
Spin channels

Promela overview

Enrico Magnago

University of Trento,
Fondazione Bruno Kessler

1 / 63

Promela

Promela is not a programming language,
but rather a meta-language for building verification models.

• The design of Promela is focused on the interaction among
processes at the system level;

• Provides:

• non-deterministic control structures,
• primitives for process creation,
• primitives for interprocess communication.

• Misses:

• functions with return values,
• expressions with side-effects,
• data and functions pointers.

2 / 63

Types of objects

Three basic types of objects:

• processes

• data objects

• message channels

+ labels

3 / 63

Process Initialization [1/3]

• active: process created at initialization phase
active [2] proctype you_run() {

printf("my pid is: %d\n", _pid)
}

• init is a process that is active in the initial system state.
=⇒ commonly used to initialize system

• init + active processes =⇒ instantiated in declaration
order

• run: process created when instruction is processed
proctype you_run(byte x) {

printf("x = %d, pid = %d\n", x, _pid);
run you_run(x + 1) // recursive call!

}
init {

run you_run(0);
}

note: run allows for input parameters!

4 / 63

Process Initialization [1/3]

• active: process created at initialization phase
active [2] proctype you_run() {

printf("my pid is: %d\n", _pid)
}

• init is a process that is active in the initial system state.
=⇒ commonly used to initialize system

• init + active processes =⇒ instantiated in declaration
order

• run: process created when instruction is processed
proctype you_run(byte x) {

printf("x = %d, pid = %d\n", x, _pid);
run you_run(x + 1) // recursive call!

}
init {

run you_run(0);
}

note: run allows for input parameters!

5 / 63

Process Initialization [1/3]

• active: process created at initialization phase
active [2] proctype you_run() {

printf("my pid is: %d\n", _pid)
}

• init is a process that is active in the initial system state.
=⇒ commonly used to initialize system

• init + active processes =⇒ instantiated in declaration
order

• run: process created when instruction is processed
proctype you_run(byte x) {

printf("x = %d, pid = %d\n", x, _pid);
run you_run(x + 1) // recursive call!

}
init {

run you_run(0);
}

note: run allows for input parameters!

6 / 63

Process Initialization [1/3]

• active: process created at initialization phase
active [2] proctype you_run() {

printf("my pid is: %d\n", _pid)
}

• init is a process that is active in the initial system state.
=⇒ commonly used to initialize system

• init + active processes =⇒ instantiated in declaration
order

• run: process created when instruction is processed
proctype you_run(byte x) {

printf("x = %d, pid = %d\n", x, _pid);
run you_run(x + 1) // recursive call!

}
init {

run you_run(0);
}

note: run allows for input parameters!

7 / 63

Process Initialization [2/3]

• No parameter can be given to init nor to active processes.

active proctype proc (byte x) {
printf("x = %d\n", x);

}

• ˜$ spin test.pml
x = 0

All parameters of an active process default to 0.

• A process does not necessarily start right after creation

proctype proc (byte x) {
printf("x = %d\n", x);

}
init {
run proc(0);
run proc(1);

}

• ˜$ spin test.pml
x = 0

x = 1

• ˜$ spin test.pml
x = 1

x = 0

8 / 63

Process Initialization [2/3]

• No parameter can be given to init nor to active processes.

active proctype proc (byte x) {
printf("x = %d\n", x);

}

• ˜$ spin test.pml
x = 0

All parameters of an active process default to 0.

• A process does not necessarily start right after creation

proctype proc (byte x) {
printf("x = %d\n", x);

}
init {
run proc(0);
run proc(1);

}

• ˜$ spin test.pml
x = 0

x = 1

• ˜$ spin test.pml
x = 1

x = 0

9 / 63

Process Initialization [2/3]

• No parameter can be given to init nor to active processes.

active proctype proc (byte x) {
printf("x = %d\n", x);

}

• ˜$ spin test.pml
x = 0

All parameters of an active process default to 0.

• A process does not necessarily start right after creation

proctype proc (byte x) {
printf("x = %d\n", x);

}
init {
run proc(0);
run proc(1);

}

• ˜$ spin test.pml
x = 0

x = 1

• ˜$ spin test.pml
x = 1

x = 0

10 / 63

Process Initialization [3/3]

• Only a limited number of processes (up to 255) can be
created:

proctype proc(byte x) {
printf("x = %d\n", x);
run proc(x + 1)

}
init {

run proc(0);
}

• ˜$ spin test.pml
x = 0

x = 1
x = 2

...
spin: too many processes (255 max)
timeout

• A process “terminates” when it reaches the end of its code.

