Proving the existence of fair paths in
infinite-state systems

Alessandro Cimatti, Alberto Griggio, Enrico Magnago

Fondazione Bruno Kessler -
5¢

FONDAZIONE
BRUNO KESSLER

1/21

Problem
Does a transition system admit at least one fair path?

(Counterexample to liveness property).

e Undecidable in infinite-state systems.

Techniques to prove the language empty (property holds) and
techniques to prove the existence of a fair path (witness).

Witnesses are often limited to lasso-shaped paths.

Not sufficient in infinite-state, need to look for witnesses with
different shapes.

How can we represent them?

2/21

‘R-abstraction

Assume we want to prove the existence of a non-terminating run
for the code below.

0: while z > 0 do

1: r=22—2z% Y

2 z==z+1

3: end while

TRANS

(pc = —1 —> next(pc) = —1) &

(pc =0 & x < 0 —> next(pc) = —1) &

(pc =0 & x>=0—>
next(pc) = 1 & next(x) = x &
next(y) =y & next(z) =z) &

(pc =1 — next(pc) =2 &
next(x) = zxz — yxz &
next(y) =y & next(z) = z) &

(pc = 2 —> next(pc) = O & next(x) = x &
ncxt(y) =y & next(z) =z + 1);

FAIRNESS pc != —1;

‘R-abstraction: reachable,
non-empty underapproximation
with only fair paths.

pc'=2
x' =z2-yz
Z'=z

3/21

R-abstraction

Assume we want to prove the existence of a non-terminating run

for the code below.]
‘R-abstraction: reachable,

non-empty underapproximation

0: while x > 0 . .
g with only fair paths.
1 r=Zz"—
2 z=2z+1
3: end while
TRANS
(pc = —1 —> next(pc) = —1) &
(pc =0 & x < 0 —> next(pc) = —1) &
(pc =0 & x>=0—>
next(pc) = 1 & next(x) =
next(y) = y & next(z) = z
(pc =1 — next(pc) =2 &
next(x) = zxz — yxz &
next(y) =y & next(z) =
(pc = 2 —> next(pc) = 0 & next(x) =
next(y) =y & next(z)
FAIRNESS pc != —1;

4/21

‘R-abstraction

Assume we want to prove the existence of a non-terminating run
for the code below.]
‘R-abstraction: reachable,
- non-empty underapproximation
- while x > 0 do . py_ PP
with only fair paths.

— 2 " .
T =2z Transition relation

0

1

20 2= 2+ 1 can allow bounded
3: end while

. pc'=1
dwell on a region ..y

and must even-
tually lead to the

TRANS ; =1
(pc = —1 —> next(pc¢ ,falr O,ne' Xx'=x
(pc =0 & x < 0 —> next(pc) = —1) &
(pc = 0 & x >= 0 —> '=z+1
next(pc) = 1 & next(x) = x &
next(y) =y & next() =12z) &
(pc =1 — next(pc) =2 & V_ 2
next(x) = zxz — yxz &
next(y) =y & next(z) = z) & Z'=z
(pc =2 —> ncxt(pc)—O&ncxt() = x &
ncxt(y) =y & next(z) =z + 1);

FAIRNESS pc != —1;

5/21

‘R-abstraction

Assume we want to prove the existence of a non-terminating run
for the code below.]
‘R-abstraction: reachable,
- non-empty underapproximation
. while = > 0 do Py PP

=22 — »xu with only fair paths.

0

1

5. Z:Z+Can be seen as a

3- end while generalisation of
closed recurrence
sets to deals with

s fairness.
(pc = —1 —> next(pc) = —1) &
(pc =0 & x < 0 —> next(pc) = —1) &

0 & x>=0—>

next(pc) = 1 & next(x) = x &
next(y) =y & next() =12z) & pc'=2
(pc =1 —> next(pc) =2 & (N,
next(x) = zxz — yxz & X =zi-yz
next(y) =y & next(z) = z) & Z'=
(pc =2 —> ncxt(pc)—O&ncxt() = x &
ncxt(y) =y & next(z) =z + 1);

FAIRNESS pc != —1;

6/21

Compositional approach

Identify R-abstraction compositionally

Look for R-abstraction that can be obtained as composition of
AG-skeletons, each AG-skeleton is responsible for a set of symbols.

We propose a procedure that given a set of AG-skeletons searches
for a composition of a subset of them that is an R-abstraction for

the system.

7/21

AG-skeletons

0:
1:
2:
3:

while x > 0 do
r=22—zxy
z=z+1

end while

pc' = @

pc' =0

pc'=2

Each AG-skeleton has a set of regions.

Each region has an invariant and an assumption.
The transition relation must ensure the invariants
hold and provides the next assignment constraints
for a subset of the symbols.

