
Spin introduction

Simple Promela Interpreter

Enrico Magnago

University of Trento,
Fondazione Bruno Kessler

1 / 40

Theory recap

Model language

Model M : formal description of a system.
L(M): set of all possible executions.

3 / 40

Model simulation

Inspect one of the possible executions: σ ∈ L(M).
Model simulation does NOT prove correctness, it can only find
bugs (testing).

4 / 40

Model checking

Search for an execution that falsifies the property:
counter-example.

5 / 40

Model validation

Nice! We proved that the model is correct.
Then the system must be bug-free!
Absolutely FALSE!

What can go wrong?

• Is the model actually representing our system?

• Is our model capturing all relevant aspects of the system?

• Have we used the right level of abstraction?

• Have we missed some properties?

• . . .

6 / 40

Development process

7 / 40

System Properties

Recall
Model checking problem M |= φ, does φ hold in every possible
execution of M?
If M 6|= φ the model checker provides a counter-example:
an execution σ ∈ L(M) such that σ |= ¬φ.

Properties

Catch design flaws:

• deadlock: no progress;

• starvation: no access to a resource;

• over-specification: unreachable states;

• under-specification: unexpected/undesired behaviours;

Two main categories of properties: safety, liveness.

8 / 40

Spin

Spin model checker

• Developed at Bell Labs starting in 1980.

• Spin performs the formal verification distributed, concurrent
systems (e.g. mutual exclusion, communication protocols).

• Modelling language is Promela, it supports dynamic
creation of concurrent processes and both synchronous and
asynchronous communication via message channels.

resources

• web site: http://spinroot.com

10 / 40

spinroot.com

Spin workflow

11 / 40

Spin main options

• spin --: see available options

• -p: print each statement executed

• -g: print all global variables

• -l: print all local variables

• -nN: seed for random number generator

• -search: generate a verifier, compile and run it

• -dfs: use depth-first search (default)
• -bfs: use breadth-first search
• -ltl p: verify property with name p
• -a: search for acceptance cycles

12 / 40

Exercises

Download and install Spin

Setup Spin

Go to http://spinroot.com/spin/Man/README.html and follow
the instructions

14 / 40

http://spinroot.com/spin/Man/README.html

Hello World!

1 active proctype whatever()
2 {
3 printf("hello world\n")
4 }

• proctype: whatever is a process type.

• active: the process is automatically created and started,
otherwise we could decide when to instantiate it by
implementing the init method.

• notice that there is no semicolon after the printf statement,
in this case it is optional. In Promela the semicolon is used
to separate statements.

15 / 40

active proctype whatever()
{
 printf("hello world\n")
}

EnricoMagnago

Yet another Hello World!

1 init
2 {
3 pid p;
4 printf("Yet another...");
5 p = run hello();
6 printf("\n%d\n", p)
7 }
8

9 proctype hello()
10 {
11 printf("hello world\n");
12 }

• this time we use the init function to explicitly instantiate the
process.

• how many processes are being executed?
• what are the possible outcomes? (Hint: scheduling).

16 / 40

init
{
 pid p;
 printf("Yet another...");
 p = run hello();
 printf("\n%d\n", p)
}

proctype hello()
{
 printf("hello world\n");
}

EnricoMagnago

Tired of Hello World? Producer-Consumer

1 mtype = { P, C }; /* define 2 symbolic values: P and C */
2 mtype turn = P; /* global variable */
3 active proctype producer()
4 {
5 do /* loop */
6 :: (turn == P) -> /* guard of the case */
7 printf("Produce\n");
8 turn = C
9 od

10 }
11 active proctype consumer()
12 {
13 do
14 :: (turn == C) ->
15 printf("Consume\n");
16 turn = P
17 od
18 }

17 / 40

mtype = { P, C }; /* define 2 symbolic values: P and C */
mtype turn = P; /* global variable */
active proctype producer()
{
 do /* loop */
 :: (turn == P) -> /* guard of the case */
 printf("Produce\n");
 turn = C
 od
}
active proctype consumer()
{
 do
 :: (turn == C) ->
 printf("Consume\n");
 turn = P
 od
}

EnricoMagnago

Producer-Consumer Cont.

• mtype defines symbolic values
(similar to an enum declaration in a C program).

• turn is a global variable.

• do ... od (do-statement) defines a loop.

• Every option of the loop must start with ’::’.

• (turn == P) is the guard of the option.

• A break/goto statement can break the loop.

• -> and ; are equivalent
(-> indicates a causal relation between successive statements).

• a loop can have multiple guards:

• if all guards are false, then the process blocks
(no statement can be executed).

• if multiple guards are true, we get non-determinism.