• A process “dies” when it has terminated and all processes
created after it have died.

11 / 63

Process Initialization [3/3]

• Only a limited number of processes (up to 255) can be
created:

proctype proc(byte x) {
printf("x = %d\n", x);
run proc(x + 1)

}
init {

run proc(0);
}

• ˜$ spin test.pml
x = 0

x = 1
x = 2

...
spin: too many processes (255 max)
timeout

• A process “terminates” when it reaches the end of its code.

• A process “dies” when it has terminated and all processes
created after it have died.

12 / 63

Process Execution [1/2]

• Processes execute concurrently with all other processes.

• Processes are scheduled non-deterministically.

• Processes are interleaved: statements of different processes
do not occur at the same time (except for synchronous
channels).

• Each process may have several different possible actions
enabled at each point of execution: only one choice is made
(non-deterministically).

13 / 63

Process Execution [2/2]

• Each process has its own local state:

• process id pid;
• value of the local variables.

• A process communicates with other processes:

• using global (shared) variables (might need synchronization!);
• using channels.

14 / 63

Statements [1/6]

• each statement is atomic

• Every statement is either executable or blocked.

• Always executable:
• print statements
• assignments
• skip
• assert
• break
• ...

• Not always executable:
• the run statement is executable only if there are less than 255

processes alive;
• timeout: executable only when there is no other executable

process
• expressions

15 / 63

Statements [1/6]

• each statement is atomic

• Every statement is either executable or blocked.

• Always executable:
• print statements
• assignments
• skip
• assert
• break
• ...

• Not always executable:
• the run statement is executable only if there are less than 255

processes alive;
• timeout: executable only when there is no other executable

process
• expressions

16 / 63

Statements [1/6]

• each statement is atomic

• Every statement is either executable or blocked.

• Always executable:
• print statements
• assignments
• skip
• assert
• break
• ...

• Not always executable:
• the run statement is executable only if there are less than 255

processes alive;
• timeout: executable only when there is no other executable

process
• expressions

17 / 63

Statements [2/6]

• An expression is executable iff it evaluates to true (i.e.
non-zero).

• (5 < 30): always executable;
• (x < 30): blocks if x is not less than 30;
• (x + 30): blocks if x is equal to -30;

• Busy-Waiting: the expression (a == b); is equivalent to:

while (a != b) { skip }; /* C-code */

• Expressions must be side-effect free
(e.g. b = c++ is not valid).

18 / 63

Statements [3/6]

selection: repetition:

if do
:: c_0 -> s_0; ... :: c_0 -> s_0; ...
... ...
:: c_n -> s_n; ... :: c_n -> s_n; ...
:: else -> s_e; ... :: else -> s_e; ...
fi od

• { s i; ... } executed only if c i is executable

• if more than one c i is excutable, then executed branch is
chosen non-deterministically

• if no c i is executable, then else branch is executed –if
present

• break: exit from loop

19 / 63

Statements [4/6]

timeout

timeout -> s_0; ... s_n;

• { s 0; ... s n; } executed only if no other process is
executable

• statement that acts as a global timeout

• allows to escape deadlocks

unless

{ s_0; ... s_n; } unless { c_0; s_0’; ... s_n’; }

• { s 0; ... s n; } executed until c 0 becomes
executable

• { s 0’; ... s n’; } executed after c 0 becomes
executable

• similar to exception handling

20 / 63

Statements [4/6]

timeout

timeout -> s_0; ... s_n;

• { s 0; ... s n; } executed only if no other process is
executable

• statement that acts as a global timeout

• allows to escape deadlocks

unless

{ s_0; ... s_n; } unless { c_0; s_0’; ... s_n’; }

• { s 0; ... s n; } executed until c 0 becomes
executable

• { s 0’; ... s n’; } executed after c 0 becomes
executable

• similar to exception handling
21 / 63

Statements [5/6]

for
int i; int a[10];
for (i : 1 .. N) {
...

}
for (i in a) { // + channels
...