Y =Y
n
K=
y<=z-1
X - yz Pegaq
N
x' =X =
>0 i
y>=12

AG-skeletons

Each AG-skeleton has a set of regions.
0. while z > 0 do Each region has an 'mvarlant and an assympt'lon.
L or—=2%— 2wy The transition relation must ensure the invariants
' hold and provides the next assignment constraints

2 z=z+1
3- end while for a subset of the symbols.

C' =
p ? o =0

AG-skeleton composition

Composition operator: synchronous product between AG-skeletons
such that the assumptions are met.
Composition of AG-skeletons is still a AG-skeleton.

l= X'=22-yz N
? pc' =0 z>5XI:X
X~ Rl e

'=z+1 Vliy \

f
pc' =

@4@

4
A\

10/21

Composition search

Objective

Find a reachable composition (LAG-skeleton) with a loop over the
regions, one of which is fair, such that each transition
underapproximates the transition relation of the original system.
Such loop over the region is our R-abstraction.

11/21

‘R-abstraction search

Algorithm FIND-COMPOSITION(M, H)

1: H < FILTER-INCORRECT-HINTS(H)
2: constr < T
3: bad <+ L
4: while true do
5. constr < constr A\ —bad
6: prob <+ GET-REACHABILITY-PROBLEM(H, M, constr)
7. trace < CHECK-REACHABILTY (prob)
8 if trace = () then
0: return ()
10: end if
11: comp <~ COMPOSITION-FROM-TRACE(trace, H)
12: bad < CHECK-ASSUMPTIONS(comp)
13: if bad = | then
14: return comp
15: end if
16: end while

12/21

‘R-abstraction search

Algorithm FIND-COMPOSITION(M, H)

S~
1. H ¢ FILTER-INCORRECT-HINTS(H) User provides the set
2: constr < T of AG-skeletons H
3: bad < L and the fair transi-
4: while true do tion system M
5. constr < constr N\ —bad
6: prob < GET-REACHABILITY-PROBLEM(H, M, constr)
7. trace < CHECK-REACHABILTY (prob)
8: if trace = () then
9: return ()
10: end if
11: comp < COMPOSITION-FROM-TRACE(trace, H)
12: bad < CHECK-ASSUMPTIONS(comp)
13: if bad = L then
14: return comp
15: end if
16: end while

13/21

‘R-abstraction search

Algorithm FIND-COMPOSITION(M, H)

1: H < FILTER-INCORRECT-HINTS(H) ¢—___
2: constr + T Check correctness of
3: bad <+ L the input
4: while true do
5. constr < constr N\ —bad
6: prob < GET-REACHABILITY-PROBLEM(H, M, constr)
7. trace < CHECK-REACHABILTY (prob)
8: if trace = () then
0: return ()

10: end if

11: comp < COMPOSITION-FROM-TRACE(trace, H)

12: bad < CHECK-ASSUMPTIONS(comp)

13: if bad = L then

14: return comp

15: end if

16: end while

14/21

‘R-abstraction search

Algorithm FIND-COMPOSITION(M, H)

1: H ¢ FILTER-INCORRECT-HINTS(H)

2: constr < T

3: bad + L

4: while true do

5. constr < constr A\ —bad

6: prob < GET-REACHABILITY-PROBLEM (H, M, constr)

7. hnceéfCHECKrREACHABHTYQva)K\\

8 if trace = () then Encode search prob-

0: return 0 lem into reachability:
10: end if . .

find candidate reachable

11: comp < COMPOSITION—FROM—TRACE(tTaC(L. X i
12: bad + CHECK-ASSUMPTIONS(comp) composition with a fair
13- if bad = | then region and that under-
14: return comp approximates M.
15: end if
16: end while

15/21

‘R-abstraction search

Algorithm FIND-COMPOSITION(M, H)

1: ‘H <+ FILTER-INCORRECT-HINTS(?H)

2: constr <— T

3: bad + L

4: while true do

5. constr < constr A\ —bad

6: prob < GET-REACHABILITY-PROBLEM(H, M, constr)

7. trace < CHECK-REACHABILTY (prob)

8: if trace = () then Find path using a model
9: return () checker (NUXMV)
10: end if

11: comp < COMPOSITION-FROM-TRACE(trace, H)

12: bad < CHECK-ASSUMPTIONS(comp)
13: if bad = L then
14: return comp
15: end if
16: end while

16/21

‘R-abstraction search

Algorithm FIND-COMPOSITION(M, H)

1: H ¢ FILTER-INCORRECT-HINTS(H)

2: constr <— T

3: bad + L

4: while true do

5. constr < constr N\ —bad

6: prob < GET-REACHABILITY-PROBLEM(H, M, constr)

7. trace < CHECK-REACHABILTY (prob)

8: if trace = () then

9: return ()
10: end if
11: comp < COMPOSITION-FROM-TRACE(trace, H)
12: ?ad(——CHECK—ASSUMPTTONSQDWUﬂ Check if all assumptions
13- if bad = 1 then are met. If not learn in-
14: return comp . =
15 end if compatible set of regions
16: end while and transitions.

