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Abstract

Society relies on increasingly complex software and hardware systems,

hence techniques capable of proving that they behave as expected are of

great and growing interest. Formal verification procedures employ mathe-

matically sound reasoning to address this need.

This thesis proposes novel techniques for the verification and falsification

of expressive specifications on timed and infinite-state systems. An expres-

sive specification language allows the description of the intended behaviour

of a system via compact formal statements written at an abstraction level

that eases the review process. Falsifying a specification corresponds to iden-

tifying an execution of the system that violates the property (i.e. a witness).

The capability of identifying witnesses is a key feature in the iterative re-

finement of the design of a system, since it provides a description of how

a certain error can occur. The designer can analyse the witness and take

correcting actions by refining either the description of the system or its

specification.

The contribution of this thesis is twofold. First, we propose a seman-

tics for Metric Temporal Logic that considers four different models of time

( discrete, dense, super-discrete and super-dense). We reduce its verifica-

tion problem to finding an infinite fair execution (witness) for an infinite-

state system with discrete time. Second, we define a novel SMT-based

algorithm to identify such witnesses. The algorithm employs a general rep-

resentation of such executions that is both informative to the designer and

provides sufficient structure to automate the search of a witness.

We apply the proposed techniques to benchmarks taken from software,

infinite-state, timed and hybrid systems. The experimental results high-

light that the proposed approaches compete and often outperform specific

(application tailored) techniques currently used in the state of the art.
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Chapter 1

Introduction

1.1 Context and Motivation

Society relies on computer and software systems to perform safety-critical

tasks with absolute reliability. Some examples of domains where safety is

paramount are transportation, health care and avionics. An error in such

systems can lead to severe undesirable effects such as injuries and economic

losses. In general, due to the global spread of technological devices, an issue

in one of them can easily affect millions of people and cause severe global

consequences even in contexts that are usually not considered as safety-

critical. For these reasons, it is very important to define a development

process that minimises the probability of such events. Verification and

Validation (V&V) tasks aim at increasing the confidence that the system

under development meets its requirements. The IEEE standard 1012 [1]

defines a common framework for the inclusion of V&V activities in all

system, software and hardware life-cycle processes.

A common approach to implement V&V tasks is by performing exten-

sive tests on the product. This technique has two major disadvantages: it

requires a fully developed system and it guarantees that the system be-

haves correctly only in the particular cases that were tested. In addition,

mistakes made in the early stages of the development process will be de-

1



1.1. CONTEXT AND MOTIVATION

tected only at its end, when most of the cost has already been sustained.

These observations highlight the need for tools that support V&V in the

early phases of the development process.

Formal verification is a broad field encompassing techniques that aim

at mathematically proving the correctness of a system with respect to its

formal specification. It provides strategies and procedures to systemat-

ically analyse the system and either conclude its correctness or identify

some issue. These techniques reason on a system described by means of

some formal language, usually mathematical logic, and employ rigorous

procedures to infer statements about it. Approaches in this context can be

broadly characterised by the expressiveness of the mathematical formalism

they employ, their level of automation and the artefacts they generate,

such as proofs and counterexamples.

This thesis is placed in the context of model checking. Model checkers

exhaustively explore the mathematical model of the system in order to

conclude whether or not a given specification is satisfied. Model checking

techniques automatically verify whether the formal model satisfies a set

of specifications, also called properties, expressed in some logic. They

offer a high degree of automation, usually support first-order and temporal

logic, and are capable of generating counterexamples that show a given

property to be false. Fig. 1.1 reports the abstract input-output schema of

a model checker. A model checker, given the description of the system and

a specification, explores the model until it either identifies a violation of the

specification, called counterexample, or concludes that the specification is

valid in the model. The analysis of the counterexample allows the user to

identify errors in the model or in the specification itself, hence allowing

their correction before proceeding to the next phases of the development.

Model checkers are usually characterised by the modelling and specifi-

cation languages they support. These two elements represent the interface

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Schema of input-output of a model checker.

with the user and different languages are better suited for different con-

texts. Over the years many modelling formalisms have been proposed.

They represent a system from different points of view and at different lev-

els of detail. System designers use these formal representations to express

a model that is precise enough to highlight possible inconsistencies and

ease the review process. The modelling and specification languages should

provide an abstraction that is as close as possible to the application sce-

nario, in order to reduce the cost of creating such models and decrease the

likelihood of modelling errors.

Timed, hybrid and infinite automata are some examples of formal mod-

els used to represent infinite-state systems. Infinite automata evolve through

discrete steps and have been used to model software programs. Timed and

hybrid automata, instead, describe systems composed of both discrete and

continuous components. Some examples of systems that can be modelled

using these formalisms are embedded systems that deal with physical phe-

nomena or have real-time constraints. These kind of devices and software

are ubiquitous in modern technology and we need to develop ways to prove

their correctness, especially when they perform safety-critical tasks.

3



1.2. CONTRIBUTIONS

1.2 Contributions

This thesis is concerned with model checking expressive specification lan-

guages on timed and infinite-state systems. The contributions are organ-

ised along two directions. First, we define expressive temporal logics suit-

able to write specifications for timed systems and provide a novel reduction-

based technique for their verification. Then, we enhance the capability of

model checkers to identify and represent counterexamples.

1. We extend First-Order Linear-time Temporal Logic with Past (LTL)

adding two operators “at next” and “at last”; we call this new logic

LTL-EF. LTL-EF can be interpreted with four different models

of time: discrete, dense, super-discrete and super-dense. We show

that LTL-EF is expressive enough to encode MTL0,∞ with count-

ing. Therefore, we provide a unifying semantics for both LTL-EF

and MTL0,∞ specifications to be used for the verification of systems

that rely on different models of time. We provide rewriting procedures

to reduce the model checking problem to the discrete-time case and

to remove the extra functional symbols. Therefore, we reduce model

checking of LTL, LTL-EF and MTL0,∞ specifications on timed sys-

tems to the model checking problem of LTL specifications on infinite-

state transition systems with discrete time model. The verification of

LTL specifications on infinite-state transition systems with discrete

time is a widely studied model checking problem and well-known pro-

cedures allow its reduction to the problem of identifying fair (infinite)

executions of a corresponding infinite-state system.

The results obtained in this direction have been published in [55]

and [54]. These works have been performed in collaboration with

Stefano Tonetta and Marco Roveri. In this thesis, we further extend

them by considering an additional model of time called super-discrete.

4
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2. In the second part of this thesis, we focus on the problem of iden-

tifying fair (infinite) executions of systems with a possibly infinite

state-space. We first define a novel structure, called funnel-loop, for

the representation of fair executions and show it to be relatively com-

plete. Then, we partition the search space of funnel-loops along two

orthogonal directions: segmentation and decomposition. We define

two search procedures: one is a reduction to an established frame-

work, the other is a direct procedure that exploits the partitioning of

the search space. Finally, we show how decomposition allows for the

use of specialised techniques to analyse portions of the system that

meet some additional requirements.

This thesis extends the decomposition approach we presented in [52]

to support ranking functions and integrates it with the segmentation

technique we developed in [51]. This integration has been published in

the form of a Journal paper in [53]. Finally, this work generalises the

approach we employed in [54] to identify infinite traces and presents

it as a specialised technique for the compositional framework.

We implemented the reduction approach and the specialised technique

to identify counterexamples with diverging symbols in the nuXmv model

checker enabling the verification of LTL-EF and MTL0,∞ specifications

and significantly enhancing its capability of identifying counterexamples

for timed systems. The direct procedure for the search of funnel-loops has

been implemented in a tool called F3. We show the feasibility of the ap-

proach experimenting with several non-trivial valid and satisfiable MTL0,∞

and LTL-EF formulae. In addition, we evaluated the effectiveness of our

falsification procedures by considering verification problems taken from a

broad range of contexts: software nontermination, infinite-state transition

systems, timed automata, timed transition systems and hybrid systems.

5
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1.3 Structure of the Thesis

This thesis is divided into four parts.

Part I introduces the background notions used throughout the thesis in

Chapter 2 and describes the main problems it addresses in Chapter 3.

Part II is composed of a single chapter: Chapter 4. The chapter begins in

Sections 4.1 and 4.2 that describe the contributions related to the definition

of extended temporal logics over different time models. Then, Section 4.3

reports the reduction of their model checking problem to the discrete-time

case. Finally, Chapter 4 concludes in Section 4.4 by discussing the related

works on model checking metric temporal logics.

The novel representation and search procedures for infinite fair paths

are described in Part III. Chapter 5 presents the structure used to represent

such paths and Chapter 6 discusses the partitioning of the associated search

space. The search procedures are detailed in Chapter 7, while Chapter 8

describes how the decomposition allows for the use of specialised techniques

and also defines a novel one. Finally, Chapter 9 discusses the related works

in different contexts. Section 9.1 considers term rewriting systems, while

Section 9.2 discusses techniques for identifying nonterminating executions

of software programs. The model checking problem of linear-time temporal

logic on infinite-state systems, timed automata and hybrid systems are

considered in Sections 9.3, 9.4 and 9.5 respectively.

Part IV introduces, in Chapter 10, the tools nuXmv and F3 that im-

plement the techniques described in this thesis and provides some addi-

tional implementation details. Chapter 11 describes the experiments we

performed using these techniques and discusses the results we obtained.