}

• also on arrays, e.g. int
a[10]

• also on channels (peek
read!), e.g. typedef m {
... }; chan c = [9]
of { m };

select

select(i: 8..17);

• assigns i with a random
value in the interval 8..17,
bounds included

conditional expression

(c_0 -> e_1 : e_2)

• evaluates to e 1 if c 0 is
true

• evaluates to e 2 if c 0 is
false

22 / 63

Statements [5/6]

for
int i; int a[10];
for (i : 1 .. N) {
...

}
for (i in a) { // + channels
...

}

• also on arrays, e.g. int
a[10]

• also on channels (peek
read!), e.g. typedef m {
... }; chan c = [9]
of { m };

select

select(i: 8..17);

• assigns i with a random
value in the interval 8..17,
bounds included

conditional expression

(c_0 -> e_1 : e_2)

• evaluates to e 1 if c 0 is
true

• evaluates to e 2 if c 0 is
false

23 / 63

Statements [5/6]

for
int i; int a[10];
for (i : 1 .. N) {
...

}
for (i in a) { // + channels
...

}

• also on arrays, e.g. int
a[10]

• also on channels (peek
read!), e.g. typedef m {
... }; chan c = [9]
of { m };

select

select(i: 8..17);

• assigns i with a random
value in the interval 8..17,
bounds included

conditional expression

(c_0 -> e_1 : e_2)

• evaluates to e 1 if c 0 is
true

• evaluates to e 2 if c 0 is
false

24 / 63

Statements [6/6]

atomic and d step can e used to group statements in a single
atomic sequence: executed in a single step.

atomic { s 0; ... s i; ... s n; }

• executable if s 0 is executable

• temporary loss of atomicity if s i, i > 0, not executable

d step { s 0; ... s i; ... s n; }

• executable if s 0 is executable

• run-time error if s i, i > 0, not executable

• can only contain deterministic steps

• no intermediate state is generated

25 / 63

Basic types

Type Typical Range

bit 0, 1
bool false, true
byte 0..255
chan 1..255
mtype 1..255
pid 0..255
short −215 .. 215−1
int −231 .. 231−1
unsigned 0 .. 2n−1

• A byte can be printed as a character with the %c format
specifier;

• There are no floats and no strings;

26 / 63

Typical declarations

bit x, y; // two single bits, initially 0
bool turn = true; // boolean value, initially true
byte a[12]; // all elements initialized to 0
byte a[3] = {’h’,’i’,’\0’}; // byte array emulating a string
chan m; // uninitialized message channel
mtype n; // uninitialized mtype variable
short b[4] = 89; // all elements initialized to 89
int cnt = 67; // integer scalar, initially 67
unsigned v : 5; // unsigned stored in 5 bits
unsigned w : 3 = 5; // value range 0..7, initially 5

• All variables are initialized by default to 0.

• Array indexes starts at 0.

• =⇒ unique initial state for all execution traces of one model!

27 / 63

Data structures

• A run statement accepts a
list of variables or structures,
but no array.

• Simulation-only trick:
enclose array inside data
structure

typedef Record {
byte a[3];
int x;

};
proctype run_me(Record r) {

r.x = 12
}
init {

Record test;
run run_me(test)

}

• Multi-dimensional arrays are
not supported, although
there are indirect ways:

typedef Array {
byte el[4]

};
Array a[4];

28 / 63

Variable Scope

• Spin (old versions): only two levels of scope

• global scope: declaration outside all process bodies.
• local scope: declaration within a process body.

• Spin (versions 6+): added block-level scope

init {
int x;
{ /* y declared in nested block */

int y;
printf("x = %d, y = %d\n", x, y);
x++;
y++;

}
/* Spin Version 6 (or newer): y is not in scope,
/* Older: y remains in scope */
printf("x = %d, y = %d\n", x, y);

}

29 / 63

Variable Scope

• Spin (old versions): only two levels of scope

• global scope: declaration outside all process bodies.
• local scope: declaration within a process body.

• Spin (versions 6+): added block-level scope

init {
int x;
{ /* y declared in nested block */

int y;
printf("x = %d, y = %d\n", x, y);
x++;
y++;

}
/* Spin Version 6 (or newer): y is not in scope,
/* Older: y remains in scope */
printf("x = %d, y = %d\n", x, y);

}

30 / 63

Message Channels

• A channel is a FIFO (first-in first-out) message queue.