18 / 40

Producer-Consumer: let’s get bigger

1 mtype = { P, C };
2 mtype turn = P;
3 active [2] proctype producer() /* create 2 producers */
4 {
5 do
6 :: (turn == P) ->
7 printf("Produce\n");
8 turn = C
9 od

10 }
11 active [2] proctype consumer() /* create 2 consumers */
12 {
13 do
14 :: (turn == C) ->
15 printf("Consume\n");
16 turn = P
17 od
18 }

19 / 40

mtype = { P, C };
mtype turn = P;
active [2] proctype producer() /* create 2 producers */
{
 do
 :: (turn == P) ->
 printf("Produce\n");
 turn = C
 od
}
active [2] proctype consumer() /* create 2 consumers */
{
 do
 :: (turn == C) ->
 printf("Consume\n");
 turn = P
 od
}

EnricoMagnago

Producer-Consumer: not so fast

• Each statement is atomic, but any process can be scheduled
for execution.

• Both producers can pass the guard turn == P and execute
the printf("Produce\n") statement before the turn is set
to C.

20 / 40

Producer-Consumer: let’s check

Add a monitor to check the number of items is always between 0
and 1.

1 active proctype monitor() {
2 assert(msgs >= 0 && msgs <= 1)
3 }

msgs is a global variable of type int, the producers increment this
variable by 1, and the consumers decrement it by 1. Use the
following commands to ask Spin to check if there exists an
execution that violates the assertion:

• spin -a prodcons2 flaw msgs.pml

• gcc -o prodcons monitor pan.c

• ./prodcons monitor

21 / 40

mtype = { P, C };

mtype turn = P;

int msgs;

active [2] proctype producer()
{
 do
 :: (turn == P) ->
 printf("Produce\n");
 msgs++;
 turn = C
 od
}

active [2] proctype consumer()
{
 do
 :: (turn == C) ->
 printf("Consume\n");
 msgs--;
 turn = P
 od
}

active proctype monitor() {
 assert(msgs >= 0 && msgs <= 1)
}

EnricoMagnago

Producer-Consumer: counter-example

Trail File

prodcons2 flaw msgs.pml.trail

contains Spin’s transition markers
corresponding to the contents of the stack
of transitions leading to error states

Meaning:

• Step number in execution trace

• Id of the process moved in the current
step

• Id of the transition taken in the
current step

1 -4:-4:-4
2 1:1:0
3 2:1:1
4 3:1:2
5 4:1:3
6 5:3:8
7 6:3:9
8 7:3:10
9 8:2:8

10 9:2:9
11 10:3:11
12 11:2:10
13 12:4:16

Re-execute trace using the command:
spin -t -p prodcons2 flaw msgs.pml

22 / 40

Producer-Consumer: fix-it, producer

1 pid who; /* global variable */
2 inline request(x, y, z) { /* perform statements atomically */
3 atomic { x == y -> x = z; who = _pid }
4 }
5 inline release(x, y) {
6 atomic { x = y; who = 0 }
7 }
8 active [2] proctype producer()
9 {

10 do
11 :: request(turn, P, N) -> /* atomic compare and set */
12 printf("Produce %d\n", _pid); /* built-in _pid */
13 assert(who == _pid); /* I am producing */
14 release(turn, C) /* turn = C */
15 od
16 }

The atomic statements are executable iff the first statement is
true.

23 / 40

Producer-Consumer: fix-it, consumer

1 active [2] proctype consumer()
2 {
3 do
4 :: request(turn, C, N) ->
5 printf("Consume %d\n", _pid);
6 assert(who == _pid);
7 release(turn, P)
8 od
9 }

Consumer symmetric to the producer.
Simulate using: spin prodcons2.pml

24 / 40

mtype = { P, C, N };

mtype turn = P;
pid who;
int msgs = 0;

inline request(x, y, z) {
 atomic { x == y -> x = z; who = _pid }
}

inline release(x, y) {
 atomic { x = y; who = 0 }
}

active [2] proctype producer()
{
 do
 :: request(turn, P, N) ->
 printf("Produce %d\n", _pid);
 assert(who == _pid);
 release(turn, C)
 od
}

active [2] proctype consumer()
{
 do
 :: request(turn, C, N) ->
 printf("Consume %d\n", _pid);
 assert(who == _pid);
 release(turn, P)
 od
}

active proctype monitor() {
 assert(msgs >= 0 && msgs <= 1)
}

EnricoMagnago

Producer-Consumer: verify

The following commands can be used to let Spin search for an
execution that violates the assertions.