Chapter 12 concludes the thesis and outlines some possible future works.

6
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Chapter 2

Background

This chapter introduces the background concepts used throughout this

thesis. Most of the notions it presents are well established in the literature

and we limit our discussion to the main concepts relevant for this thesis.

An extensive and broader description of the subjects introduced in this

chapter can be found in [15, 93].

We assume the reader is familiar with propositional logic, its satisfia-

bility problem and SAT solvers. We use N, Z, Q and R for the sets of

natural, integer, rational and real numbers respectively and write R+
0 for

the set of non-negative reals. In addition, for n ∈ N we write +n for the

sum modulo n.

The chapter is organised as follows. Sec. 2.1 introduces First-Order

Logic and its satifiability problem. Then, we describe two structures that

can be used to prove whether a first-order relation admits some infinite

chain of elements: well-founded relations, in Sec. 2.2, and recurrent sets,

in Sec. 2.3. Sec. 2.4 defines two formalisms based on First-Order Logic and

well-founded relations that can be used to represent verification problems:

CHC and E-CHC. The formalisms used in this thesis to represent discrete

systems are presented in Sec. 2.5, while the ones used for timed system

and the different models of time are discussed in Sec. 2.6. Both syntax and

9
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semantics of the specification language LTL are reported in Sec. 2.7; its

semantics is defined for each of the time models considered in this thesis.

Finally, in Sec. 2.8 we briefly describe the model checking problem and

discuss some techniques that have been proposed in the literature in the

context of symbolic model checking.

2.1 First-Order Logic and SMT

Logical languages express mathematically precise statements about a set

of objects. Propositional logic is one such language; it predicates about

objects that can be interpreted as either true or false and statements are

built using the propositional operators: conjunction, negation, disjunction,

implication and iff. First-Order Logic (FOL) extends propositional logic

with universal and existential quantifiers. In addition, in first-order logic

an object can be not only a fact (true or false) but also a constant, a pred-

icate or a function. An interpretation in first-order logic is not simply an

assignment to the variables but maps every function and predicate sym-

bol to a corresponding mathematical function and relation, i.e. a specific

element in the set of functions and predicates with the same arity. First-

order logic is expressive enough to formalise arithmetical operations over

naturals, rationals and real numbers; for example, Peano arithmetic is a

first-order theory (set for first-order formulae) that characterises arithmetic

over the natural numbers.

We call first-order signature and write Σ for the set of predicate and

function symbols, with their arity, that can appear in the FOL formulae.

We assume the symbols >,⊥,= to be in Σ and interpreted as true, false

and the identity function respectively. In addition, we write V for the set

of variables.

10
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FOL formulae and sentences. A 0-ary predicate symbol is called Boolean

atom, while a 0-ary function symbol is a constant. A Σ-term is either a

variable or an n-ary function symbol in Σ applied to n Σ-terms. Given a

n-ary predicate p ∈ Σ and a set {ti}ni=1 of Σ-terms, p(t1, . . . , tn) is a Σ-

atom. A literal is either a Σ-atom or its negation. We define Σ-formulae

using Σ-atoms, the existential (∃) quantifier, and the Boolean connectives

conjunction (∧) and negation (¬). Therefore, a FOL Σ-formula φ can

be one of the following: a Σ-atom a, the negation of a FOL Σ-formula

φ0, the conjunction of two FOL Σ-formulae φ0 and φ1, or the exitential

quantification of a set of symbols X ⊆ V for a FOL Σ-formula φ0.

φ :: a | ¬φ | φ ∧ φ | ∃X : φ

By combining the operators above it is possible to obtain the operators

representing disjunction, implication, iff and universal quantification as

follows:

• universal quantification, ∀X : φ can be written as ¬∃X : ¬φ;

• disjunction, φ ∨ ψ can be written as ¬(¬φ ∧ ¬ψ);

• implication, φ→ ψ can be written as ¬(φ ∧ ¬ψ);

• iff, φ↔ ψ can be written as (φ ∧ ψ) ∨ (¬φ ∧ ¬ψ).

We call clause [resp. cube] a formula written as a disjunction [resp. con-

junction] of literals.

A variable is free in a Σ-formula φ iff it is not quantified in φ. We call

sentence a formula with no free variables.

Furthermore, we write φ[ψ0/ψ1] for the formula obtained by substituting

every occurrence of ψ0 with ψ1 in φ.

FOL theories and models. A first-order Σ-theory T is a set of first-order

sentences with signature Σ. A Σ-structure M is a model of a Σ-theory T

11
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iff M satisfies every sentence in T . A Σ-formula φ is T -satisfiable iff it is

satisfiable in a modelM of T , writtenM |=T φ. A Σ-formula is T -valid iff

it is satisfiable in every model of T and the negation of a T -valid formula is

T -unsatisfiable. Two Σ-formulae φ and ψ are T -equivalent iff every model

of φ is also a model of ψ and equisatisfiable if φ is T -satisfiable iff ψ is also

T -satisfiable.

When the theory and signature are clear from the context we overload

the |= symbol. If φ and ψ are formulae, then φ |= ψ stands for entailment

restricted to the models of the background theory. Simlarly, for a model

M and formula φ we write M |= φ omitting the backgound theory T .

In contrast, if M is a fair transition system and ψ is a linear temporal

property, then M |= ψ means that ψ holds in every infinite path of M ; it

is interpreted with the LTL semantics described in Sec. 2.7.

2.1.1 Normal Forms

FOL formulae can have a complex structure and their syntactical represen-

tation is not unique. In fact, equivalent formulae can have very different

syntactical representation. As we have already seen above, a relatively

small number of operators is sufficient to express all the others. Normal

forms exploit such rewritings to simplify the syntactical structure of the

formula and obtain an equivalent or equisatisfiable one with a fixed syn-

tactical structure. This enables us to define procedures that rely on a

fixed syntactical structure and prove their correctness by considering only

a subset of the operators, without loss of generality. In the following, we

describe three normal forms: prenex, conjunctive and disjunctive normal

forms. In addition, we describe Horn-clauses as a special case of conjunc-

tive normal form. Horn-clauses admit a polynomial-time solution for the

satisfiability problem in the propositional case.

12
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Prenex Normal Form

A FOL formula is in prenex normal form (PNF) if it is written as a se-

quence of quantifiers and bound variables followed by a quantifier-free for-

mula. Every formula can be rewritten in PNF by recursively applying the

following rules:

• (∀X : φ) ∧ ψ is equivalent to ∀Xφ ∧ ψ;

• (∃X : φ) ∧ ψ is equivalent to ∃Xφ ∧ ψ;

• ¬∀X : φ is equivalent to ∃X : ¬φ;

• ¬∃X : φ is equivalent to ∀X : ¬φ.

The rules above assume that ψ does not contain any variable in X. If

this is not the case, then we first need to rewrite ψ by renaming all such

variables.

Example 1 - PNF

Consider the formula ∀x : x 6= 0 → ∃y : x · y = 1, for real variables x

and y. The formula states that all real values different from 0 admit a

corresponding reciprocal real number ( 1
x). The equivalent PNF formula is

∀x∃y : x 6= 0→ x · y = 1.

Conjunctive Normal Form

A FOL formula is in conjunctive normal form (CNF) if it is in PNF and the

quantifier-free formula is a conjunction of clauses. Every formula can be

rewritten in CNF, by first writing it in PNF and then recursively applying

the following rules:

• (φ0 ∧φ1)∨ (ψ0 ∧ψ1) is equivalent to (φ0 ∨ψ0)∧ (φ0 ∨ψ1)∧ (φ1 ∨ψ0)∧
(φ1 ∨ ψ1);

• ¬(φ ∧ ψ) is equivalent to ¬φ ∨ ¬ψ;

• ¬¬φ is equivalent to φ.

13
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This rewriting produces equivalent CNF formulae that can be exponentially

larger than the original one. Other rewriting approaches (e.g. Tseitin

transformation [158]) avoid this problem by introducing additional Boolean

variables to obtain an equisatisfiable formula in polynomial time.

Horn clauses. A relevant subcase of CNF formulae are Horn formulae. A

Horn formula is a CNF formula such that each clause contains at most one

non-negated literal, called Horn clause. Each Horn clause can be written

equivalently as an implication such that the implicant (left-hand-side of

the implication) is a conjunction of atoms and the implicate (right-hand-

side of the implication) is either > or a single atom. The SAT problem

in the case of Horn formulae has a polynomial time solution. In fact, it is

sufficient to build a model by first propagating the truth value of every unit

clause (clause containing a single literal) and then assigning all remaining

Boolean variables to ⊥. The Horn propositional formula is satisfiable iff it

is satisfied by such model.

Example 2 - Horn Clauses

Given four Boolean atoms a, b, c and d, the formula a∧(¬a∨b)∧(¬b∨¬c∨d)

is in CNF and also composed of Horn clauses. It can be equivalently

rewritten using implications as follows: (> → a) ∧ (a → b) ∧ (b ∧ c → d).

It is easy to see that the formula is satisfiable. a must hold, hence we

must assign a to >. a → b must also hold and, since we already assigned

a to >, then also b must be true. In these two steps we performed unit

propagations: we selected the only possible truth assignment for the clauses

composed of a single literal and propagated them to the other clauses. After

the propagation of these two assignments, the only remaining subformula

is c → d. In order for c → d to hold it is sufficient to assign c to false.