• A channel can be used to exchange messages among
processes.

• Two types:

• buffered channels,
• synchronous channels (aka rendezvous ports)

31 / 63

Buffered Channels

• Declaration of a channel storing up to 16 messages, each
consisting of 3 fields of the listed types:

chan qname = [16] of { short, byte, bool }

• A message can contain any pre-defined or user-defined type.
Note: array must be enclosed within user-defined types.

• Useful pre-defined functions: len, empty, nempty,
full, nfull:

=⇒ num msgs in queue = len(qname);

• Message Send:

qname!expr1,expr2,expr3

The process blocks if the channel is full.

• Message Receive:

qname?var1,var2,var3

The process blocks if the channel is empty.

32 / 63

Buffered Channels

• Declaration of a channel storing up to 16 messages, each
consisting of 3 fields of the listed types:

chan qname = [16] of { short, byte, bool }

• A message can contain any pre-defined or user-defined type.
Note: array must be enclosed within user-defined types.

• Useful pre-defined functions: len, empty, nempty,
full, nfull:

=⇒ num msgs in queue = len(qname);

• Message Send:

qname!expr1,expr2,expr3

The process blocks if the channel is full.

• Message Receive:

qname?var1,var2,var3

The process blocks if the channel is empty.

33 / 63

Buffered Channels

• Declaration of a channel storing up to 16 messages, each
consisting of 3 fields of the listed types:

chan qname = [16] of { short, byte, bool }

• A message can contain any pre-defined or user-defined type.
Note: array must be enclosed within user-defined types.

• Useful pre-defined functions: len, empty, nempty,
full, nfull:

=⇒ num msgs in queue = len(qname);

• Message Send:

qname!expr1,expr2,expr3

The process blocks if the channel is full.

• Message Receive:

qname?var1,var2,var3

The process blocks if the channel is empty.

34 / 63

Buffered Channels

• Declaration of a channel storing up to 16 messages, each
consisting of 3 fields of the listed types:

chan qname = [16] of { short, byte, bool }

• A message can contain any pre-defined or user-defined type.
Note: array must be enclosed within user-defined types.

• Useful pre-defined functions: len, empty, nempty,
full, nfull:

=⇒ num msgs in queue = len(qname);

• Message Send:

qname!expr1,expr2,expr3

The process blocks if the channel is full.

• Message Receive:

qname?var1,var2,var3

The process blocks if the channel is empty.

35 / 63

Buffered Channels

• Declaration of a channel storing up to 16 messages, each
consisting of 3 fields of the listed types:

chan qname = [16] of { short, byte, bool }

• A message can contain any pre-defined or user-defined type.
Note: array must be enclosed within user-defined types.

• Useful pre-defined functions: len, empty, nempty,
full, nfull:

=⇒ num msgs in queue = len(qname);

• Message Send:

qname!expr1,expr2,expr3

The process blocks if the channel is full.

• Message Receive:

qname?var1,var2,var3

The process blocks if the channel is empty.

36 / 63

Alternative use of Buffered Channels

• An alternative syntax for message send/receive involves
brackets:
qname!expr1(expr2,expr3)
qname?var1(var2,var3)

=⇒ used to highlight the first field, e.g. when it acts as message type

• If - at the receiving side - some parameter is set to a constant
value:
qname?const1,var2,var3

then the process blocks if the channel is empty or the input
message field does not match the fixed constant value.
=⇒ used to filter messages

eval
It is also possible to filter incoming messages based on the value of
a variable using the eval function. e.g.:

qname?eval(var1),var2,var3

37 / 63

Alternative use of Buffered Channels

• An alternative syntax for message send/receive involves
brackets:
qname!expr1(expr2,expr3)
qname?var1(var2,var3)

=⇒ used to highlight the first field, e.g. when it acts as message type

• If - at the receiving side - some parameter is set to a constant
value:
qname?const1,var2,var3

then the process blocks if the channel is empty or the input
message field does not match the fixed constant value.
=⇒ used to filter messages

eval
It is also possible to filter incoming messages based on the value of
a variable using the eval function. e.g.:

qname?eval(var1),var2,var3

38 / 63

Alternative use of Buffered Channels

• An alternative syntax for message send/receive involves
brackets:
qname!expr1(expr2,expr3)
qname?var1(var2,var3)