• spin -a prodcons2.pml

• gcc -o prodcons2 pan.c

• ./prodcons2

Output:

1 ...
2 Full statespace search for:
3 never claim - (none specified)
4 assertion violations +
5 acceptance cycles - (not selected)
6 invalid end states +
7

8 State-vector 52 byte, depth reached 7, errors: 0
9 ...

25 / 40

Mutual exclusion

Problem
Multiple processes want to access a shared resource without race
conditions.

General solution structure
The access to the critical section (CS) is protected by the trying
section and followed by the exit section.

• The trying section must guarantee that only 1 process can
be in CS at a time.

• The exit section must release all resources acquired by the
trying section, and allow other processes to enter CS.

26 / 40

Mutual exclusion: naive

1 bit flag; /* signal entering/leaving the section */
2 byte cnt; /* # procs in the critical section */
3 active [2] proctype mutex() {
4 again:
5 flag != 1; /* equivalent to ’while(flag == 1) wait’ */
6 flag = 1;
7

8 cnt++;
9 printf("Process %d entered critical section.\n", _pid);

10 assert(cnt == 1);
11 cnt--;
12

13 printf("Process %d exited critical section.\n", _pid);
14 flag = 0;
15 goto again
16 }

BUG: both processes can pass line 5 before line 6 is ever executed.

27 / 40

bit flag; /* signal entering/leaving the section */
byte cnt; /* # procs in the critical section */
active [2] proctype mutex() {
again:
 flag != 1; /* equivalent to 'while(flag == 1) wait' */
 flag = 1;

 cnt++;
 printf("Process %d entered critical section.\n", _pid);
 assert(cnt == 1);
 cnt--;

 printf("Process %d exited critical section.\n", _pid);
 flag = 0;
 goto again
}

EnricoMagnago

Mutual exclusion: deadlock

1 bit x, y;
2 byte cnt;

1 active proctype A() {
2 again:
3 x = 1;
4 y == 0;
5

6 cnt++;
7 /* critical section */
8 printf("A in CS\n");
9 assert(cnt == 1);

10 cnt--;
11

12 printf("A not in CS\n");
13 x = 0;
14 goto again
15 }

1 active proctype B() {
2 again:
3 y = 1;
4 x == 0;
5

6 cnt++;
7 /* critical section */
8 printf("B in CS\n");
9 assert(cnt == 1);

10 cnt--;
11

12 printf("B not in CS\n");
13 y = 0;
14 goto again
15 }

28 / 40

Mutual exclusion: Dekker-Dijkstra algorithm

1 bool turn;
2 bool flag[2];
3 byte cnt;
4 active [2] proctype mutex()
5 {
6 pid i, j;
7 i = _pid;
8 j = 1 - _pid;
9 again:

10 flag[i] = true;
11 do
12 :: flag[j] -> if
13 :: turn == j ->
14 flag[i] = false;
15 !(turn == j);
16 flag[i] = true
17 :: else -> skip
18 fi
19 :: else -> break
20 od;

1 cnt++;
2 assert(cnt == 1); /* CS */
3 cnt--;
4

5 turn = j;
6 flag[i] = false;
7 goto again
8 }

29 / 40

/* Dekker's algorithm */

bool turn;
bool flag[2];
byte cnt;

active [2] proctype mutex()
{
 pid i, j;

 i = _pid;
 j = 1 - _pid;

again:
 flag[i] = true;
 do
 :: flag[j] ->
 if
 :: turn == j ->
 flag[i] = false;
 !(turn == j);
 flag[i] = true
 :: else -> skip
 fi
 :: else ->
 break
 od;

 cnt++;
 assert(cnt == 1); /* critical section */
 cnt--;

 turn = j;
 flag[i] = false;
 goto again
}

EnricoMagnago

Mutual exclusion: verification

Commands

• spin -a dekker2.pml

• gcc -o dekker pan.c

• ./dekker

Output

1 ...
2 Full statespace search for:
3 never claim - (none specified)
4 assertion violations +
5 acceptance cycles - (not selected)
6 invalid end states +
7

8 State-vector 28 byte, depth reached 51, errors: 0
9 ...

30 / 40

Mutual exclusion: Peterson algorithm

1 bool turn, flag[2];
2 byte cnt;
3 active [2] proctype mutex()
4 {
5 pid i, j;
6 i = _pid;
7 j = 1 - _pid;
8 again:
9 flag[i] = true;

10 turn = i;
11 !(flag[j] && turn == i) ->
12 cnt++; assert(cnt == 1);
13 cnt--;
14 flag[i] = false;
15 goto again
16 }

• spin -a peterson.pml

• gcc -o peterson pan.c

• ./peterson

31 / 40

bool turn, flag[2];
byte cnt;
active [2] proctype mutex()
{
 pid i, j;
 i = _pid;
 j = 1 - _pid;
again:
 flag[i] = true;
 turn = i;
 !(flag[j] && turn == i) ->
 cnt++; assert(cnt == 1);
 cnt--;
 flag[i] = false;
 goto again
}