Therefore, a model for the initial formula is a : >, b : >, c : ⊥ and d : ⊥.
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Disjunctive Normal Form

A FOL formula is in disjunctive normal form (DNF) if it is in PNF and

the quantifier-free formula is a disjunction of cubes. Every formula can be

rewritten in CNF, by first writing it in PNF and then applying recursively

the following rules:

• (φ0 ∨φ1)∧ (ψ0 ∨ψ1) is equivalent to (φ0 ∧ψ0)∨ (φ0 ∧ψ1)∨ (φ1 ∧ψ0)∨
(φ1 ∧ ψ1);

• ¬(φ ∨ ψ) is equivalent to ¬φ ∧ ¬ψ;

• ¬¬φ is equivalent to φ.

Notice that these rules are the “reversed” version of the rules we used for

the CNF case. In fact, given a formula φ it is possible to rewrite it in DNF

by first computing the equivalent formula ¬CNF (¬φ) and then pushing

the negations on the atoms by applying the following rules:

• ¬∀X : φ is equivalent to ∃X : ¬φ;

• ¬∃X : φ is equivalent to ∀X : ¬φ;

• ¬(φ ∧ ψ) is equivalent to ¬φ ∨ ¬ψ;

• ¬(φ ∨ ψ) is equivalent to ¬φ ∧ ¬ψ;

• ¬¬φ is equivalent to φ.

2.1.2 Approximations, Implicant, Unsat-Core and Interpolant

Given two Σ-formulae φ and ψ, we say that φ underapproximates ψ iff

every model of φ is also a model for ψ, written φ |=T ψ. In addition, we

call the inverse relation overapproximation, hence if φ underapproximates

ψ, then ψ overapproximates φ. Finally, if ψ is quantifier-free and φ is a

conjunction of (a subset of) the Σ-atoms of ψ such that φ |=T ψ, then φ is

an implicant of ψ.
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Example 3 - Implicant

Consider the formula (x > 0 ∧ y < 0→ a) ∨ (¬a ∧ x · y = 0→ x ≥ 0), for

Boolean atom a and real variables x and y. An implicant for the formula

is x > 0 ∧ y < 0 ∧ a. Notice that a formula can admit more that one

implicant, in our example another implicant is given by a.

Given an unsatisfiable Σ-formula φ, the formula ψ is a unsat-core of φ

iff: ψ is in CNF, it is unsatisfiable and the clauses of ψ are a subset of the

clauses of CNF (φ).

Example 4 - Unsat-core

Consider the CNF formula x = 0∧(a∨x > 1)∧(b∨x ≤ 0)∧(¬a∨x < −1).

The formula is unsatisfiable and the conjunction of the three clauses x = 0,

(a ∨ x > 1) and (¬a ∨ x < −1) is sufficient to conclude its unsatisfiability.

In this case we say that the three clauses are an unsat-core for the formula.

Given two Σ-formulae φ0 and φ1 such that φ0 ∧ φ1 |=T ⊥. The formula

ψ is a Graig interpolant, or simply interpolant, of the pair 〈φ0, φ1〉 iff ψ is

defined over the common symbols of φ0 and φ1, φ0 |=T ψ and ψ ∧ φ1 |= ⊥.

Example 5 - Interpolant

Consider two formulae φ0=̇z > 5∧x ≥ z∧x+y < 0 and φ1=̇y > 0∧x·y < 0.

The conjunction of the two formulae is unsatisfiable and an interpolant for

〈φ0, φ1〉 is ψ=̇x > 0. In fact, φ0 implies z > 5 and x ≥ z, hence it implies

x > 0; while φ1 requires y > 0, but then x · y < 0 holds iff x < 0, which

contradicts the interpolant. Therefore, φ0 |=T x > 0 and x > 0∧φ1 |=T ⊥.

2.1.3 SMT Problem and SMT Solvers

In this context the Satisfiability Modulo Theory problem (SMT(T )) is the

problem of checking if a Σ-formula is satisfiable for some background theory

T . We refer to such problems also as SMT queries.
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SMT-solvers are software tools that implement sound, but possibly in-

complete, decision procedures to address the SMT problem. Some exam-

ples of such tools are cvc5, MathSAT5, Yices and Z3. Most state of

the art solvers implement the “lazy approach” in which a SAT-solver is

integrated with a theory solver (T -solver). The SAT-solver enumerates

the truth assignments to the propositional formula obtained by replac-

ing the predicates containing T information with fresh Boolean variables.

Therefore, the SAT-solver completely ignores the theory. Each assignment

identified by the SAT-solver is a model for the Boolean abstracted formula

and maps directly to a conjunction of T -atoms. This conjunction of theory

atoms is then given to the T -solver. If the theory solver concludes that the

theory-formula is satisfiable, then also the original formula is satisfiable.

Instead, if it finds the theory-formula to be unsatisfiable, it generates a

conflict set representing a reason for the unsatisfiability. In this case, the

procedure refines the Boolean abstracted formula by adding, as a conjunc-

tion, the negation of this conflict set. The refinement reduces the search

space that the SAT-solver has to explore by avoiding the repetition of the

same “mistake”.

SMT-solvers are capable of building models for satisfiable formulae and

proofs in the unsatisfiable case. In addition, from a proof of unsatisfiability

they can often produce an unsat-core or an interpolant.

Finally, most SMT-solvers provide an incremental interface. They

tackle sequences of SMT-queries efficiently by reusing information discov-

ered in previous searches. The interface is usually stack based and provides

the primitives Assert, Push, Pop and Solve. Assert allows the asser-

tion of a new formula by pushing it onto the stack, Push sets a backtrack

point for the stack, Solve checks the satisfiability of the conjunction of all

formulae currently on the stack and Pop restores the solver state, asserted

formulae and learned clauses, to the last backtrack point.

17



2.1. FIRST-ORDER LOGIC AND SMT

2.1.4 Theory of Interest

In this thesis we use the theory of quantified mixed integer-real nonlin-

ear arithmetic (NIRA). NIRA subsumes both nonlinear real arithmetic

(NRA) and nonlinear integer arithmetic (NIA). In the case of NRA the

SMT problem is decidable and a decision procedure is Cylindrical Alge-

braic Decomposition (CAD) [65]. However, the worst case time complexity

of CAD is doubly-exponential in the degree of the polynomials. In addi-

tion, the SMT problem in NIA is undecidable [138]. Therefore, it easily

follows that the SMT satisfiability problem in NIRA is also undecidable.

The signature of NIRA is given by Σ=̇{0, 1,+,−, ·, /,=,≥}, where 0 and

1 are interpreted as constants and the predicate symbols {+,−, ·, /,=,≥}
are interpreted with the corresponding operations and relations on either

integers or reals depending on the context. The comparison operators

{<,>,≤, 6=} can be obtained from Σ as follows: v0 ≤ v1 as v1 ≥ v0, v0 < v1

as 6= (v0 ≥ v1), v0 6= v1 as ¬v0 = v1 and v0 > v1 as v0 ≥ v1 ∧ v0 6= v1.

For simplicity of notation we implicitly convert integer constants, variables

and expressions to real when necessary. Given a set of constants {ci}n+1
i=0

and variables {vi}ni=0 ⊆ V , cn+1 +
∑n

i=0 ci · vi is an affine expression and∑n
i=0 ci ·vi is a linear expression. We call linear [resp. affine] predicates the

atoms constructed from a linear [resp. affine] expression compared with

the constant 0.

In the following we always assume NIRA as backgound theory and we

simply refer to sentences, formulae, predicates, atoms and terms omitting

the signature Σ and, in addition, we simply state a formula to be satisfiable,

valid or a logical consequence of another formula without explicitly stating

the background theory.

In this context we call V the union of the set of variables V with the

Boolean atoms in Σ. We call V the set of variables or symbols and denote

18



CHAPTER 2. BACKGROUND

with V ′=̇{v′ | v ∈ V } the set containing the primed version of the symbols.

We write φ(V ) for a Boolean formula over the symbols V and φ(V, V ′) for

a Boolean formula or relation over V ∪ V ′. When clear from the context

we omit the set of symbols and simply write φ, ψ, φ′ for φ(V ), ψ(V, V ′)

and φ(V ′) respectively. We denote with v a total assignment over V , i.e.

a state. Given a set of symbols V0 we call projection of v over V0, written

v↓V0 the restriction of the assignments of v to the symbols in V0 ∩ V .

Given a formula φ(V, V ′) we write φ(v,v′) for the sentence given by the

evaluation of φ obtained by replacing every symbol in V and V ′ with its

corresponding assignment in v and v′ respectively. In addition, given a

formula φ(V ) and assignment v′ we will write φ(v′) for the evaluation of φ

where every symbol v ∈ V has been replaced with the assignment of v′ in

v′. Similarly, for a formula φ(V ′) and assignment v φ(v) is the evaluation

of φ where every symbol v′ ∈ V ′ has been replaced with the assignment of

v in v. We do this to simplify the notation and avoid the need to introduce

many substitution operators. Finally, we write v,v′ |= φ iff |= φ(v,v′).

