Proving the existence of fair paths in infinite-state systems

Alessandro Cimatti, Alberto Griggio, Enrico Magnago
Fondazione Bruno Kessler

Context

Problem

Does a transition system admit at least one fair path?
(Counterexample to liveness property).

- Undecidable in infinite-state systems.
- Techniques to prove the language empty (property holds) and techniques to prove the existence of a fair path (witness).
- Witnesses are often limited to lasso-shaped paths.
- Not sufficient in infinite-state, need to look for witnesses with different shapes.

How can we represent them?

\mathcal{R}-abstraction

Assume we want to prove the existence of a non-terminating run for the code below.

$$
\begin{aligned}
& \text { 0: while } x \geq 0 \text { do } \\
& \text { 1: } \quad x=z^{2}-z * y \\
& \text { 2: } \quad z=z+1 \\
& \text { 3: end while } \\
& \hline
\end{aligned}
$$

[^0]\mathcal{R}-abstraction: reachable, non-empty underapproximation with only fair paths.

\mathcal{R}-abstraction

Assume we want to prove the existence of a non-terminating run for the code below.
\mathcal{R}-abstraction: reachable,

\mathcal{R}-abstraction

Assume we want to prove the existence of a non-terminating run for the code below.
\mathcal{R}-abstraction: reachable, non-empty underapproximation with only fair paths.

\mathcal{R}-abstraction

Assume we want to prove the existence of a non-terminating run for the code below.

while $x \geq 0$ do $x=z^{2}-z * u$ $z=z+$ Can be seen as a end while generalisation of closed recurrence sets to deals with TRANS fairness. $t(p c)=-1) \&$ $(\mathrm{pc}=-1 \rightarrow \operatorname{next}(\mathrm{pc})=-1) \&$ $(\mathrm{pc}=0 \& \times 0 \rightarrow \operatorname{next}(\mathrm{pc})=-1) \&$ $(\mathrm{pc}=0 \& \times>=0 \rightarrow$ $\operatorname{next}(y)=y \& n \operatorname{ext}(z)=z) \&$ $\left.\operatorname{next}(y)=y \& \operatorname{next}^{2}(z)=z\right) \&$ $n \operatorname{ext}(p c)=0 \& \operatorname{next}^{2}(x)=x \&$ FAIRNESS pc $!=-1$; $\operatorname{next}(y)=y \& n \operatorname{next}(z)=z+1)$;

\mathcal{R}-abstraction: reachable, non-empty underapproximation with only fair paths.

Compositional approach

Identify \mathcal{R}-abstraction compositionally

Look for \mathcal{R}-abstraction that can be obtained as composition of $\mathcal{A G}$-skeletons, each $\mathcal{A G}$-skeleton is responsible for a set of symbols.

We propose a procedure that given a set of $\mathcal{A \mathcal { G }}$-skeletons searches for a composition of a subset of them that is an \mathcal{R}-abstraction for the system.

$\mathcal{A G}$-skeletons

Each $\mathcal{A G}$-skeleton has a set of regions.
Each region has an invariant and an assumption. The transition relation must ensure the invariants hold and provides the next assignment constraints for a subset of the symbols.

$\mathcal{A G}$-skeletons

> 0 : while $x \geq 0$ do
> 1: $\quad x=z^{2}-z * y$
> 2: $\quad z=z+1$

3: end while

Each $\mathcal{A G}$-skeleton has a set of regions.
Each region has an invariant and an assumption. The transition relation must ensure the invariants hold and provides the next assignment constraints for a subset of the symbols.

If the transition relation maps a state in region i into a state in region j, then every state in region i must have a successor in region j.

$$
y>=z
$$

$\mathcal{A} \mathcal{G}$-skeleton composition

Composition operator: synchronous product between $\mathcal{A G}$-skeletons such that the assumptions are met.
Composition of $\mathcal{A G}$-skeletons is still a $\mathcal{A G}$-skeleton.

