
Spin LTL model checking

Enrico Magnago

University of Trento,
Fondazione Bruno Kessler

1 / 33

LTL model checking: introduction

• the behaviour of a system M is given by the set of all its
possible paths of execution⋃
πi = si,0 → si,1 → ...→ si,t → ...

bool done = false;
do

:: done;
:: else ->

if
:: true -> done = true;
:: true -> skip;

fi
od;

!done

!done

!done

!done

!done

!done

!done

done

!done

done

!done

!done

done

done done

done

• The set of computations can be represented by a finite
automaton

or

done

!done

!done

!done done

2 / 33

LTL model checking: Spin

GOAL: verify whether M |= φ

1. Build Automatons:

• AM: encodes all possible executions of M
• A¬φ: encodes all violations of φ
• AM×¬φ = AM ×A¬φ: contains all the paths in M that

violate φ
(×: synchronous product)

2. Check for a possible execution πi of AM×¬φ:

• if πi exists, then it is a violation (counter-example) of φ in M.
• otherwise, M |= φ.

Important: M |= φ iff ∀i.πi |= φ
=⇒ not sufficient to check whether there exists a πi for AM×φ

3 / 33

LTL model checking: Spin

GOAL: verify whether M |= φ

1. Build Automatons:

• AM: encodes all possible executions of M
• A¬φ: encodes all violations of φ
• AM×¬φ = AM ×A¬φ: contains all the paths in M that

violate φ
(×: synchronous product)

2. Check for a possible execution πi of AM×¬φ:

• if πi exists, then it is a violation (counter-example) of φ in M.
• otherwise, M |= φ.

Important: M |= φ iff ∀i.πi |= φ
=⇒ not sufficient to check whether there exists a πi for AM×φ

4 / 33

LTL Basics

Pfinally

F P

Pglobally

PG

PX

Pnext P until q

P U q

5 / 33

Execution Model & LTL Properties [1/9]

6 / 33

Execution Model & LTL Properties [2/9]

7 / 33

Execution Model & LTL Properties [3/9]

8 / 33

Execution Model & LTL Properties [4/9]

9 / 33

Execution Model & LTL Properties [5/9]

10 / 33

Execution Model & LTL Properties [6/9]

11 / 33

Execution Model & LTL Properties [7/9]

12 / 33

Execution Model & LTL Properties [8/9]

13 / 33

Execution Model & LTL Properties [9/9]

14 / 33

LTL syntax with Spin

• Grammar:
• ltl ::= opd | (ltl) | ltl binop ltl |
unop ltl

• opd:
• true, false, and user-defined names starting with a

lower-case letter

• unop:
• []: globally/always
• <>: finally/eventually
• !: not
• X: next

• binop:
• U: until
• V: release remember: (ϕV ψ) = !(!ϕU !ψ)
• &&: and
• ||: or
• ->: implication
• <->: equivalence

15 / 33

Example: LTL model checking [1/2]

Example (foo.pml): verify that b is always true.

bool b = true;

active proctype main() {
printf("hello world!\n");
b = false;

}

Standard Approach:

• add the LTL formula in foo.pml:
ltl p1 { [] b }

• generate, compile and run the verifier:
˜$ spin -a foo.pml
˜$ gcc -o pan pan.c
˜$./pan -a -N p1

or
˜$ spin -search -a -ltl p1 foo.pml

-a: ask the verifier to also check cyclic executions violating a property

16 / 33

Example: LTL model checking [1/2]

Example (foo.pml): verify that b is always true.

bool b = true;

active proctype main() {
printf("hello world!\n");
b = false;

}

Standard Approach:

• add the LTL formula in foo.pml:
ltl p1 { [] b }

• generate, compile and run the verifier:
˜$ spin -a foo.pml
˜$ gcc -o pan pan.c
˜$./pan -a -N p1

or
˜$ spin -search -a -ltl p1 foo.pml

-a: ask the verifier to also check cyclic executions violating a property

17 / 33

Example: LTL model checking [1/2]

Example (foo.pml): verify that b is always true.

bool b = true;

active proctype main() {
printf("hello world!\n");
b = false;

}

Standard Approach:

• add the LTL formula in foo.pml:
ltl p1 { [] b }

• generate, compile and run the verifier:
˜$ spin -a foo.pml
˜$ gcc -o pan pan.c
˜$./pan -a -N p1

or
˜$ spin -search -a -ltl p1 foo.pml

-a: ask the verifier to also check cyclic executions violating a property

18 / 33

Example: LTL model checking [1/2]

Example (foo.pml): verify that b is always true.

bool b = true;

active proctype main() {
printf("hello world!\n");
b = false;

}

Standard Approach:

• add the LTL formula in foo.pml:
ltl p1 { [] b }

• generate, compile and run the verifier:
˜$ spin -a foo.pml
˜$ gcc -o pan pan.c
˜$./pan -a -N p1

or
˜$ spin -search -a -ltl p1 foo.pml

-a: ask the verifier to also check cyclic executions violating a property

19 / 33

Constructs for complex LTL formulas

pid

• unique identifier of a process

last

• pid of the process that performed the last state transition;

enabled(pid)

• true iff process with identifier pid has at least one
executable statement in its current control state.

Remote References

• allow for inspecting the local state of an active process:

• procname[pid]@label for labels
• procname[pid]:varname for variables

Example: (mutual exclusion)

ltl p { []! (procname[0]@critical && procname[1]@critical) }

20 / 33

Constructs for complex LTL formulas

pid

• unique identifier of a process

last

• pid of the process that performed the last state transition;

enabled(pid)

• true iff process with identifier pid has at least one
executable statement in its current control state.