=⇒ used to highlight the first field, e.g. when it acts as message type

• If - at the receiving side - some parameter is set to a constant
value:
qname?const1,var2,var3

then the process blocks if the channel is empty or the input
message field does not match the fixed constant value.
=⇒ used to filter messages

eval
It is also possible to filter incoming messages based on the value of
a variable using the eval function. e.g.:

qname?eval(var1),var2,var3

39 / 63

Synchronous Channels

• A synchronous channel (aka rendezvous port) has size zero.

chan port = [0] of { byte }

• Messages can be exchanged, but not stored!

• Synchronous execution: a process executes a send at the same
time another process executes a receive (as a single atomic
operation).

Example:

mtype = {msgtype};
chan name = [0] of {mtype, byte};

active proctype A() {
byte x = 124;
printf("Send %d\n", x);
name!msgtype(x);
x = 121
printf("Send %d\n", x);
name!msgtype(x);

}

active proctype B() {
byte y;
name?msgtype(y);
printf("Received %d\n", y);
name?msgtype(y);
printf("Received %d\n", y);

}

40 / 63

Synchronous Channels

• A synchronous channel (aka rendezvous port) has size zero.

chan port = [0] of { byte }

• Messages can be exchanged, but not stored!

• Synchronous execution: a process executes a send at the same
time another process executes a receive (as a single atomic
operation).

Example:

mtype = {msgtype};
chan name = [0] of {mtype, byte};

active proctype A() {
byte x = 124;
printf("Send %d\n", x);
name!msgtype(x);
x = 121
printf("Send %d\n", x);
name!msgtype(x);

}

active proctype B() {
byte y;
name?msgtype(y);
printf("Received %d\n", y);
name?msgtype(y);
printf("Received %d\n", y);

}

41 / 63

Synchronous Channels

• A synchronous channel (aka rendezvous port) has size zero.

chan port = [0] of { byte }

• Messages can be exchanged, but not stored!

• Synchronous execution: a process executes a send at the same
time another process executes a receive (as a single atomic
operation).

Example:

mtype = {msgtype};
chan name = [0] of {mtype, byte};

active proctype A() {
byte x = 124;
printf("Send %d\n", x);
name!msgtype(x);
x = 121
printf("Send %d\n", x);
name!msgtype(x);

}

active proctype B() {
byte y;
name?msgtype(y);
printf("Received %d\n", y);
name?msgtype(y);
printf("Received %d\n", y);

}

42 / 63

Channels of channels

• Message parameters are always passed by value.

• We can also pass the value of a channel from a process to
another.

43 / 63

Channels of channels example

1 mtype = {msgtype};
2 chan glob = [0] of {chan};
3

4 active proctype A() {
5 chan loc = [0] of {mtype, byte};
6 glob!loc; /* send channel loc through glob */
7 loc?msgtype(121); /* read 121 from channel loc */
8 }
9

10 active proctype B() {
11 chan who;
12 glob?who; /* receive channel loc from glob */
13 who!msgtype(121) /* write 121 on channel loc */
14 }

Q: what if B sends 122 on channel loc?

Both A and B are forever blocked

44 / 63

Channels of channels example

1 mtype = {msgtype};
2 chan glob = [0] of {chan};
3

4 active proctype A() {
5 chan loc = [0] of {mtype, byte};
6 glob!loc; /* send channel loc through glob */
7 loc?msgtype(121); /* read 121 from channel loc */
8 }
9

10 active proctype B() {
11 chan who;
12 glob?who; /* receive channel loc from glob */
13 who!msgtype(121) /* write 121 on channel loc */
14 }

Q: what if B sends 122 on channel loc?
Both A and B are forever blocked

45 / 63

Channels and Ambiguity [1/2]

1 mtype = { MESSAGE };
2 chan in = [1] of { mtype };
3 active proctype A() {
4 mtype m;
5 if
6 :: in?m ->
7 printf("Message Received.\n");
8 :: else ->
9 printf("No Message.\n");

10 fi
11 }
12 init {
13 if
14 :: true -> in!MESSAGE;
15 :: true -> skip;
16 fi
17 }