Composition search

Objective

Find a reachable composition ($\mathcal{A \mathcal { G }}$-skeleton) with a loop over the regions, one of which is fair, such that each transition underapproximates the transition relation of the original system. Such loop over the region is our \mathcal{R}-abstraction.

\mathcal{R}-abstraction search

```
Algorithm FInd-COMPOSItion \((M, \mathcal{H})\)
    1: \(\mathcal{H} \leftarrow\) FILTER-INCORRECT-HINTS \((\mathcal{H})\)
    2: constr \(\leftarrow \top\)
    3: \(\mathrm{bad} \leftarrow \perp\)
    4: while true do
    5: \(\quad\) constr \(\leftarrow\) constr \(\wedge \neg b a d\)
    6: \(\quad\) prob \(\leftarrow\) GET-REACHABILITY-PROBLEM \((\mathcal{H}, M\), constr \()\)
    7: \(\quad\) trace \(\leftarrow\) CHECK-REACHABILTY \((p r o b)\)
    8: \(\quad\) if trace \(=\emptyset\) then
    9: return \(\emptyset\)
10: end if
11: \(\quad\) comp \(\leftarrow\) COMPOSITION-FROM-TRACE \((\) trace, \(\mathcal{H})\)
12: \(\quad b a d \leftarrow\) CHECK-ASSUMPTIONS \((c o m p)\)
13: \(\quad\) if \(b a d=\perp\) then
14: return comp
15: end if
16: end while
```


\mathcal{R}-abstraction search

```
Algorithm FInd-COMPOSITION( \(M, \mathcal{H}\) )
    1: \(\mathcal{H} \leftarrow\) FILTER-INCORRECT-HINTS \((\mathcal{H})\)
    constr \(\leftarrow \top\)
    \(b a d \leftarrow \perp\)
    while true do
    constr \(\leftarrow\) constr \(\wedge \neg b a d\)
    prob \(\leftarrow\) GET-REACHABILITY-PROBLEM \((\mathcal{H}, M\), constr \()\)
        trace \(\leftarrow\) CHECK-REACHABILTY \((p r o b)\)
    if trace \(=\emptyset\) then
        return \(\emptyset\)
    end if
        comp \(\leftarrow\) COMPOSITION-FROM-TRACE \((\) trace, \(\mathcal{H})\)
        bad \(\leftarrow\) CHECK-ASSUMPTIONS \((c o m p)\)
        if \(\mathrm{bad}=\perp\) then
        return comp
        end if
        end while
```


\mathcal{R}-abstraction search

```
Algorithm FIND-COMPOSItion \((M, \mathcal{H})\)
    1: \(\mathcal{H} \leftarrow\) FILTER-INCORRECT-HinTs \((\mathcal{H})\)
    constr \(\leftarrow \top\)
    \(b a d \leftarrow \perp\)
```

Check correctness of the input

```
4: while true do
    5: \(\quad\) constr \(\leftarrow\) constr \(\wedge \neg b a d\)
    6: \(\quad \operatorname{prob} \leftarrow\) GET-REACHABILITY-PROBLEM \((\mathcal{H}, M\), constr \()\)
    7: \(\quad\) trace \(\leftarrow\) CHECK-REACHABILTY \((p r o b)\)
    8: \(\quad\) if trace \(=\emptyset\) then
    9: return \(\emptyset\)
10: end if
11: \(\quad\) comp \(\leftarrow\) COMPOSITION-FROM-TRACE \((\) trace, \(\mathcal{H})\)
12: \(\quad\) bad \(\leftarrow\) CHECK-ASSUMPTIONS \((c o m p)\)
13: \(\quad\) if \(b a d=\perp\) then
14: return comp
15: end if
16: end while
```


