
Proving the existence of fair paths in
infinite-state systems

Alessandro Cimatti, Alberto Griggio, Enrico Magnago

Fondazione Bruno Kessler

1 / 21

Context

Problem
Does a transition system admit at least one fair path?
(Counterexample to liveness property).

• Undecidable in infinite-state systems.

• Techniques to prove the language empty (property holds) and
techniques to prove the existence of a fair path (witness).

• Witnesses are often limited to lasso-shaped paths.

• Not sufficient in infinite-state, need to look for witnesses with
different shapes.

How can we represent them?

2 / 21

R-abstraction

Assume we want to prove the existence of a non-terminating run
for the code below.

0: while x ≥ 0 do
1: x = z2 − z ∗ y
2: z = z + 1
3: end while

TRANS
(pc = −1 −> next (pc) = −1) &
(pc = 0 & x < 0 −> next (pc) = −1) &
(pc = 0 & x >= 0 −>

next (pc) = 1 & next (x) = x &
next (y) = y & next (z) = z) &

(pc = 1 −> next (pc) = 2 &
next (x) = z∗z − y∗z &
next (y) = y & next (z) = z) &

(pc = 2 −> next (pc) = 0 & next (x) = x &
next (y) = y & next (z) = z + 1) ;

FAIRNESS pc != −1;

R-abstraction: reachable,
non-empty underapproximation
with only fair paths.

3 / 21

R-abstraction

Assume we want to prove the existence of a non-terminating run
for the code below.

0: while x ≥ 0 do
1: x = z2 − z ∗ y
2: z = z + 1
3: end while

TRANS
(pc = −1 −> next (pc) = −1) &
(pc = 0 & x < 0 −> next (pc) = −1) &
(pc = 0 & x >= 0 −>

next (pc) = 1 & next (x) = x &
next (y) = y & next (z) = z) &

(pc = 1 −> next (pc) = 2 &
next (x) = z∗z − y∗z &
next (y) = y & next (z) = z) &

(pc = 2 −> next (pc) = 0 & next (x) = x &
next (y) = y & next (z) = z + 1) ;

FAIRNESS pc != −1;

R-abstraction: reachable,
non-empty underapproximation
with only fair paths.

R-abstraction
has a sequence
of regions one of
which contains
only fair states.

4 / 21

R-abstraction

Assume we want to prove the existence of a non-terminating run
for the code below.

0: while x ≥ 0 do
1: x = z2 − z ∗ y
2: z = z + 1
3: end while

TRANS
(pc = −1 −> next (pc) = −1) &
(pc = 0 & x < 0 −> next (pc) = −1) &
(pc = 0 & x >= 0 −>

next (pc) = 1 & next (x) = x &
next (y) = y & next (z) = z) &

(pc = 1 −> next (pc) = 2 &
next (x) = z∗z − y∗z &
next (y) = y & next (z) = z) &

(pc = 2 −> next (pc) = 0 & next (x) = x &
next (y) = y & next (z) = z + 1) ;

FAIRNESS pc != −1;

R-abstraction: reachable,
non-empty underapproximation
with only fair paths.

Transition relation
can allow bounded
dwell on a region
and must even-
tually lead to the
fair one.

5 / 21

R-abstraction

Assume we want to prove the existence of a non-terminating run
for the code below.

0: while x ≥ 0 do
1: x = z2 − z ∗ y
2: z = z + 1
3: end while

TRANS
(pc = −1 −> next (pc) = −1) &
(pc = 0 & x < 0 −> next (pc) = −1) &
(pc = 0 & x >= 0 −>

next (pc) = 1 & next (x) = x &
next (y) = y & next (z) = z) &

(pc = 1 −> next (pc) = 2 &
next (x) = z∗z − y∗z &
next (y) = y & next (z) = z) &

(pc = 2 −> next (pc) = 0 & next (x) = x &
next (y) = y & next (z) = z + 1) ;

FAIRNESS pc != −1;

R-abstraction: reachable,
non-empty underapproximation
with only fair paths.

Can be seen as a
generalisation of
closed recurrence
sets to deals with
fairness.

6 / 21

Compositional approach

Identify R-abstraction compositionally

Look for R-abstraction that can be obtained as composition of
AG-skeletons, each AG-skeleton is responsible for a set of symbols.

We propose a procedure that given a set of AG-skeletons searches
for a composition of a subset of them that is an R-abstraction for
the system.

7 / 21

AG-skeletons

0: while x ≥ 0 do
1: x = z2 − z ∗ y
2: z = z + 1
3: end while

Each AG-skeleton has a set of regions.
Each region has an invariant and an assumption.
The transition relation must ensure the invariants
hold and provides the next assignment constraints
for a subset of the symbols.