2.2 Well-Founded Relations

A binary relation ρ ⊆ Q × Q is well-founded if every nonempty subset

U ⊆ Q has a minimal element with respect to ρ, i.e. there is m ∈ U such

that no u ∈ U satisfies ρ(u,m) (i.e. 〈u,m〉 ∈ ρ):

∀U ⊆ Q ∃m ∈ U ∀u ∈ U : U 6= ∅ → ¬ρ(u,m)

In particular, a well-founded relation ρ ⊆ Q × Q does not admit any

infinite chain: there is no infinite sequence q0, q1, . . . of elements of Q such

that ρ(qi, qi+1) holds for every i ≥ 0.

Given a relation φ(V, V ′), a ranking function Rf(V ) is a function from

the assignments to the variables V to some set Q, such that the rela-

tion < =̇{〈Rf(v0),Rf(v′1)〉 | v0,v
′
1 |= φ} is well-founded and we call 0
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its minimal element. Given a set of ranking functions {Rfi}ni=0, we de-

fine their sum as Rf=̇
∑n

i=0 Rfi=̇〈Rf0, . . . ,Rfn〉; Rf is a ranking func-

tion with minimal element 0=̇〈00, . . . ,0n〉 and comparison operator <

=̇{〈v0,v1〉|(
∧n
i=0 Rfi(v0) ≤i Rfi(v1)) ∧ (

∨n
i=0 Rfi(v0) <i Rfi(v1))} where

<i is the well-founded relation associated with Rfi and ≤i =̇ <i ∪ = is the

relation obtained by the union of <i and the identity relation =.

Example 6 - Ranking Function

Assume we want to prove that the following imperative procedure always

terminates. We represent every iteration of such loop using the set of

1: while q > 0 do

2: if y > 0 then

3: q ← q − y − 1

4: else

5: q ← q + y − 1

6: end if

7: end while

Figure 2.1: simple-imperative-procedure

symbols V =̇{q, y} for the assignments to the variables at the beginning of

an iteration and V ′=̇{q′, y′} for their assignment at the end of the iteration.

The formula T (V, V ′)=̇q > 0 ∧ y′ = y ∧ ((y > 0 ∧ q′ = q − y − 1) ∨ (y ≤
0 ∧ q′ = q + y − 1)) relates the assignments at the beginning of the loop

with the corresponding ones obtained by performing a single iteration.

In order for the program to be terminating, T must be a well-founded

relation: there cannot be infinite chains of states. We prove T well-founded

by identifying a ranking function Rf : V 7→ N. In particular, let Rf=̇dqe
with minimal element 0 and we define the comparison operator such that

Rf′ < Rf↔ dq′e < dqe. It can be easily observed that T (V, V ′)→ q > 0,

hence Rf > 0, and T (V, V ′) → q′ ≤ q − 1, hence Rf′ < Rf. Therefore,
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every pair in T implies the ranking function is greater than its minimal

element, and every such step makes it smaller. The relation < in N is

well-founded, hence there cannot be an infinite sequence such that Rf > 0

holds in every state and Rf′ < Rf is true at every step. Therefore, T must

be well-founded and the procedure always terminates.

2.3 Recurrent Sets

A recurrent set [100, 49] for a relation ρ(V, V ′) is a set of states that is vis-

ited infinitely often by some sequence in ρ. Recurrent sets can be thought

of as the dual of ranking functions for well-founded relations. Ranking

functions are witnesses for the well-foundedness of a relation, instead re-

current sets are witnesses for the non well-foundedness of a relation. In

fact, in the following we will show that there exists a recurrent set for

a relation ρ iff ρ is not well-founded, i.e. it admits at least one infinite

chain [100].

In the following we distinguish two types of recurrent sets (open and

closed) and outline their relationship.

Definition 1 - Open Recurrent Set

R(V ) is a open recurrent set for a relation ρ(V, V ′) iff the following hold.

• ∃V : R(V );

• ∀V, ∃V ′ : R(V )→ ρ(V, V ′) ∧R(V ′).

R(V ) represents a nonempty set of states such that every state in R

admits a successor via the relation ρ that is still in the set R. It is easy

to show (e.g. by induction) that there exists an open recurrent set for a

binary relation iff the relation is not well-founded, i.e. it admits at least

one infinite sequence [100]. Notice that states in an open recurrent set

might have successors outside the set.
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A closed recurrent set or universal recurrent set [17], proves that a

relation ρ is not well-founded by identifying an underapproximation T of ρ

with respect to a set R such that T is left-total in R and R is closed with

respect to T .

Definition 2 - Closed Recurrent Set

A pair 〈R(V ), T (V, V ′)〉 is a closed recurrent set for a relation ρ(V, V ′) iff

the following hold.

• ∃V : R(V );

• ∀V, ∃V ′ : R(V ) ∧ T (V, V ′);

• ∀V, V ′ : R(V ) ∧ T (V, V ′)→ ρ(V, V ′) ∧R(V ′).

Notice that this definition is slightly different from the one of [49] since

we embed the underapproximation within the definition of closed recurrent

set. Let ρ be a relation, then it admits an open recurrent set iff it admits

also a closed recurrent set [66]. The existence of a closed recurrent set

trivially implies the existence of an open one. In fact, the set R of every

closed recurrent set is an open recurrent set. Viceversa, from an open

recurrent set we can construct a corresponding closed one by defining the

underapproximation T (V, V ′) as ρ(V, V ′) ∧R(V ′).

Therefore, a relation ρ(V, V ′) is not well-founded iff it admits an open

or closed recurrent set.

Example 7 - Recurrent Set

Consider a relation ρ(V, V ′)=̇x > 0∧y > 0∧x′ > x·y. An open recurrent set

for ρ is R(V )=̇x > 1∧y > 1. A closed recurrent set for ρ is 〈R(V ), T (V, V ′)〉
where: R(V ) is defined as above and T (V, V ′)=̇y′ = y ∧ x′ = x · y + 1.
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2.4 Constrained Horn-like Clauses

Constrained Horn-like Clauses (CHC) [98, 27, 101] are a fragment of FOL

that has been proposed as a formalism to represent many verification prob-

lems in a solver-independent way. It allows the separation of the develop-

ment of a proof methodology and the algorithms and procedures used to

solve the verification problem.

A CHCs problem is a sequence of logical implications and wf -predicates

over a set of symbols V and a set of uninterpreted predicate symbols Q.

wf , for well-founded, is an interpreted unary predicate that holds for a

relation T over V ∪V ′ iff T is well-founded 1. Let h range over queries and

quantifier-free formulae over V ∪ V ′, let c be a quantifier-free formula over

V ∪ V ′ and {qi}ni=1 be queries over V ∪ V ′. Then, a Horn-like clause must

be one of the following two kinds of formulae:

(i) an implication of the form

c ∧
n∧
i=1

qi → h,

(ii) a wf -predicate (a unit clause) applied to some query symbol qj for

some 0 < j ≤ n

wf (qj),

such that each query symbol appears at most once in every clause. A

solution for a CHCs problem is an interpretation for the query symbols in

Q such that all clauses are valid (all clauses are true for all assignments to

the symbols in V ∪V ′) and for each wf -predicate wf(q) the interpretation

assigns some well-founded relation to q.

Notice that CHCs have a much richer syntax with respect to Horn

clauses. In fact, they allow arbitrary formulae on both sides of the im-
1We use wf instead of dwf , for disjunctively well-founded, defined e.g. in [98], since in our context

the type of the well-founded relation is not important.
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plication and only require each clause to contain at most one non-negated

query symbol. Unfortunately, this expressiveness makes the satisfiability

problem of CHCs using the theory of arithmetic undecidable [101].

Example 8 - CHC

Consider the simple imperative procedure reported in Fig. 2.1. Let V =̇{q, y}
and V ′=̇{q′, y′} be the sets of variables and Q=̇{T (V, V ′)} be the set of

uninterpreted predicates symbols. The existence of a solution for the fol-

lowing CHC problem implies that the software program always terminates.

q > 0 ∧ y′ = y ∧ y > 0 ∧ q′ = q − y − 1→ T (V, V ′);

q > 0 ∧ y′ = y ∧ y ≤ 0 ∧ q′ = q + y − 1→ T (V, V ′);

wf(T ).

The two implications make sure that any pair of states corresponding to

a single iteration through the loop is in relation T . Therefore, any in-

terpretation of T must be an overapproximation for the procedure. The

wf -predicate requires such overapproximation to be well-founded. Any re-

lation containing a subset of the elements of a well-founded relation is also

well-founded. Therefore, if there exists an interpretation for T satisfying

the constraints above, then the software program must be terminating.

2.4.1 Existentially-Quantified Constrained Horn-like Clauses

Existentially-quantified Constrained Horn-like Clauses (E-CHCs) [28] are

an extension of CHCs that allow the use of existential quantifiers in the

right-hand-side of the implications, while all other symbols remain implic-

itly universally quantified as in CHCs. This extension allows the use of a

formalism with the same advantages (separation between proof method-

ology and algorithms) and very similar notation to CHCs to deal with

existential verification problems. However, since E-CHCs are strictly more
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expressive than CHCs, all undecidability results of the latter apply also

to the former and E-CHCs are undecidable if we consider the arithmetic

theory [101].

Example 9 - E-CHC

Consider again procedure reported in Fig. 2.1. We define a E-CHC problem

that admits a solution only if the procedure does not terminate. As in the

previous examples we define the sets of variables V =̇{q, y} and V ′=̇{q′, y′}.
Let Q=̇{R(V ), T (V, V ′)} be two uninterpreted predicates. We want to

identify an underapproximation for the procedure that contains at least

one and only nonterminating executions. We use R to represent the set of

states that can appear in such executions and T must restrict the transition

relation of the program by pruning all terminating executions.