\mathcal{R}-abstraction search

```
Algorithm FIND-COMPOSItion \((M, \mathcal{H})\)
    1: \(\mathcal{H} \leftarrow\) FILTER-INCORRECT-HINTS \((\mathcal{H})\)
    constr \(\leftarrow \top\)
    bad \(\leftarrow \perp\)
    while true do
    constr \(\leftarrow\) constr \(\wedge \neg b a d\)
    prob \(\leftarrow\) GET-REACHABILITY-PROBLEM \((\mathcal{H}, M\), constr \()\)
    trace \(\leftarrow\) CHECK-REACHABILTY \((p r o b)\)
    if trace \(=\emptyset\) then
        return \(\emptyset\)
10: end if
11: \(\quad\) comp \(\leftarrow\) COMPOSITION-FROM-TRACE (trace
12: \(\quad b a d \leftarrow\) CHECK-ASSUMPTIONS \((c o m p)\)
13: \(\quad\) if \(\mathrm{bad}=\perp\) then
14: return comp
15: end if
16: end while
```


\mathcal{R}-abstraction search

```
Algorithm FInd-COMPOSItion \((M, \mathcal{H})\)
    1: \(\mathcal{H} \leftarrow\) FILTER-INCORRECT-HINTS \((\mathcal{H})\)
    constr \(\leftarrow \top\)
    \(b a d \leftarrow \perp\)
    while true do
    constr \(\leftarrow\) constr \(\wedge \neg b a d\)
    prob \(\leftarrow\) GET-REACHABILITY-PROBLEM \((\mathcal{H}, M\), constr \()\)
    trace \(\leftarrow\) CHECK-REACHABILTY \((p r o b)\)
    if trace \(=\emptyset\) then
        return \(\emptyset\)
    end if
    comp \(\leftarrow\) COMPOSITION-FROM-TRACE \((\) trace, \(\mathcal{H})\)
    bad \(\leftarrow\) CHECK-ASSUMPTIONS \((c o m p)\)
    if \(\mathrm{bad}=\perp\) then
        return comp
    end if
    end while
```


\mathcal{R}-abstraction search

```
Algorithm FIND-COMPOSITION \((M, \mathcal{H})\)
    1: \(\mathcal{H} \leftarrow\) FILTER-INCORRECT-HinTs \((\mathcal{H})\)
    constr \(\leftarrow \top\)
    \(b a d \leftarrow \perp\)
    while true do
    constr \(\leftarrow\) constr \(\wedge \neg b a d\)
    prob \(\leftarrow\) GET-REACHABILITY-PROBLEM \((\mathcal{H}, M\), constr \()\)
    trace \(\leftarrow\) CHECK-REACHABILTY \((p r o b)\)
    if trace \(=\emptyset\) then
        return \(\emptyset\)
    end if
        comp \(\leftarrow\) COMPOSITION-FROM-TRACE \((\) trace, \(\mathcal{H})\)
        bad \(\leftarrow\) CHECK-ASSUMPTIONS \((\) comp \()\)
        if \(\mathrm{bad}=\perp\) then
            return comp
        end if
        end while
```

Check if all assumptions are met. If not learn incompatible set of regions and transitions.

Timed/Hybrid systems: diverging 'time'

In timed and hybrid systems we want to consider only the infinite paths in which 'time' diverges.

We show two ways to ensure that an \mathcal{R}-abstractions has only non-zeno paths:

1. if a symbol diverges in some $\mathcal{A G}$-skeleton, then it diverges also in all its compositions; proof local to the $\mathcal{A G}$-skeleton;
2. provide a set of sufficient conditions under which it is possible to shrink the language of an $\mathcal{A \mathcal { G }}$-skeleton or \mathcal{R}-abstraction to rule out all zeno paths without making its language empty.

Experimental evaluation

Comparison with automated tools.
Anant and AProVE on 31 non-linear software benchmarks ${ }^{1}$, nuXmV on the software benchmarks, 3 infinite-state systems and
9 hybrid systems.