8 / 21

AG-skeletons

0: while x ≥ 0 do
1: x = z2 − z ∗ y
2: z = z + 1
3: end while

Each AG-skeleton has a set of regions.
Each region has an invariant and an assumption.
The transition relation must ensure the invariants
hold and provides the next assignment constraints
for a subset of the symbols.

If the transition relation
maps a state in region i
into a state in region j,
then every state in region
i must have a successor in
region j.

9 / 21

AG-skeleton composition

Composition operator: synchronous product between AG-skeletons
such that the assumptions are met.
Composition of AG-skeletons is still a AG-skeleton.

10 / 21

Composition search

Objective
Find a reachable composition (AG-skeleton) with a loop over the
regions, one of which is fair, such that each transition
underapproximates the transition relation of the original system.
Such loop over the region is our R-abstraction.

11 / 21

R-abstraction search

Algorithm find-composition(M , H)

1: H ← filter-incorrect-hints(H)
2: constr ← >
3: bad← ⊥
4: while true do
5: constr ← constr ∧ ¬bad
6: prob← get-reachability-problem(H,M, constr)
7: trace← check-reachabilty(prob)
8: if trace = ∅ then
9: return ∅

10: end if
11: comp← composition-from-trace(trace,H)
12: bad← check-assumptions(comp)
13: if bad = ⊥ then
14: return comp
15: end if
16: end while

12 / 21

R-abstraction search

Algorithm find-composition(M , H)

1: H ← filter-incorrect-hints(H)
2: constr ← >
3: bad← ⊥
4: while true do
5: constr ← constr ∧ ¬bad
6: prob← get-reachability-problem(H,M, constr)
7: trace← check-reachabilty(prob)
8: if trace = ∅ then
9: return ∅

10: end if
11: comp← composition-from-trace(trace,H)
12: bad← check-assumptions(comp)
13: if bad = ⊥ then
14: return comp
15: end if
16: end while

User provides the set
of AG-skeletons H
and the fair transi-
tion system M

13 / 21

R-abstraction search

Algorithm find-composition(M , H)

1: H ← filter-incorrect-hints(H)
2: constr ← >
3: bad← ⊥
4: while true do
5: constr ← constr ∧ ¬bad
6: prob← get-reachability-problem(H,M, constr)
7: trace← check-reachabilty(prob)
8: if trace = ∅ then
9: return ∅

10: end if
11: comp← composition-from-trace(trace,H)
12: bad← check-assumptions(comp)
13: if bad = ⊥ then
14: return comp
15: end if
16: end while

Check correctness of
the input

14 / 21

R-abstraction search

Algorithm find-composition(M , H)

1: H ← filter-incorrect-hints(H)
2: constr ← >
3: bad← ⊥
4: while true do
5: constr ← constr ∧ ¬bad
6: prob← get-reachability-problem(H,M, constr)
7: trace← check-reachabilty(prob)
8: if trace = ∅ then
9: return ∅

10: end if
11: comp← composition-from-trace(trace,H)
12: bad← check-assumptions(comp)
13: if bad = ⊥ then
14: return comp
15: end if
16: end while

Encode search prob-
lem into reachability:
find candidate reachable
composition with a fair
region and that under-
approximates M .

15 / 21

R-abstraction search

Algorithm find-composition(M , H)

1: H ← filter-incorrect-hints(H)
2: constr ← >
3: bad← ⊥
4: while true do
5: constr ← constr ∧ ¬bad
6: prob← get-reachability-problem(H,M, constr)
7: trace← check-reachabilty(prob)
8: if trace = ∅ then
9: return ∅

10: end if
11: comp← composition-from-trace(trace,H)
12: bad← check-assumptions(comp)
13: if bad = ⊥ then
14: return comp
15: end if
16: end while

Find path using a model
checker (nuXmv)

16 / 21

R-abstraction search

Algorithm find-composition(M , H)

1: H ← filter-incorrect-hints(H)
2: constr ← >
3: bad← ⊥
4: while true do
5: constr ← constr ∧ ¬bad
6: prob← get-reachability-problem(H,M, constr)
7: trace← check-reachabilty(prob)
8: if trace = ∅ then
9: return ∅

10: end if
11: comp← composition-from-trace(trace,H)
12: bad← check-assumptions(comp)
13: if bad = ⊥ then
14: return comp
15: end if
16: end while

Check if all assumptions
are met. If not learn in-
compatible set of regions
and transitions.