17/21

Timed/Hybrid systems: diverging ‘time’

In timed and hybrid systems we want to consider only the infinite
paths in which ‘time’ diverges.

We show two ways to ensure that an R-abstractions has only
non-zeno paths:

1. if a symbol diverges in some AG-skeleton, then it diverges
also in all its compositions; proof local to the AG-skeleton;

2. provide a set of sufficient conditions under which it is possible
to shrink the language of an AG-skeleton or R-abstraction to
rule out all zeno paths without making its language empty.

18/21

Experimental evaluation

Anant (s)

Comparison with automated tools.

Anant and AProVE on 31 non-linear software benchmarks?,
NUXMV on the software benchmarks, 3 infinite-state systems and
9 hybrid systems.

10?2 o o - < ——ra

102) 102
10! G 0
] 1 > R > 1 .
10 o « 10
R . E o e o >E< .
100 bt T . o S .
. e < 100 £ 10°, .. o
o both answer e both answer ..' e both answer
1 < Anant undef 10-1 < AProVe undef 10-1 < nuXmv undef
107t 1Q° . 10t 102 1071 10° 10' 102 1071 10° 10' 102
FairFind (s) FairFind (s) FairFind (s)

'non-linear software benchmarks taken from “Disproving termination with
overapproximation”, Byron Cook, Carsten Fuhs, Kaustubh Nimkar, Peter W.

O’'Hearn, FMCAD 2014
19/21

Experimental evaluation: increasing number of AG-skeletons

How does the number of AG-skeletons affect the time required to
identify a R-abstraction?

300 s

250 © bouncing-ball . u Junn
—_ 4 bench-19
V200 = example2 . . --. . :

. L .

Elso LI g e et
= . »
5100 o, " e
- 50 ° '-'.-.

- AA, AA, A
O AAAAAAaAAAAAAAAAAALaALLTT aata

5 10 15 20 25 30 35
AG-skeletons

where bench-19 is a non-linear software benchmark,
example2 is a non-linear infinite-state system and

bouncing-ball is an hybrid system.

20/21

Conclusions

Summary

e representation of fair paths via R-abstraction;

e automated search of R-abstraction as composition of
AG-skeletons via reduction to reachability;

e prove non-zenoness locally to the AG-skeleton when possible,
otherwise shrink language of resulting R-abstraction.

Future work

e automated synthesis of AG-skeletons;

e allow synthesis of R-abstractions without fixed bound on
dwell time;

e automated proof of non-zenoness.

21/21

The End

Thank you for your attention,
questions?

‘R-abstraction [1/3]

Let Mi<SM, IA[(SN[), T]\{(S]w, S]w/), FM(SM)> be a fair
transition system. A transition system
A=(S4,14(S4),Ta(Sa,5")) is an R-abstraction of M with
respect to a list of formulae R(S4)=[Ro(S4), ..., Rm—-1(S4)],
also called regions, iff the following hold:

0. Sm C Sa,
1. There exists some initial state in M from which it is possible
to reach an initial state of A, for some assignment to the

SA \ SM:
M [AG—I4(Sy4)

2. The set of initial states of A is a subset of the union of the

regions:
A= R(Sa)

‘R-abstraction [2/3]

2. The transition relation of A underapproximates the transition
relation of M:

R(Sa) NTa(Sa,84) | Ta(Su, Sir)

3. Every state in Ry, projected over the symbols in Sy,
corresponds to a fair state of M:

A= AG(Ro(S4) — Frn(Sar))

4. Every reachable state in A has at least one successor via its
transition relation T'4:

A= AGEXT

‘R-abstraction [3/3]

5. For each region R; € R, with ¢ > 0, every state in R; can
remain in such region at most a finite number of steps and
must eventually reach a region with a lower index j < i:

m—1 i—1
AE \ AG(R; — A[RU\/ R)])
i=1 =0

6. All states reachable in one step from Ry are in R:

m—1
AE AG(R) — AX \/ R))
=0

AG-skeleton

e Describe evolution of a subset of the symbols S7 over a
sequence of regions;
e each region R’ has some assumption A’ on the other symbols;

e there is a transition between two regions iff every state in the
first one has at least one successor in the second one.

Vi,i :0<i<m!A0<i <m!—
35, 8" : (RI(S) A AJ(S7T) ATI(S,8") A RL(S") A AL (S7T)) =
V3577 RI(S) A AJ(SFT) A AL(S7T) = RI(S") ATY(S, S)

where m/ is the number of regions and S77/=S\ S7.

SMV encoding

We define, for each regions R{, Rg, € R,

Tif BRI AA = pf
eval IST(f,4)) :=={ L if RIN AL —pF
7 otherwise

Tif RIAAIATIA
eval(1ST(tH i,7)) :== ¢ L if RINATANTIN
, e
Ry N Ay b= -y,
7 otherwise

	Introduction