R(V ) ∧ T (V, V ′)→ q > 0 ∧ y′ = y ∧ y > 0 ∧ q′ = q − y − 1;

R(V ) ∧ T (V, V ′)→ q > 0 ∧ y′ = y ∧ y ≤ 0 ∧ q′ = q + y − 1;

T (V, V ′)→ R(V ′);

> → ∃V : R(V );

R(V )→ ∃V ′ : T (V, V ′).

The first two implications ensure that every T transition starting from

some state in R is also a transition for the software program: it is an

underapproximation. The third implication ensures that R is closed with

respect T , T cannot exit from R. However, these first three implications

could be satisfied by simply interpreting both R and T as the constant ⊥,

which, of course, does not correspond to any nonterminating run of the

program. The last two implication use the existential quantifiers to ensure

that the set R is not empty and that the relation T is left-total: does not

have any deadlock in R.

Therefore, if there is an interpretation for R and T such that all of the

above are true, then there is at least one nonterminating execution of the
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software program. In fact, given an interpretation such an execution can

be computed as follows. Pick a state v0 in R, one such state must exist

since R is not empty. Every state in R must have some successor via the

relation T (no deadlocks), hence there must be at least one state v1 such

that v0,v
′
1 |= T , where v′1 assigns to every v′ ∈ V ′ the value assigned by v1

to the corresponding v ∈ V . R is closed with respect to T , hence v1 is still

in R. We can apply the same reasoning infinitely many times, every state vi

in R must admit a T -successor vi+1 that is still in R. By induction, we can

obtain an infinite sequence of R-states by adding an unbounded number of

T -steps. Therefore, every pair of consecutive states in the sequence satisfies

R(V )∧ T (V, V ′); the first two implication must hold and imply that every

such step is also a step for the procedure. Therefore, the infinite sequence

of states is a infinite (i.e. nonterminating) execution of the program.

2.5 Fair Transition Systems

In this thesis we formally describe a system as a fair transition system [15]

and call model a formal description of the system. A transition system can

be visualised as a directed graph in which the nodes represent the states

of the system and the edges are its transitions. A transition system is

finite (FTS) if such graph has a finite number of nodes and infinite (ITS)

otherwise. The initial states of the transition system are the nodes that

represent all starting configurations of the model, while the transitions

describe how the system moves from one state to another. Every path

on the graph starting from an initial state represents a possible execution

of the system (also called path or trace) and it is uniquely identified by

a possibly infinite sequence of states. States with no outgoing edges are

called deadlock states, hence every deadlock state is either unreachable or

the last state of some finite path. From an automata-theoretic point of
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view it is possible to borrow a slightly different terminology. The set of all

possible paths of the transition system is called language of the automata

and every trace is a word. Two transition systems M0, M1 are equivalent if

they accept the same language, written M0 ≡ M1 ⇐⇒ L(M0) = L(M1),

where L(M) is the language of model M . A transition system is fair if it

denotes some of its states as fair states and its language is restricted such

that all infinite paths visit the fair states infinitely often.

There are many different representations of transition systems. They

are slightly different notations to represent these objects and adopt differ-

ent acceptance conditions. The representations can be broadly classified

in two categories: explicit-state and symbolic. Explicit-state representa-

tions (e.g. Kripke structures, Büchi automata and Rabin automata) rely

on the graph representation of the model and implement operations and

procedures as visits on such graph. Symbolic representations, instead, de-

scribe the system using first-order formulae. In this setting each model of

the formula corresponds to a state and a formula denotes the set of states

given by the set of all its models. Therefore, the logical operators ¬, ∨
and ∧ in the symbolic setting correspond, respectively, to the set opera-

tors complement, union and intersection in explicit-state representations.

This thesis is concerned with symbolic techniques and we represent fair

transition systems symbolically as follows.

Definition 3 - Generalised Fair Transition System

Given a first-order signature Σ and a set of variables V, let A=̇{a | a ∈
Σ and a is a 0-ary predicate} be the set of Boolean atoms of Σ. A symbolic

fair transition system M is a 4-tuple 〈V, I(V ), T (V, V ′),F〉 such that:

• V ⊆ V ∪ A is the set of state variables;

• I(V ) is a quantifier-free formula over V denoting the initial states;

• T (V, V ′) is a quantifier-free formula over V ∪V ′ and denotes the tran-

27



2.5. FAIR TRANSITION SYSTEMS

sitions;

• F is a finite set of quantifier-free formulae over V , each of which

denotes a fairness condition.

The transition system is finite iff all symbols in V have finite domain,

infinite otherwise. When the fairness conditions are not relevant we will

simply talk about transition systems defined as the triple 〈V, I, T 〉, that

correpond to the generalised fair transition system 〈V, I, T, {>}〉. We can

now formally define a deadlock state v for a transition system M=̇〈V, I, T 〉
as a state such that v |= ∀V ′ : ¬T (V, V ′).

Definition 4 - Path, Trace, Execution

A finite or infinite sequence of states v0,v1, . . . is a path (also called trace

or execution) of a generalised fair transition system M=̇〈V, I, T,F〉 iff:

• v0 |= I;

• ∀i ≥ 0 : (vi,v
′
i+1 |= T );

where v′i assigns every v′ ∈ V ′ to the value assigned by vi to the corre-

sponding v ∈ V .

Given a path π=̇v0,v1, . . . and a set of symbols V0 we call projection of

π over V0 the path π↓V0=̇v0↓V0
,v1↓V0

, . . ., given by the projection of each of

its states. A state v is reachable in M iff there is a finite path of M ending

in v, written M  v. With a slight abuse of notation, given a formula

φ(V ) we write M  φ iff M can reach a state in φ, hence there exists a

state v such that M  v and v |= φ.

Definition 5 - Fair Path

A path v0,v1, . . . of a generalised fair transition system M=̇〈V, I, T,F〉 is

fair iff for every Fi ∈ F and j ≥ 0, there exists h > j such that vh |= Fi

Note that from the definition of fair paths it immediately follows that

a fair path must also be an infinite path.
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Definition 6 - Language of Generalised Fair Transition System

Given a fair transition system M , its language is defined as

L(M)=̇{π | π is a fair path of M}.

We write L↓V0(M)=̇{π↓V0 |π ∈ L(M)} for a set of symbols V0 for the set

of paths of M projected over V0.

The synchronous composition operator for generalised fair transition

systems computes a transition system M from two input systems M0 and

M1 such that the language of M is the intersection of the languages of M0

and M1: L(M) = L(M0) ∩ L(M1).

Definition 7 - Synchronous Composition

Given two generalised fair transition systems M0=̇〈V0, I0, T0,F0〉 and

M1=̇〈V1, I1, T1,F1〉 their synchronous composition M=̇M0 ×M1 is a tran-

sitions system M=̇〈V, I, T,F〉 such that: (i) V =̇V0 ∪ V1; (ii) I=̇I0 ∧ I1;

(iii) T =̇T0 ∧ T1; (iv) F=̇F0 ∪ F1.

This operator is employed in many transformations in model checking.

Another relevant transformation is the degeneralisation. Given a gener-

alised fair transition system M0 the transformation computes another gen-

eralised fair transition systemM such thatM has a single fairness condition

and the set of paths in the language of M projected over the symbols of

M0 is exactly the language of M0.

Definition 8 - Degeneralisation

Given a fair transition system M0=̇〈V0, I0, T0,F0〉 with F0=̇{Fi}n−1
i=0 , let

M=̇〈V, I, T,F〉 such that:

• V =̇V0 ∪ {c} where c is a fresh variable with domain {i}n−1
i=0 ;

• I=̇I0 ∧ c = 0;

• T =̇T0∧((c = n−1∧Fn−1)→ c′ = 0)∧(
∧n−2
i=0 (Fi∧c = i)→ c′ = i+1);
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• F=̇{c = n− 1 ∧ Fn−1}.

M0 and M are such that L(M0) = L↓V0(M) holds. We will call a degen-

eralised fair transition system M simply fair transition system and write

M=̇〈V, I, T, F 〉, where F is the quantifier-free formula representing its only

fairness condition.

2.6 Timed Fair Transition Systems

In transition systems changes happen atomically and the evolution of the

model is given by a sequence of discrete steps. We refer to such systems as

discrete or untimed transition systems. In some cases this is not sufficient

and the modelling of a system requires the capability to express different

behaviours depending on some notion of time. Examples of this are systems

involving timers, timeouts or synchronisation based on shared clocks.

Timed transition systems (TTS) have a built-in notion of time, for this

reason they are a more natural formalism in which to describe time-aware

systems. Paths of timed systems move along two orthogonal directions.

One direction represents the passage of time, while the other represents

the atomic steps performed by the system. A possible visualisation for

a path of a timed system is given in Fig. 2.2, which also highlights that

“time” can only move forward. In more detail, timed fair transition systems

extend fair transition systems with a new type of symbols, called clocks,

that keep track of the elapse of time. A transition is either a time elapse

(or timed transition) or an atomic (also called instantaneous) transition.