Q: how long should A wait before the else branch is taken?
46 / 63

Channels and Ambiguity [2/2]

use message poll to inspect the content of the channel

1 mtype = { MESSAGE };
2 chan in = [1] of { mtype };
3 active proctype A() {
4 mtype m;
5 if
6 :: atomic { in?[m] -> in?m } ->
7 printf("Message Received.\n");
8 :: else ->
9 printf("No Message.\n");

10 fi
11 }
12 init {
13 if
14 :: true -> in!MESSAGE;
15 :: true -> skip;
16 fi
17 }

47 / 63

Sorted send

Sorted send

• message is inserted immediately before the oldest message
that succeeds it in numerical order

• syntax: chname!!value

• e.g.

• c!3; c!1; =⇒ c([3, 1])
• c!!3; c!!1; =⇒ c([1, 3])

48 / 63

Random receive

Random receive

• executable if there exists at least one message buffered in the
message channel that can be received, regardless of its
position

• syntax: chname??value

• e.g. given c([3, 1])

• c?1 =⇒ blocks, 1 is not oldest element in queue
• c??1 =⇒ ok!

49 / 63

Sorted Send and Random Receive, example

proctype S1() {
c!1,2; c!1,1;
c!1,3; c!0,1;

}
proctype R1() {
do
:: c?v1,v2 ->
printf("(%d,%d)\n", v1, v2);
od

}

proctype S2() {
c!!1,2; c!!1,1;
c!!1,3; c!!0,1;

}
proctype R2() {
do
:: c??v1,1 ->
printf("(%d,%d)\n", v1, 1);
od

}

Q: What is the sequence of printed values, for the following
combinations?

• S1 + R1:

• S1 + R2:

• S2 + R1:

• S2 + R2:

50 / 63

Sorted Send and Random Receive, example

proctype S1() {
c!1,2; c!1,1;
c!1,3; c!0,1;

}
proctype R1() {
do
:: c?v1,v2 ->
printf("(%d,%d)\n", v1, v2);
od

}

proctype S2() {
c!!1,2; c!!1,1;
c!!1,3; c!!0,1;

}
proctype R2() {
do
:: c??v1,1 ->
printf("(%d,%d)\n", v1, 1);
od

}

Q: What is the sequence of printed values, for the following
combinations?

• S1 + R1: (1,2) (1,1) (1,3) (0,1)

• S1 + R2:

• S2 + R1:

• S2 + R2:

51 / 63

Sorted Send and Random Receive, example

proctype S1() {
c!1,2; c!1,1;
c!1,3; c!0,1;

}
proctype R1() {
do
:: c?v1,v2 ->
printf("(%d,%d)\n", v1, v2);
od

}

proctype S2() {
c!!1,2; c!!1,1;
c!!1,3; c!!0,1;

}
proctype R2() {
do
:: c??v1,1 ->
printf("(%d,%d)\n", v1, 1);
od

}

Q: What is the sequence of printed values, for the following
combinations?

• S1 + R1: (1,2) (1,1) (1,3) (0,1)

• S1 + R2: (1,1) (0,1)

• S2 + R1:

• S2 + R2:

52 / 63

Sorted Send and Random Receive, example

proctype S1() {
c!1,2; c!1,1;
c!1,3; c!0,1;

}
proctype R1() {
do
:: c?v1,v2 ->
printf("(%d,%d)\n", v1, v2);
od

}

proctype S2() {
c!!1,2; c!!1,1;
c!!1,3; c!!0,1;

}
proctype R2() {
do
:: c??v1,1 ->
printf("(%d,%d)\n", v1, 1);
od

}

Q: What is the sequence of printed values, for the following
combinations?

• S1 + R1: (1,2) (1,1) (1,3) (0,1)

• S1 + R2: (1,1) (0,1)

• S2 + R1: (0,1) (1,1) (1,2) (1,3)

• S2 + R2:

53 / 63

Sorted Send and Random Receive, example

proctype S1() {
c!1,2; c!1,1;
c!1,3; c!0,1;

}
proctype R1() {
do
:: c?v1,v2 ->
printf("(%d,%d)\n", v1, v2);
od

}

proctype S2() {
c!!1,2; c!!1,1;
c!!1,3; c!!0,1;

}
proctype R2() {
do
:: c??v1,1 ->
printf("(%d,%d)\n", v1, 1);
od

}

Q: What is the sequence of printed values, for the following
combinations?