EnricoMagnago

Spin’s output

C Pan’s Output Format

> ./pan
pan: assertion violated ((x!=0)) (at depth 11)
pan: wrote model.pml.trail

Assertion Violation

• Spin has found a execution trace that violates the assertion

• the generated trace is 11 steps long and it is contained in
model.pml.trail

33 / 40

C Pan’s Output Format

(Spin Version 6.0.1 -- 16 December 2010)
+ Partial Order Reduction

Meaning

1. Version of Spin that generated the verifier

2. Optimized search technique

34 / 40

C Pan’s Output Format

Full statespace search for:
never-claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid endstates +

Meaning

1. Type of search: exhaustive search (Bitstate search for approx.)

2. No never claim was used for this run

3. The search checked for violations of user specified assertions

4. The search did not check for the presence of acceptance or
non-progress cycles

5. The search checked for invalid endstates (i.e., for absence of
deadlocks)

35 / 40

C Pan’s Output Format

State-vector 32 byte, depth reached 13, errors: 0

Meaning

1. The complete description of a global system state required 32
bytes of memory (per state).

2. The longest depth-first search path contained 13 transitions
from the initial system state.

• ./pan -mN set max search depth to N steps

3. No errors were found in this search.

36 / 40

C Pan’s Output Format

74 states, stored
30 states, matched
104 transitions (= stored+matched)

1 atomic steps
1.533 memory usage (Mbyte)

Meaning

1. A total of 74 unique global system states were stored in the
statespace.

2. In 30 cases the search returned to a previously visited state in
the search tree.

3. A total of 104 transitions were explored in the search.

4. One of the transitions was part of an atomic sequence.

5. Total memory usage was 1.533 Megabytes,

37 / 40

C Pan’s Output Format

unreached in proctype ProcA
line 7, state 8, "Gaap = 4"
(1 of 13 states)

unreached in proctype :init:
line 21, state 14, "Gaap = 3"
(1 of 19 states)

Meaning
A listing of the state numbers and approximate line numbers for
the basic statements in the specification that were not reached ⇒
since this is a full statespace search, these transitions are
effectively unreachable (dead code).

38 / 40

C Pan’s Output Format

error: max search depth too small

Meaning
It indicates that search was truncated by depth-bound (i.e. the
depth bound prevented it from searching the complete statespace).

• ./pan -m50

sets a bound on the depth of the search

Nota Bene
When the search is bounded, Spin will not be exploring part of the
system statespace, and the omitted part may contain property
violations that you want to detect ⇒ one cannot assume that the
system has no violations!

39 / 40

Exercises

• simulate and , what are the
possible outcomes?

• verify

• verify

• what happens if we delete turn == i in the Peterson
algorithm?

40 / 40

proctype you_run(byte x)
{
	printf("x = %d, pid = %d\n", x, _pid)
}

init {
	run you_run(0);
	run you_run(1)
}

EnricoMagnago

proctype you_run(byte x)
{
	printf("x = %d, pid = %d\n", x, _pid)
}

init {
	run you_run(0);
	run you_run(1)
}

EnricoMagnago

mtype = { P, C, N };

mtype turn = P;
pid who;

int msgs;

inline request(x, y, z) {
 atomic { x == y -> x = z; who = _pid }
}

inline release(x, y) {
 atomic { x = y; who = 0 }
}

active [2] proctype producer()
{
 do
 :: request(turn, P, N) ->
 printf("Produce %d\n", _pid);
 assert(who == _pid);
 msgs++;
 release(turn, C)
 od
}

active [2] proctype consumer()
{
 do
 :: request(turn, C, N) ->
 printf("Consume %d\n", _pid);
 assert(who == _pid);
 msgs--;
 release(turn, P)
 od
}

active proctype monitor() {
 assert(msgs >= 0 && msgs <= 1)
}

EnricoMagnago

/* Dekker's algorithm */

bool turn;
bool flag[2];
byte cnt;

active [2] proctype mutex()
{
 pid i, j;

 i = _pid;
 j = 1 - _pid;

again:
 flag[i] = true;
 do
 :: flag[j] ->
 if
 :: turn == j ->
 flag[i] = false;
 !(turn == j);
 /* flag[i] = true bug! */
 :: else -> skip
 fi
 :: else ->
 break
 od;

 cnt++;
 assert(cnt == 1);	/* critical section */
 cnt--;

 turn = j;
 flag[i] = false;
 goto again
}

EnricoMagnago

	Theory recap
	Spin
	Exercises
	Spin's output