In timed transitions, all discrete (non-clock) symbols retain their values

while all clocks increase by the same amount, equal to the elapsed time. In

this setting “time” is a clock symbol that is initially 0. As all other clocks,

also the evaluation of “time” remains constant in discrete transitions and

increases by a positive amount in every time elapse. The domain of the
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discrete

time

Figure 2.2: Representation of a path of a timed system along the two directions.

clock symbols can be either a dense domain, such as R+
0 , or a discrete

domain, such as N. We will explicitly state their domain when a particular

result applies only to one of the two cases, we will otherwise simply talk

about “clocks” without specifying their domain.

In the following, we first introduce two important concepts for the ver-

ification of timed systems and then formally define the models of time we

consider in this thesis.

Zeno paths. A natural assumption used when modelling timed systems

is that every infinite path will eventually reach any point in the future,

hence that time cannot be halted. This is an important assumption that

needs to be considered in modelling and reasoning on the system. A pop-

ular example to illustrate and highlight the relevance of this assumption

is Zeno’s paradox about Achilles and the tortoise. In the paradox Achilles

is trying to reach and overtake a tortoise in a footrace. For simplicity’s

sake, assume that both of them have constant velocity and that the speed

of the tortoise is half the speed of Achilles. The reasoning leading to the

paradox is as follows. Achilles, before overtaking the tortoise, must reach

the current position of the animal. However, in the time it takes him to do

31



2.6. TIMED FAIR TRANSITION SYSTEMS

that the tortoise will move forward of half their previous distance. There-

fore, Achilles must now cover half of the initial distance and after that the

tortoise will be in front of him by a quarter of the original distance. We

can repeat this process any number of times and Achilles will keep halving

his distance from the tortoise. However, for any number of iterations the

distance will be greater than zero. This process is depicted in Fig. 2.3 and

the paradox states that this reasoning proves that Achilles will keep get-

ting closer to the tortoise but he will never reach nor overtake the animal.

However, the infinite path described by the paradox has an upper bound

to the total amount of elapsed time. Achilles and the tortoise are moving

at a constant speed, hence the distance they travel for each unit of time

is constant. This implies that the time spent in every iteration also keeps

halving. If the time required by Achilles to cover the initial distance is δ,

we can write the infinite sum of the time spent in every iteration as
∑+∞

i=0
δ
2i .

The series converges to 2δ, hence 2δ is an upper bound for the amount of

time that can elapse in the system. Therefore, an infinite number of such

iterations happens in a finite amount of time.

Figure 2.3: At every iteration Achilles halves the distance from the tortoise.

In the literature executions that do not allow progress with respect to

time are known as Zeno paths. We call a infinite path of a timed system

Zeno iff there exists an upper bound for the value of time in the path and

non-Zeno otherwise. In this setting, when dealing with infinite paths, we
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want to consider only those that are non-Zeno. If we consider a discrete

domain of time (e.g. N), this simply requires time to increase infinitely

often in the path. However, on dense domains of time (e.g. R+
0 ) this is not

sufficient. It could be the case that time increases infinitely often but it still

has some constant upper bound. This happens when the sequence of time

elapses in the path describes or is bounded from above by a converging

series (e.g. the geometric series
∑+∞

n=1
1
2n < 1).

Finite variability. Another relevant concept for timed systems is that of

finite variability. A path of a timed system could prescribe an increasing

number of actions between time elapses and there could be no upper bound

on the number of such actions. Therefore, in the limit, there is an infinite

sequence of states between any consecutive time elapses. Finite variability

requires the existence of an upper bound to the number of changes that

can happen in any finite interval of time. The paths that do not have

this property represent behaviours that can arise in the mathematical de-

scription of the system, but often cannot occur in the system itself (e.g.

no computing machine can perform an infinite number of operations in 0

time). For this reason, timed systems are often analysed under the finite

variability assumption and their language is restricted to only the paths

that satisfy the finite variability property.

We say that a trace is fine with respect to a formula ϕ in a time interval

iff the truth assignment of ϕ is constant in the interval, i.e. all time points

in the interval agree on the truth assignment of ϕ. A trace has the finite

variability property iff for every formula ϕ there exist a sequence of time

points such that the path is fine in every pair of consecutive time points.
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2.6.1 Time Models

We define a time interval as a convex subset of either N or R+
0 . We talk

about discrete intervals in the first case and dense intervals in the latter.

We generically talk about intervals, without specifying whether it is dis-

crete or dense, when the type is not important or clear from the context.

For tl, tr ∈ N or tl, tr ∈ R+
0 such that tl ≤ tr we write an interval as [tl, tr],

(tl, tr], [tl, tr) or (tl, tr) where the square bracket is used to indicate that

the element is included in the interval and the parenthesis to indicate that

it is excluded. Given an interval I we write l(I) and r(I) for the left and

right endpoints of the interval respectively. Two intervals I0 and I1 are

almost adjacent iff r(I0) = l(I1), hence iff they overlap in at most one time

point. We say that an interval I is singular iff it contains a single time

point, I=̇[a, a]. Finally, a time interval sequence is a sequence I0, I1, . . . of

time intervals of the same type (discrete or dense) such that Ii and Ii+1

are almost adjacent for all i ≥ 0 and
⋃+∞
i=0 Ii is either N or R+

0 depending

on the intervals type.

We define time models in the style of [7] and [8].

Definition 9 - Time Model

A time model is 4-tuple τ=̇〈T, <,0, v〉, where:

• T is the temporal domain;

• < is a total order over T;

• 0 ∈ T is the minimal element of <;

• v : T 7→ R+
0 is a function that represents the real time of a time

point in T such that any infinite sequence of time points {ti ∈ τ}+∞
i=1

such that ∀i ∈ N : ti < ti+1, {v(ti)}+∞
i=1 is a nondecreasing divergent

sequence.

The fact that v maps sequences of time points into nondecreasing diver-
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gent sequences on R+
0 forbids sequences of time points that move backward

in “time” (nondecreasing) and also excludes all Zeno paths (divergent).

We define four different time models: discrete, dense, super-dense and

super-discrete.

Discrete Time Model

Intuitively, the discrete time models describe uni-dimensional sequences of

time-points, hence strictly monotonic sequences of time points over the N.

“Untimed” systems and specifications over them use this model of time

and in these cases executions are discrete sequences of states.

Definition 10 - Discrete Time Model

A time model 〈T, <,0, v〉 is discrete iff

• T=̇N;

• < is the standard less-then relation over the natural numbers;

• 0 is the natural number zero;

• v is a monotonically increasing function.

Dense Time Model

The dense time model corresponds to a strictly monotonic sequence of

time points over the R+
0 . While, in discrete time model every time interval

admits at most some countable number of time points, in dense time model

this is not the case and there can be an uncountable number of time points

in every non-empty interval.

Definition 11 - Dense Time Model

A time model 〈T, <,0, v〉 is dense iff:

• T=̇R+
0 ;

• < is the standard less-then relation over the real numbers;
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• 0 is the real number zero;

• v is the identity function.

Super-Dense Time Model

The super-dense time models are defined over pairs of N×R+
0 . They consist

of alternating discrete sequences and dense set. The discrete sequences are

countable sequences of time points in which the discrete part increases

while the continuous one remains constant to some time stamp r ∈ R+
0 ;

i.e. of the form {〈i, r〉}, {〈i+ 1, r〉, . . .. The dense sets, instead, correspond

to an uncountable number of time points with different time stamps, but

constant discrete counter i ∈ N; i.e. of the form 〈i, r〉, 〈i, r′〉, . . .. This

model of time corresponds to the one we informally described above and

represented in Fig. 2.2 in the case of “time” with dense domain.

Definition 12 - Super-Dense Time Model

A time model 〈T, <,0, v〉 is super-dense iff:

• T ⊂ N × R+
0 such that the sequence of sets I0, I1, . . ., where, for all

i ≥ 0, Ii=̇{r | 〈i, r〉 ∈ T} is a time interval sequence;

• < =̇{〈〈i, r〉, 〈i′, r′〉〉 | 〈i, r〉, 〈i′, r′〉 ∈ T ∧ (i < i′ ∨ (i = i′ ∧ r < r′))};

• 0=̇〈0, 0〉 ∈ T;

• v(〈i, r〉) = r.

Notice that any time interval sequence in a super-dense time model

such that the intervals are not overlapping is isomorphic to the dense time

model.

Super-Discrete Time Model

Finally, the super-discrete time models are defined over pairs of N × N.

Similarly to the super-dense case, the first component is used to represent
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the instantaneous steps while the second component describes the time

dimension. However, in this case they both correspond to countable se-

quences of time points and the super-discrete time models correspond to

the one we informally described above and represented in Fig. 2.2 in the

case of “time” with discrete domain.

Definition 13 - Super-Discrete Time Model

A time model 〈T, <,0, v〉 is super-dense iff:

• T ⊂ N × N such that the sequence of sets I0, I1, . . ., where, for all

i ≥ 0, Ii=̇{r | 〈i, r〉 ∈ T} is a time interval sequence;

• < =̇{〈〈i, r〉, 〈i′, r′〉〉 | 〈i, r〉, 〈i′, r′〉 ∈ T ∧ (i < i′ ∨ (i = i′ ∧ r < r′))};

• 0=̇〈0, 0〉 ∈ T,

• v(〈i, r〉) = r.

Path, Trace, Execution

Def. 4 defines a path for a transition system as a discrete sequence of

states. In fact, transition systems are interpreted over the discrete time

model such that the ith state is associated with time point i, i.e. v(i) = i.