• S1 + R1: (1,2) (1,1) (1,3) (0,1)

• S1 + R2: (1,1) (0,1)

• S2 + R1: (0,1) (1,1) (1,2) (1,3)

• S2 + R2: (0,1) (1,1)

54 / 63

Labels

end-state labels

• used to mark valid end-states, and tell them apart from a
deadlock situations

• by default, the only valid end-state is reached when the
process reaches the syntactic end of its body

• includes any label starting with ’end’

progress-state labels

• used to mark a state that must be executed for the
protocol/process to make progress

• any infinite cycle that does not cross a progress state is a
potential starvation loop

• includes any label starting with ’progress’

55 / 63

Exercises

Basic verification

1 chan com = [0] of {byte};
2 proctype p() {
3 byte i, value;
4 do
5 :: if
6 :: i >= 5 -> break;
7 :: else -> printf("Doing something else\n"); i ++;
8 fi
9 :: com ? value; printf("p received: %d\n",value)

10 od;
11 /* fill in for formal verification */
12 assert(value == 100);
13 }
14 init {
15 run p();
16 end: com ! 100;
17 }

Process p might not read from the channel.

57 / 63

chan com = [0] of {byte};
proctype p() {
 byte i, value;
 do
 :: if
 :: i >= 5 -> break;
 :: else -> printf("Doing something else\n"); i ++;
 fi
 :: com ? value; printf("p received: %d\n",value)
 od;
 /* fill in for formal verification */
 assert(value == 100);
}
init {
 run p();
 end: com ! 100;
}

EnricoMagnago

Basic verification

1 chan com = [0] of {byte};
2 proctype p() {
3 byte i, value;
4 do
5 :: if
6 :: i >= 5 -> break;
7 :: else -> printf("Doing something else\n"); i ++;
8 fi
9 :: com ? value; printf("p received: %d\n",value)

10 od;
11 /* fill in for formal verification */
12 assert(value == 100);
13 }
14 init {
15 run p();
16 end: com ! 100;
17 }

Process p might not read from the channel.
58 / 63

chan com = [0] of {byte};
proctype p() {
 byte i, value;
 do
 :: if
 :: i >= 5 -> break;
 :: else -> printf("Doing something else\n"); i ++;
 fi
 :: com ? value; printf("p received: %d\n",value)
 od;
 /* fill in for formal verification */
 assert(value == 100);
}
init {
 run p();
 end: com ! 100;
}

EnricoMagnago

Exercises [1/4]

Exercise 1

Write a PROMELA model that sums up an array of integers.

• declare and (non-deterministically) initialize an integer array
with values in [0, 9].

• add a loop that sums even elements and subtracts odd
elements.

• visually check that it is correct.

• Q: is it possible to initialize the array with a randomly chosen
value among any valid integer? how?

59 / 63

Exercises [2/4]

Exercise 2

Declare a synchronous channel and create two processes:

• The first process sends the characters ’a’ through ’z’ onto the
channel.

• The second process reads the values of the channel and
outputs them as characters.

• Check if sooner or later the second process will read the letter
’z’.

60 / 63

Exercises [3/4]

Exercise 3

Replace the synchronous channel in exercise 2 with a buffered
channel and check how the behaviour changes.

61 / 63

Exercises [4/4]

Exercise 4

Explain why Produced 0 can appear twice in a row simulating:

mtype = { C, P };
mtype turn = P;
active [2] proctype producer () {

do
:: (turn == P) ->
printf("Produced %d\n", _pid);
turn = C;

od
}

active [2] proctype consumer () {
do
:: (turn == C) ->

printf("Consumer %d\n", _pid);
turn = P;

od
}

62 / 63

Exercises [4/4] bis

Exercise 4 hints

• add a global variable last initialized to −1
• assert last != pid after each printf statement

• assign pid to last just before releasing the turn

• use spin to look for a trace that falsifies the assertion
=⇒ use spin -search -bfs buggy.pml

• replay the counter-example
=⇒ use spin -t -p -l -g

Q: how would you fix the code?

63 / 63

	Processes
	Data objects
	Message Channels
	Labels
	Exercises