Remote References

• allow for inspecting the local state of an active process:

• procname[pid]@label for labels
• procname[pid]:varname for variables

Example: (mutual exclusion)

ltl p { []! (procname[0]@critical && procname[1]@critical) }

21 / 33

Constructs for complex LTL formulas

pid

• unique identifier of a process

last

• pid of the process that performed the last state transition;

enabled(pid)

• true iff process with identifier pid has at least one
executable statement in its current control state.

Remote References

• allow for inspecting the local state of an active process:

• procname[pid]@label for labels
• procname[pid]:varname for variables

Example: (mutual exclusion)

ltl p { []! (procname[0]@critical && procname[1]@critical) }

22 / 33

Constructs for complex LTL formulas

pid

• unique identifier of a process

last

• pid of the process that performed the last state transition;

enabled(pid)

• true iff process with identifier pid has at least one
executable statement in its current control state.

Remote References

• allow for inspecting the local state of an active process:

• procname[pid]@label for labels
• procname[pid]:varname for variables

Example: (mutual exclusion)

ltl p { []! (procname[0]@critical && procname[1]@critical) }
23 / 33

Weak Fairness

Weak Fairness: an event E occurs infinitely often.

Example:
every process executes infinitely often

• let Ri be true iff the process i is running

• then a fairrun is s.t. ∧
i

GFRi

• in Spin:

[]<> _last==0 && []<> _last==1 ...

Weak fairness is often used as a pre-condition for other properties.

24 / 33

Strong Fairness

Strong Fairness: if an event E1 occurs infinitely often, then an
event E2 occurs infinitely often.

Example:
if a process is infinitely often ready to execute a statement, then
that process runs infinitely often.

• let Ri be true iff the process i is running

• let Ei be true iff the process i can execute a statement

• then a strong fairrun is s.t.∧
i

(GFEi → GFRi)

• in Spin:
[]<> enabled(0) -> []<>_last==0 && ...

25 / 33

Example: fairness condition

int count;
bool incr;

#define fair ([]<> \
(incr && _last == 0))

active proctype counter() {
do

:: incr ->
count++

od
}
active proctype env() {

do
:: incr = false
:: incr = true

od
}

Example:

• Verify the property count
reaches the value 10.

• Verify the property above
under the fairness condition.

Solution:

• ltl p1 { <> (count ==

10) }
• ltl p2 { fair -> <>

(count == 10) }

26 / 33

Example: fairness condition

int count;
bool incr;

#define fair ([]<> \
(incr && _last == 0))

active proctype counter() {
do

:: incr ->
count++

od
}
active proctype env() {

do
:: incr = false
:: incr = true

od
}

Example:

• Verify the property count
reaches the value 10.

• Verify the property above
under the fairness condition.

Solution:

• ltl p1 { <> (count ==

10) }
• ltl p2 { fair -> <>

(count == 10) }

27 / 33

Quiz #1

Q: which properties are verified, and which are not? (Why?)

byte x;

active proctype A ()
{

x = 1;
do

:: select(x: 0..10);
od;

}

ltl p1 { x == 0 }

ltl p2 { x != 0 }

ltl p3 { (x == 0) -> X (x != 0) }

ltl p4 { (x == 0) -> <> (x != 0) }

ltl p5 { [] ((x == 0) -> X (x != 0)) }

ltl p6 { [] ((x == 0) -> <> (x != 0)) }

28 / 33

Quiz #1

Q: which properties are verified, and which are not? (Why?)

byte x;

active proctype A ()
{

x = 1;
do

:: select(x: 0..10);
od;

}

ltl p1 { x == 0 } // T

ltl p2 { x != 0 } // F

ltl p3 { (x == 0) -> X (x != 0) } // T

ltl p4 { (x == 0) -> <> (x != 0) } // T

ltl p5 { [] ((x == 0) -> X (x != 0)) } // F

ltl p6 { [] ((x == 0) -> <> (x != 0)) } // F

29 / 33

Leader Election Problem

• N processes are the nodes of a unidirectional ring network:
each process can send messages to its clockwise neighbor and
receive messages from its counterclockwise neighbor.

• The requirement is that, eventually, only one process will
output that it is the leader.

• We assume that every process has a unique id.

• The leader must have the highest id.

N0

N1

N3

N2

30 / 33

Le Lann, Chang, Roberts (LCR) solution

The algorithm:

• Initially, every process passes its identifier to its successor.

• When a process receives an identifier from its predecessor,
then:

• if it is greater than its own, it keeps passing on the identifier.
• if it is smaller than its own, it discards the identifier.
• if it is equal to its own identifier, it declares itself leader:

• the leader communicates to its successor that now it is the
leader.

• after a process relayed the message with the leader id, it exits.

Complexity: at worst, n2 messages.

31 / 33

Peterson/Dolev, Klawe, Rodeh solution

The algorithm:

• If a process is “active”, it compares its identifier with the two
counter-clockwise predecessors:

• if the highest of the three is the counter-clock neighbor, the
process proposes the neighbor as leader,

• otherwise, it becomes a “relay”.

• If the process is in “relay” mode, it keeps passing whatever
incoming message.

Complexity: at worst, n · log(n) messages.

32 / 33

Exercise 1: Leader Election

mtype = { candidate, leader };
chan c[N] = [BUFSIZE] of { mtype, byte };
proctype node(chan prev, next; byte id)
{ ... }

init {
byte proc, i;
atomic {
// TODO: set i random in [0,N]
...
do
:: proc < N ->

run node(c[proc],
c[(proc+1)%N],
(N+i-proc)%N);

proc++
:: else ->
break
od
}

}

• Implement a
leader
election
algorithm of your
choice.

• Verify that there
is at most one
leader.

• Verify that a
leader will emerge.

• Verify that once if
a process becomes
the leader then it
will remain the
leader forever.

−→ strong solution
hint!

33 / 33