However, traces might prescribe a different mapping from time points to

time value (the function v) and when considering the dense or super-dense

time models we need to represent paths as dense sequences of states. For

this reason, in the following we consider a more general representation of

traces that is suitable to represent all four types of time models and, in

particular, to represent paths of timed systems.

Definition 14 - Path, Trace, Execution

Given a set of symbols V a trace is a triple σ=̇〈M, τ, µ〉 such that M is a

first-order structure, V M is the set of states with first-order structure M ,

τ is the time model and µ is a mapping from the domain of τ into V M .
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Given a time point t ∈ τ , we denote with σ(t) the state 〈M,µ(t)〉.
The first-order structure M is shared by all time-points. Therefore, all

time points have the same interpretation for the symbols in Σ. However,

the interpretation of such symbols may not be unique in the background

theory. We call these “uninterpreted” symbols parameters. A parameter is

a constant symbol in the signature σ such that its value is not determined

by the theory and does not vary with time.

In this context, when considering super-dense and super-discrete time

models, the instantaneous transitions are the ones in which the first com-

ponent of the time-model increases, while the timed transitions are the

ones in which the second component increases.

Finally, in the case of discrete time model, fixed the first-order structure

M , Def. 14 and Def. 4 are equivalent.

2.6.2 Timed Automata

A timed automaton (TA) [5] is a TTS that can be represented by a finite

graph in which nodes are called locations and edges represent instanta-

neous transitions. In timed automata the clock variables have domain R+
0 .

All clock symbols are initialised to 0 and time can elapse inside locations

constrained by some location invariant. Every instantaneous transition

between locations is associated with a guard condition and a set of clocks

called reset. A timed automaton can perform an instantaneous transition

only if it satisfies the guards of the edge and when such transition is per-

formed all clocks specified in its reset are set to 0. In addition, it can enter

or remain in a location only as long as the associated location invariant is

satisfied. Therefore, location invariants impose progress conditions on the

automaton, while guards and resets on the edges constrain its behaviour.

Given a set of clocks X, a clock variable x ∈ X and a rational constant

c ∈ Q, each guard and location invariant φ(X) must be a quantifier-free
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formula over the symbols X in the language B(X) defined as follows:

φ :: x ≤ c | c ≤ x | x < c | c < x | φ0 ∧ φ1

Therefore, clocks constraints in timed automata are limited to conjunctions

of clocks compared with constants.

In the following we propose a definition of timed automata that slightly

differs from the one of [5]; we do not consider labels on the edges. We do

this in order to simplify the presentation and without loss of generality.

In terms of the semantics of the timed automaton as a transition system,

the labels can be modelled by considering an additional state symbol that

prescribes the label of the next transition.

Definition 15 - Timed Automaton

A timed automaton M is a 5-tuple 〈L,L0, X, I, E〉 such that:

• L is a finite set of locations;

• L0 ⊆ L is the set of initial locations;

• X is the set of clock symbols;

• I : L 7→ B(X) is a function that maps each location to its correspond-

ing location invariant;

• E ⊆ L× B(X)× 2X × L is the set of edges, each edge has a starting

location, a guard, a set of clocks to be reset and a target location.

For brevity we write l
g,r−→ l′ for (l, g, r, l′) ∈ E.

A clock interpretation µ is a function that maps every clock to a real

value, µ : X 7→ R|X|. We write µ + δ, with δ ∈ R+
0 , for the interpretation

that assigns to each clock the value given by µ plus a positive real constant

δ.

∀x ∈ X : (µ+ δ)(x) = µ(x) + δ.
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In addition, given a set of clocks r and a clock interpretation µ, we write

[r 7→ 0]µ for the interpretation that assigns 0 to all the clocks in r and

agrees with µ on all other assignments.

[r 7→ 0]µ(x)=̇

{
0 if x ∈ r,

µ(x) otherwise.

The semantics of a timed automaton is defined in terms of the correspond-

ing transition system defined over symbols X̂ ∪ {l̂}, where X̂ contains

a real-valued symbol for every clock in X and l̂ is a symbol not in X̂

with domain L. Therefore, each state of the timed automaton is a pair

〈l, µ〉 such that l ∈ L prescribes the assignment to l̂ and µ is a clock in-

terpretation for X that corresponds to a total assignment over X̂. We

write 〈l, µ〉 δ−→ 〈l, µ + δ〉 for the elapse of δ ∈ R+
0 time in location l and

〈l, µ〉 −→ 〈l′, µ′〉 for the instantaneous transition from 〈l, µ〉 to 〈l′, µ′〉, where

µ′=̇[r 7→ 0]µ and r is the reset of the transition. The transitions are defined

as follows:

• 〈l, µ〉 δ−→ 〈l, µ+ d〉 ⇐⇒ (µ |= I(l)) ∧ (µ+ δ |= I(l)), for δ ∈ R+
0 ;

• 〈l, µ〉 −→ 〈l′, µ′〉 ⇐⇒ ∃(l, g, r, l′) ∈ E : (µ |= g) ∧ (µ′ = [r 7→
0]µ) ∧ (µ′ |= I(l′)).

It is possible to perform a time elapse of δ ∈ R+
0 time units in location

l if the clock interpretations at the beginning and end of the transition

(µ and µ + δ) both satisfy the location invariant I(l) of l. Notice that

I(l) must be a convex formula, since B(X) allows only for convex clock

constraints. Therefore, from µ |= I(l) and µ + δ |= I(l) we can conclude

that for any 0 ≤ δ0 ≤ δ, µ + δ0 |= I(l) and also any intermediate state

satisfies the location invariant. In a timed automaton it is possible to

perform an instantaneous transition from state 〈µ, l〉 to state 〈µ′, l′〉 iff (i)

there is an edge in E from l to l′, (ii) the current clock interpretation µ

satisfies the guard of the transition, (iii) the clock interpretation µ′ is equal

40



CHAPTER 2. BACKGROUND

to [r 7→ 0]µ, where r is the reset of the transition, and finally (iv) µ′ satisfies

the location invariant I(l′) of l′.

Example 10 - Timed Automaton

Fig. 2.4 shows a timed automaton with a single clock symbol c and two

locations l0 and l1. Each location has a location invariant: c ≤ 5 for l0 and

c < 15 in location l1. The automaton has two instantaneous transitions,

one from l0 to l1 with guard c ≥ 5 and reset {c} and the other from l1 to

l0 with guard c > 3 and empty reset. l0 is the initial location, hence the

initial state is 〈l0, µ0〉 where µ0 assigns c to 0. From the semantics described

above, the timed automaton in Fig. 2.4 follows the following behaviour. It

c ≤ 5 c < 15

c ≥ 5 c=̇0

c > 3

`0 `1

Figure 2.4: Timed automaton, location invariants are highlighted in red, guards in green

and resets in blue.

is possible to enter location l0 only if c ≤ 5. The only outgoing transition

from l0 has guard c ≥ 5, hence we must remain in l0 until c = 5 and must

take the transition to l1 exactly at that point. The transition resets c to 0,

hence the location invariant of l1 is satisfied. The only outgoing transition

from l1 has guard c > 3, for this reason we have to remain in l1 for at least

(strictly more) 3 time units. The location invariant requires c < 15, hence

we could wait up to 15 (excluded) time units in l1. However, the only

outgoing transition leads to l0 that requires c ≤ 5 and the transition does

not reset c. For this reason, if we wait more that 5 time units in l1, then the

location invariant would forbid us to perform the transition to l0. In this

case we must remain in l1 constrained by its location invariant and, while
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the remaining available paths are infinitely many, they are either Zeno (c

gets closer and closer to 15 without reaching it) or finite.

Timed automata [5] allow clocks only in comparisons with rational nu-

meric constants. Later works extend them by allowing differences between

clocks, e.g. c0 − c1 < 5. These constraints are called diagonal constraints

and we talk about diagonal timed automata. Diagonal timed automata are

as expressive as timed automata [25], but they can be exponentially more

succinct [38]. In addition, in many practical cases the system to be veri-

fied can be modelled as a timed automaton without the need for diagonal

constraints [36].

2.6.3 Hybrid Systems

Hybrid automata have been introduced in 1996 by Henzinger [106] as a

formalism to represent cyber-physical systems (CPS). CPS are dynamical

systems with both discrete and continuous components. The discrete com-

ponent, described by the set of locations or modes, can be used to model

some electronic controller, while the continuous component, described via

continuous symbols and flow conditions, can define a mathematical model

for some physical phenomena. For example, a thermostat and a braking

system of a vehicle can be modelled as a CPS where the locations repre-

sent the state of the controller and the physical system is represented via

the continuous variables, e.g. temperature and velocity. Usually hybrid

systems (HS) are described assuming a dense domain of time. However,

in some cases a discrete domain is used as an approximation of the dense

counterpart.

Continuous symbols in hybrid automata are symbols whose assignment

during time elapses is described by flow conditions. Flow conditions de-

scribe the evolution over time of continuous symbols and can be expressed
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in three different forms: (i) as constraints over the derivatives of continuous

values, (ii) as ordinary differential equations (ODE), (iii) as explicit func-

tions of time without derivatives. Continuous symbols generalise clocks,

clocks are continuous symbols with constant derivative equal to 1. Given

a set of continuous symbols X we denote with Ẋ=̇{ẋ | x ∈ X} the set

of their first derivatives with respect to time. A hybrid automaton is said

to be initialised if every time the flow of some variable changes, then the

variable is reset.