[^1]
Experimental evaluation: increasing number of $\mathcal{A} \mathcal{G}$-skeletons

How does the number of $\mathcal{A G}$-skeletons affect the time required to identify a \mathcal{R}-abstraction?

where bench-19 is a non-linear software benchmark, example2 is a non-linear infinite-state system and bouncing-ball is an hybrid system.

Conclusions

Summary

- representation of fair paths via \mathcal{R}-abstraction;
- automated search of \mathcal{R}-abstraction as composition of $\mathcal{A G}$-skeletons via reduction to reachability;
- prove non-zenoness locally to the $\mathcal{A} \mathcal{G}$-skeleton when possible, otherwise shrink language of resulting \mathcal{R}-abstraction.

Future work

- automated synthesis of $\mathcal{A G}$-skeletons;
- allow synthesis of \mathcal{R}-abstractions without fixed bound on dwell time;
- automated proof of non-zenoness.

The End

Thank you for your attention, questions?

\mathcal{R}-abstraction [1/3]

Let $M \doteq\left\langle S_{M}, I_{M}\left(S_{M}\right), T_{M}\left(S_{M}, S_{M}{ }^{\prime}\right), F_{M}\left(S_{M}\right)\right\rangle$ be a fair transition system. A transition system $A \doteq\left\langle S_{A}, I_{A}\left(S_{A}\right), T_{A}\left(S_{A}, S_{A}^{\prime}\right)\right\rangle$ is an \mathcal{R}-abstraction of M with respect to a list of formulae $\mathcal{R}\left(S_{A}\right) \doteq\left[R_{0}\left(S_{A}\right), \ldots, R_{m-1}\left(S_{A}\right)\right]$, also called regions, iff the following hold:
0. $S_{M} \subseteq S_{A}$,

1. There exists some initial state in M from which it is possible to reach an initial state of A, for some assignment to the $S_{A} \backslash S_{M}$:

$$
M \not \vDash \mathbf{A G} \neg I_{A}\left(S_{A}\right)
$$

2. The set of initial states of A is a subset of the union of the regions:

$$
A \models \mathcal{R}\left(S_{A}\right)
$$

\mathcal{R}-abstraction [2/3]

2. The transition relation of A underapproximates the transition relation of M :

$$
\mathcal{R}\left(S_{A}\right) \wedge T_{A}\left(S_{A}, S_{A}^{\prime}\right) \models T_{M}\left(S_{M}, S_{M}^{\prime}\right)
$$

3. Every state in R_{0}, projected over the symbols in S_{M} corresponds to a fair state of M :

$$
A \models \mathbf{A G}\left(R_{0}\left(S_{A}\right) \rightarrow F_{M}\left(S_{M}\right)\right)
$$

4. Every reachable state in A has at least one successor via its transition relation T_{A} :

$$
A \models \mathbf{A G E X} \top
$$

\mathcal{R}-abstraction [3/3]

5. For each region $R_{i} \in \mathcal{R}$, with $i>0$, every state in R_{i} can remain in such region at most a finite number of steps and must eventually reach a region with a lower index $j<i$:

$$
A \models \bigwedge_{i=1}^{m-1} \mathbf{A G}\left(R_{i} \rightarrow \mathbf{A}\left[R_{i} \mathbf{U} \bigvee_{j=0}^{i-1} R_{j}\right]\right)
$$

6. All states reachable in one step from R_{0} are in \mathcal{R} :

$$
A \models \mathbf{A G}\left(R_{0} \rightarrow \mathbf{A X} \bigvee_{i=0}^{m-1} R_{i}\right)
$$

$\mathcal{A G}$-skeleton

- Describe evolution of a subset of the symbols S^{j} over a sequence of regions;
- each region R_{i}^{j} has some assumption A_{i}^{j} on the other symbols;
- there is a transition between two regions iff every state in the first one has at least one successor in the second one.

