr[l] =1
next (i) := 1-1; i=0 i=1
TRANS
next (arr[i]) = arr[l-i] &
next (arr[1-1i]) = arr[i];

e Q: does it correspond to the FSM?

3749

Example: Constraint Style & Swap

MODULE main ()
VAR
arr: array 0..1 of {1,2};

d 8 @codg \ —

ASSIGN
init (arr[0]) := 1;
init (arr[1l]) := 2; S
arr[0] =1 arr[0] =1
init (1) := 0; arr[1] = 2 arr[l] =2
next (i) := 1-i; i=0 i=1
TRANS
next (arr[i]) = arr[l-i] &
next (arr[1-i]) = arr[i];

e (): does it correspond to the FSM7 No: everything inside the
next() operator is evaluated within the next state, indexes

included!
38/49

Modules

Modules [1/3]

SMYV program = main module + 0 or more other modules

e a module can be instantiated as a VAR in other modules

e dot notation for accessing variables that are local to a
module instance (e.g., m1.out, m2.out).

Example:

MODULE counter .
VAR out: 0..9; main
ASSIGN next (out) :=

(out + 1) mod 10;

MODULE main ml m2

VAR ml : counter; m2 : counter;
sum: 0..18;
ASSIGN sum := ml.out + m2.out;

40/ 49

Modules [2/3]

A module declaration can be parametric:

e a parameter is passed by reference;

e any expression can be used as parameter;

Example:
MODULE counter (in) et
VAR out: 0..9; out in
ml m2

MODULE main
VAR ml : counter (m2.out);

m2 : counter (ml.out); lin out

41/ 49

Modules [3/3]

e modules can be composed

e modules without parameters and assignments can be seen as
simple records

Example:
MODULE point
VAR MODULE main
x: —=10..10;
VAR c: circle;
y: -10..10;
ASSIGN
MODULE circle 2ot 5 (G, CEmEEEom) 8= Up
AR init (c.center.y) := 0;
init (c.radius) := 5;

center: point;
radius: 0..10;

42 /49

Synchronous composition [1/2]

The composition of modules is synchronous by default:
all modules move at each step.

MODULE cell (input)

VAR
val : {red, green, blue};
ASSIGN input cl val
next (val) := input;
MODULE main val input
VAR input val
c3 c2
cl : cell(c3.val);
c2 : cell(cl.val);
c3 : cell(c2.val);

43 /49

Synchronous composition [2/2]

A possible execution:

step | cl.val | c2.val | c3.val
0 red green | blue
1 blue red green
2 green | blue red
3 red green | blue
4 o
5 red green | blue

44 /49

Asynchronous composition [1/2]

Asynchronous composition can be obtained using keyword

process:
one process moves at each step.

MODULE cell (input)

VAR
val : {red, green, blue};
ASSIGN next (val) := input;

FAIRNESS running

MODULE main

VAR
cl : process cell(c3.val);
c2 : process cell(cl.val);
c3 : process cell(c2.val);

Each process has a boolean running variable:

e true iff the process is selected for execution;

e can be used to guarantee a fair scheduling of processes.
45 /49

Asynchronous composition [2/2]

A possible execution:

step | running | cl.val | c2.val | c3.val
0 - red | green | blue
1 c2 red red blue
2 cl blue red blue
3 cl blue red blue
4 c3 blue red red
5 c2 blue blue red
6 c3 blue blue blue
blue blue blue

Warning: in NUXMV processes are deprecated!

46 /49

Exercise: Adder [1/3]

MODULE bit-adder (inl, in2, cin)
VAR

sum : boolean;

cout : boolean;

ASSIGN
next (sum) := (inl xor 1in2) xor cinj;
next (cout) := (inl & in2) | ((inl | in2) & cin);

MODULE adder (inl, in2)

VAR
bit [0] bit-adder (inl[0], in2[0], bool(0));
bit[1l] : bit-adder(inl[1], in2[1], bit[0].cout);
bit[2] : bit-adder(inl([2], in2[2], bit[l].cout);
bit[3] : bit-adder(inl[3], in2[3], bit[2].cout);
DEFINE
sum[0] = bit[0].sum;
sum[1l] := bit[1l].sum;
sum[2] = bit[2].sum;
sum[3] := bit[3].sum;
overflow := bit[3].cout;

47 /49

Exercise: Adder [2/3]

MODULE main

VAR
inl : array 0..3 of boolean;
in2 : array 0..3 of boolean;
a : adder(inl, in2);
ASSIGN
next (inl1[0]) := inl[0]; next (inl[1]) = inl[1];
next (inl[2]) := inl[2]; next (inl[3]) = inl[3];
next (in2[0]) := in2[0]; next (in2[1]) = in2[1];
next (in2[2]) := in2[2]; next (in2[3]) = in2[3];
DEFINE
opl := toint(inl[0]) + 2xtoint(inl[1]) + 4xtoint(inl[2]) +
8xtoint (inl[31]);
op2 := toint (in2[0]) + 2*t01nt(1n2[1]) + 4xtoint (in2[2]) +
8+xtoint (in2[31])
sum := toint (a. sum[O]) + 2*toint (a.sum[1]) + 4*toint (a.sum[2]) +
8xtoint (a.sum[3]) + 1l6xtoint (a.overflow);

48/ 49

Exercise: Adder [3/3]

Exercise:

e simulate a random execution of the “adder” system;

e after how many steps the adder stores the computes the final
sum value?

e add a reset control which changes the values of the
operands and restarts the computation of the sum

49 /49

	Introduction
	nuXmv interactive shell
	nuXmv Modeling
	Basic Types
	Expressions
	Transition Relation
	Miscellany
	Constraint Style Modeling

	Modules
	Modules Definition
	Modules Composition

