
Spin exercises

Enrico Magnago

University of Trento,
Fondazione Bruno Kessler

1 / 11



Exercise 1: mutual exclusion [1/2]

Exercise: A solution to mutual exclusion for N processes is
based on message passing instead of shared variables.

Idea: use a shared buffered message channel and synchronize by
reading and writing from/onto this channel.

• the only shared global data structure can be a channel
• check with ltl that following properties hold for 3 processes:

• mutual exclusion
• progress
• lockout-freedom

• Q: why is the fairness condition necessary for the
lockout-freedom property to hold?

• Q: What changes if a synchronous channel is used instead?
(why?)

2 / 11



Exercise 1: mutual exclusion [2/2]

Idea: replace the channel-based synchronization mechanism of
Exercise 1 with the famous Test and Set solution:

...
// enter critical section
do

:: atomic {
tmp = lock;
lock = true;
} ->
if

:: tmp;
:: else -> break;

fi;
od;
...

// global variable
bool lock = false
...
// exit critical section
lock = false;
...

Q: does the program still verify all the properties? (why?)

3 / 11



Exercise 2: factorial

Exercise: Model a process factorial(n, c) that recursively
computes the factorial of a given value “n”.

Hints & Tasks:

• use channel “c” to return the value to your parent process

• spawn the first factorial() process in the init block

• verify that fact(k) is greater than 2k for k > 3. (e.g., try with
k = 10)

Q:

• what happens if we try to compute the factorial of 100?

4 / 11



Exercise 3: jumping array

Exercise: Model an array of k elements with k-1 (random) memory
locations initialized to 0 and one (random) location initialized to 1.
Write an algorithm of your choice that searches the array for the
memory location with value 1 and terminates only when it finds it.
Each time that your algorithm reads any memory location, and
before the next read, one of the following things must happen at
random:

• the value 1 in location i jumps to location (i+ 1)%k

• the value 1 in location i jumps to location (i− 1)%k

• the value 1 in location i does not move

Verify with ltl that the algorithm always terminates for k=11, use
option “-mN” to control the maximum depth and “-i” for
breadth first search.

• Q: is it possible to verify the correctness of your algorithm?
why?

5 / 11



Exercise 4: infinite monkey theorem

Exercise: Model a system of 26 monkeys and one human reviewer.

• Each monkey is given a button which, when pressed, sends a
unique lower-case character (in the set a..z) to the reviewer.
A monkey can press a button at any time, up until when the
experiment is over.

• The reviewer checks the incoming sequence of characters,
one by one, against a famous quote taken from the Hamlet:
“to be or not to be” (spaces and punctuation marks are
ignored). As soon as there is a match, the reviewer terminates
the experiment.

Use a global, shared, channel typewriter to send characters
from the monkeys to the human reviewer.
Write an LTL property s.t. the corresponding counter-example
found by spin is an execution trace matching the sequence of
characters tobeornottobe, and use Spin to find it.

Q: how can one guarantee correct termination for all processes? 6 / 11



Exercise 5: Elaaden Vault

Exercise: Five ControlPillars, numbered from 0 to 4, control the
gate of an ancient vault. Initially, pillars 1, 3 and 4 are in ON state,
while 0 and 2 are OFF . The gate opens when all pillars are
contemporarily set to ON.

• Each ControlPillar waits for input commands sent through
their input channel ctl. Whenever a pillar receives a
command, it atomically changes its own state –and the state
of its immediate left and right neighbours– to the opposite
value. To this extent, pillars 0 and 4 must be considered
neighbours of each other.

• A spaceship Commander keeps sending command messages
to randomly chosen control pillars, up until the gate opens.

Write a property p1 s.t. its counter-example is a sequence of
button-switches that will open the gate.

7 / 11



Exercise 6: oscillator

Exercise: Write a Promela model that initializes a global integer
variable sum to be 0. Model a process P, stuck in an infinite loop,
which:

• draws a random value included in {1, 3} and assigns it to v
• updates the value of sum as follows:

• if sum is positive valued, it subtracts v to its value
• otherwise, it adds v to its value

Verify the following ltl properties:

• the value of sum is equal to 0 infinitely often

• the value of sum is never larger than 3 or smaller than −3
• it always the case that if sum is greater than 0 then it will

eventually be smaller than 0, and if sum is smaller than 0
then it will eventually be larger than 0

Q: why is the third property not verified? can you fix it?
8 / 11



Exercise 7: cigarette smokers

Exercise: Assume that a cigarette requires three ingredients to be
made: TOBACCO, PAPER and MATCHES. There are three smokers
around a table, each of which has an infinite supply of only one
ingredient.

• Smoker. Each smoker is in a loop waiting for both of his
missing ingredients to appear on the table. Whenever that
happens, he grabs the ingredients (the table becomes empty),
rolls a cigarette and smokes it by printing a message. A
smoker must also put one unit of his own resource on the
table whenever asked to do so.

• Master Agent. Whenever the table is empty, the master
agent sends a message demanding a unit of resource to be put
on the table to two distinct smokers using a channel. The
master agent chooses the smokers that have to put their own
resource on the table using a uniform random distribution.

Simulate the system and verify that it behaves correctly: infinite execution

trace in which each smoker smokes infinitely often. 9 / 11



Exercise 8: railway station

Exercise: In a railway station trains are countinuously arriving and
leaving. Goods are contained in some cargos and, depending on
the weight, they are moved from/to either trucks or vans.
Write a Promela program that models this scenario considering
each cargo as a message that should be sent/received through
the right channel. Each channel (train, truck and van) can
contain 16 cargos as a maximum. The maximum weight of each
cargo in a van is 128.
You will need two processes:

• ‘‘split’’, that splits goods from the train channel,
dividing them over the other two channels, truck and van,
depending on the weight values attached

• ‘‘merge’’, that merges the two streams back into one,
most likely in a different order, and writes it back into the
train channel.

Here are the initial cargo weights on the train: 345, 12, 6777, 32, 0;
10 / 11



Example 9: word counter

Exercise: In each sentence (string hereafter) the number of the
characters composing the string is greater or equal than the
number of the words contained in the sentence. A word is
characterized by delimiters:

• space ’ ’

• tabulation ’\t’

• endline ’\n’

Write a spin function count() that perfoms property-based slicing
of a string channel, counts the number of characters nc and the
number of words nw and checks if the property nc >= nw is
always true.

Use the init function to pass to count() a string (remember that
you can model a string as a channel of integers corresponding to
ASCII characters).

11 / 11