$$
\begin{aligned}
& \forall i, i^{\prime}: 0 \leq i<m^{j} \wedge 0 \leq i^{\prime}<m^{j} \rightarrow \\
& \quad \exists S, S^{\prime}:\left(R_{i}^{j}(S) \wedge A_{i}^{j}\left(S^{\neq j}\right) \wedge T^{j}\left(S, S^{\prime}\right) \wedge R_{i^{\prime}}^{j}\left(S^{\prime}\right) \wedge A_{i^{\prime}}^{j}\left(S^{\neq j^{\prime}}\right)\right) \quad \models \\
& \quad \forall S \exists S^{j^{\prime}} \forall S^{\neq j^{\prime}}: R_{i}^{j}(S) \wedge A_{i}^{j}\left(S^{\neq j}\right) \wedge A_{i^{\prime}}^{j}\left(S^{\neq j^{\prime}}\right) \rightarrow R_{i^{\prime}}^{j}\left(S^{\prime}\right) \wedge T^{j}\left(S, S^{\prime}\right)
\end{aligned}
$$

where m^{j} is the number of regions and $S^{\neq j} \doteq S \backslash S^{j}$.

SMV encoding

We define, for each regions $R_{i}^{j}, R_{i^{\prime}}^{j} \in \mathcal{R}^{j}$,

$$
\begin{gathered}
\operatorname{eval}\left(\operatorname{IsT}\left(f_{k}^{H}, i\right)\right):=\left\{\begin{array}{l}
\top \text { if } R_{i}^{j} \wedge A_{i}^{j} \models p_{k}^{F} \\
\perp \text { if } R_{i}^{j} \wedge A_{i}^{j} \models \neg p_{k}^{F} \\
\text { ? otherwise }
\end{array}\right. \\
\operatorname{eval}\left(\operatorname{IsT}\left(t_{k}^{H}, i, i^{\prime}\right)\right):=\left\{\begin{array}{c}
\top \text { if } R_{i}^{j} \wedge A_{i}^{j} \wedge T^{j} \wedge \\
R_{i^{\prime}}^{j} \wedge A_{i^{\prime}}^{j} \models p_{k}^{F} \\
\perp \text { if } R_{i}^{j} \wedge A_{i}^{j} \wedge T^{j} \wedge \\
R_{i^{\prime}}^{j} \wedge A_{i^{\prime}}^{j} \models \neg p_{k}^{F} \\
\text { ? otherwise }
\end{array}\right.
\end{gathered}
$$

[^0]: TRANS
 $(\mathrm{pc}=-1 \rightarrow \operatorname{next}(\mathrm{pc})=-1) \&$
 $(\mathrm{pc}=-1-\mathrm{next}(\mathrm{pc})=-1) \&$
 $(\mathrm{pc}=0 \&<0 \rightarrow$ next $(\mathrm{pc})=-1) \&$
 $\mathrm{pc}=0 \& x>=0 \rightarrow$
 $\operatorname{next}(\mathrm{pc})=1 \& \operatorname{next}(\mathrm{x})=\mathrm{x}$ \&
 $(p c=1 \rightarrow n \operatorname{ext}(p c)=2 \&$
 $n \operatorname{ext}(x)=z * z-y * z$ \&
 $\operatorname{next}(y)=y \& \operatorname{next}(z)=z)$ \&
 $(\mathrm{pc}=2 \rightarrow \operatorname{next}(\mathrm{pc})=0$ \& next $(\mathrm{x})=\mathrm{x}$ \&
 $\operatorname{next}(y)=y \& n \operatorname{ext}(z)=z+1)$;
 FAIRNESS pc $!=-1$;

[^1]: ${ }^{1}$ non-linear software benchmarks taken from "Disproving termination with overapproximation", Byron Cook, Carsten Fuhs, Kaustubh Nimkar, Peter W. O'Hearn, FMCAD 2014