17 / 21

Timed/Hybrid systems: diverging ‘time’

In timed and hybrid systems we want to consider only the infinite
paths in which ‘time’ diverges.

We show two ways to ensure that an R-abstractions has only
non-zeno paths:

1. if a symbol diverges in some AG-skeleton, then it diverges
also in all its compositions; proof local to the AG-skeleton;

2. provide a set of sufficient conditions under which it is possible
to shrink the language of an AG-skeleton or R-abstraction to
rule out all zeno paths without making its language empty.

18 / 21

Experimental evaluation

Comparison with automated tools.
Anant and AProVE on 31 non-linear software benchmarks1,
nuXmv on the software benchmarks, 3 infinite-state systems and
9 hybrid systems.

1non-linear software benchmarks taken from “Disproving termination with
overapproximation”, Byron Cook, Carsten Fuhs, Kaustubh Nimkar, Peter W.
O’Hearn, FMCAD 2014

19 / 21

Experimental evaluation: increasing number of AG-skeletons

How does the number of AG-skeletons affect the time required to
identify a R-abstraction?

where bench-19 is a non-linear software benchmark,
example2 is a non-linear infinite-state system and
bouncing-ball is an hybrid system.

20 / 21

Conclusions

Summary

• representation of fair paths via R-abstraction;

• automated search of R-abstraction as composition of
AG-skeletons via reduction to reachability;

• prove non-zenoness locally to the AG-skeleton when possible,
otherwise shrink language of resulting R-abstraction.

Future work

• automated synthesis of AG-skeletons;

• allow synthesis of R-abstractions without fixed bound on
dwell time;

• automated proof of non-zenoness.

21 / 21

The End

Thank you for your attention,
questions?

R-abstraction [1/3]

Let M=̇〈SM , IM (SM), TM (SM , SM
′), FM (SM)〉 be a fair

transition system. A transition system
A=̇〈SA, IA(SA), TA(SA, S

′
A)〉 is an R-abstraction of M with

respect to a list of formulae R(SA)=̇[R0(SA), . . . , Rm−1(SA)],
also called regions, iff the following hold:

0. SM ⊆ SA,

1. There exists some initial state in M from which it is possible
to reach an initial state of A, for some assignment to the
SA \ SM :

M 6|= AG¬IA(SA)

2. The set of initial states of A is a subset of the union of the
regions:

A |= R(SA)

R-abstraction [2/3]

2. The transition relation of A underapproximates the transition
relation of M :

R(SA) ∧ TA(SA, S
′
A) |= TM (SM , S′M)

3. Every state in R0, projected over the symbols in SM

corresponds to a fair state of M :

A |= AG(R0(SA)→ FM (SM))

4. Every reachable state in A has at least one successor via its
transition relation TA:

A |= AGEX>

R-abstraction [3/3]

5. For each region Ri ∈ R, with i > 0, every state in Ri can
remain in such region at most a finite number of steps and
must eventually reach a region with a lower index j < i:

A |=
m−1∧
i=1

AG(Ri → A[RiU

i−1∨
j=0

Rj])

6. All states reachable in one step from R0 are in R:

A |= AG(R0 → AX

m−1∨
i=0

Ri)

AG-skeleton

• Describe evolution of a subset of the symbols Sj over a
sequence of regions;

• each region Rj
i has some assumption Aj

i on the other symbols;

• there is a transition between two regions iff every state in the
first one has at least one successor in the second one.

∀i, i′ : 0 ≤ i < mj ∧ 0 ≤ i′ < mj →

∃S, S′ : (Rj
i (S) ∧Aj

i (S
6=j) ∧ T j(S, S′) ∧Rj

i′(S
′) ∧Aj

i′(S
6=j ′)) |=

∀S∃Sj ′∀S 6=j ′ : Rj
i (S) ∧Aj

i (S
6=j) ∧Aj

i′(S
6=j ′)→ Rj

i′(S
′) ∧ T j(S, S′)

where mj is the number of regions and S 6=j=̇S \ Sj .

SMV encoding

We define, for each regions Rj
i , R

j
i′ ∈ R

j ,

eval(isT(fH
k , i)) :=


> if Rj

i ∧Aj
i |= pFk

⊥ if Rj
i ∧Aj

i |= ¬pFk
? otherwise

eval(isT(tHk , i, i′)) :=



> if Rj
i ∧Aj

i ∧ T j∧
Rj

i′ ∧Aj
i′ |= pFk

⊥ if Rj
i ∧Aj

i ∧ T j∧
Rj

i′ ∧Aj
i′ |= ¬p

F
k

? otherwise

	Introduction