We report a definition of hybrid automata that slightly differs from the

one of [106]. As for the timed automata case, we do not consider labels

on the edges (events), but they can be encoded via an additional state

variable.

Definition 16 - Hybrid Automaton

A hybrid automaton M is a 6-tuple 〈L,L0, X, I, F low,E〉 such that:

• L is a finite set of locations (also called modes);

• L0 is a function that maps each location to a formula over X;

• X is a finite set of continuous symbols;

• L0, I and Flow are functions that map each location to a formula over

X (L0 and I) and X ∪ Ẋ (Flow);

• E is the set of transitions. Each transition 〈l, g, r, l′〉 ∈ E is such that:

(i) l, l′ ∈ L are the source and destination location of the transition,

(ii) g is a formula over X representing the guard of the transition and

(iii) r is a formula over X ∪X ′ representing the reset conditions.

For brevity we write l
g,r−→ l′ for (l, g, r, l′) ∈ E.

An interpretation for the continuous symbols µ is a function that maps

every continuous variable to a real value: µ : X 7→ R|X|. The semantics

of a hybrid automaton is defined in terms of the corresponding transition
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system defined over symbols X̂∪{l̂}, where X̂ contains a real-valued symbol

for each continuous variable in X and l̂ is a symbol not in X̂ with domain

L. Therefore, each state of the hybrid automaton is a pair 〈l0, µ〉 such

that l ∈ L prescribes the assignment to l̂ and µ is an interpretation for the

continuous symbols in X that corresponds to a total assignment over X̂.

We write 〈l, µ〉 δ−→ 〈l, µ′〉 for the elapse of δ ∈ R+
0 time in location l and

〈l, µ〉 −→ 〈l′, µ′〉 for the instantaneous transition from 〈l, µ〉 to 〈l′, µ′〉. The

transitions are defined as follows:

• 〈l, µ〉 δ−→ 〈l, µ′〉 iff there exists a continuous differentiable function

f : [0, δ] 7→ R|X| such that f(0) = µ, f(δ) = µ′ and ∀ε ∈ [0; δ] :

(〈f(ε), ḟ(ε)〉 |= Flow(l)) ∧ f(ε) |= I(l);

• 〈l, µ〉 −→ 〈l′, µ′〉 ⇐⇒ ∃(l, g, r, l′) ∈ E : (µ |= g) ∧ (〈µ, µ′〉 |= r) ∧ (µ′ |=
I(l′)).

It is possible to perform a time elapse of δ ∈ R+
0 within location l if

there is a differentiable function f that describes the continuous evolution

of the symbols X throughout the time elapse compatible with the flow

condition Flow(l) and such that the location invariant I(l) is preserved in

all the states in the dense sequence given by the time elapse. As for timed

automata, if the flow condition and the location invariant are both convex

then it is sufficient for the location invariant to hold at the beginning and at

the end of the time elapse. A hybrid automaton allows for a instantaneous

transition from state 〈µ, l〉 to state 〈µ′, l′〉 iff there exists 〈l, g, r, l′〉 ∈ E

such that µ satisfies the guard condition g and 〈µ, µ′〉 satisfies the reset

condition r.

Example 11 - Hybrid Automaton

Fig. 2.5 shows a hybrid automaton that keeps the temperature t between 18

and 21 degrees. The thermostat has two locations off and on. In the first

location the temperature decreases over time. In this location its derivative
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ṫ is negative and at any point in time it must be equal to some value in the

open interval (−0.2t;−0.1t). Therefore, the higher the temperature the

faster it will decrease. The only outgoing transition requires the tempera-

ture to be less than 19. For this reason the thermostat cannot switch on

until the temperature falls below this threshold. However, the location has

the invariant t ≥ 18, hence the controller must switch the heather on at

some point where the temperature is between 18 and 19 degrees. When the

thermostat moves to the on location, it starts increasing the temperature

over time. In particular, the derivative of the temperature with respect to

time is given by the flow condition ṫ = 5 − 0.1t. Therefore, the lower the

temperature the quicker it will rise. The location invariant ensures that we

will not heath the room over 22 degrees and the only outgoing transition

allows the thermostat to switch off again only if the room has reached at

least 21 degrees.

t ≥ 18

ṫ < −0.1t
ṫ > −0.2t

t ≤ 22

ṫ = 5− 0.1t

t < 19

t > 21
off on

Figure 2.5: Hybrid automaton representing a thermostat, location invariants are high-

lighted in red, guards in green and flow conditions in blue.

2.6.4 Relationship between TA, HS and ITS

There exists a reduction from the verification problem of hybrid systems to

the one of infinite-state transition systems [58]. The reduction allows for

a unified approach for the verification of timed, hybrid and infinite-state

transition systems. However, it increases the size of both the model and

the specification to be verified.
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Infinite
state

Hybrid Linear
hybrid

Rectangular
hybrid Timed

automata

Figure 2.6: Relationship between the expressiveness of the languages of timed, hybrid and

infinite-state systems.

Fig. 2.6 shows the relationship between the expressiveness of the lan-

guages of the different formalisms. The language of infinite-state transition

systems includes all the others. Hybrid automata restrict the infinite-state

variables to be continuous with respect to the time development of the

system. Linear hybrid automata impose an additional constraint on the

language, i.e. linearity. Rectangular systems require the linear functions

to be constants and, in addition, in every location the flow of each con-

tinuous variable must be bounded from above and below by some rational

constants. Finally, timed automata impose all derivatives of continuous

variables to be constant and equal to 1.

In this work we represent timed and hybrid systems as the corresponding

infinite-state transition systems.

2.7 Linear-Time Temporal Logic

Linear-Time Temporal Logic (LTL) [144] is a temporal logic that reasons

on executions as single time lines and each moment in time has a unique

possible future. This contrasts with Branching-Time Logics, such as Com-

putation Tree Logic (CTL) [63], where the model of time is a tree-like

structure and each state can split into multiple paths. In both cases we

talk about temporal properties and both languages predicate over the rel-
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ative ordering of events. The discussion about the respective merits of the

two models of computation dates back to the 1980’s [140] and it is outside

the scope of this thesis. We simply remark that the languages of LTL

and CTL are incomparable. In fact, while there are formulae that can be

expressed in both languages, there are also formulae that can be expressed

only in LTL and not in CTL and vice versa. CTL* [82] is a temporal

logic that combines, and subsumes, both LTL and CTL. The class of lan-

guages expressible in LTL specifications is the class of star-free ω-regular

languages [44]; while, CTL and CTL* can be represented using Hesitant

Alternating Automata [128].

In this work we restrict our attention to linear-time temporal logics and

consider first-order LTL extended with past operators.

This section first introduces the syntax of LTL formulae, then formally

defines its semantics and finally outlines some well-known procedures em-

ployed for the verification of such specifications on transition systems.

2.7.1 Syntax

A LTL formula is a formula in quantifier-free first-order logic extended

with temporal modalities, also called operators. X (next), G (globally), F

(finally) and U (until) are the modalities that express conditions over the

future states, while Y (yesterday), H (historically), P (previously) and S

(since) are the operators that refer to past events.

We define the syntax of a LTL formula ϕ as follows. A Σ-atom is a LTL

formula, a Boolean operator applied to LTL formulae is a LTL formula

and a temporal operator applied to LTL formulae is a LTL formula.

ϕ :: p(u, . . . , u) | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ϕ→ ϕ | ϕ↔ ϕ |

Xϕ | Gϕ | Fϕ | ϕUϕ | Yϕ | Hϕ | Pϕ | ϕSϕ

u :: c | x | f(u, . . . , u) | Ite(ϕ, u, u)
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where x is a variable in V and p, u, f and c are, respectively, a predicate

symbol, a term, a function symbol and a constant in Σ. Furthermore, in

discrete time-model we consider an additional function next and extend

the syntax for terms as follows.

u :: c | x | f(u, . . . , u) | next(u)

2.7.2 Semantics

In the following we report the semantics of LTL with respect to a time

model τ (either discrete, dense, super-dense or super-discrete).

Let instτ(t, t
′) be a formula that holds for t, t′ ∈ τ iff there is an instan-

taneous transition from t to t′:

instτ(t, t
′)=̇

{
0 < t < t′ ∧ ¬∃t′′ ∈ τ : t < t′′ < t′ if τ ∈ {discrete, dense};

∃i ≥ 0, r ≥ 0 : t = 〈i, r〉 ∧ t′ = 〈i+ 1, r〉 otherwise.

The formula ensures that there exists no time point t′′ between t and t′.

Notice that in a dense set it is always possible to find such a point, hence

instτ is always false in the dense time model. Instead, in the discrete time

model step(t, t′) holds iff t′ = t+ 1. Finally, in the super-dense and super-

discrete time models it holds iff v(t) = v(t′) (i.e. we do not move along

the “time” direction) and the first component of t′ is the first component

of t increased by 1 (i.e. single instantaneous step). Since, the domain of

the first component is N, this implies that there exists no timepoint t′′

such that t < t′′ < t′. In this context, we use instτ to define the X and

Y modalities such that they are always false in time elapses and hold in

instantaneous transitions iff the argument holds in the next/previous time

point.

Given a path σ=̇〈M, τ, µ〉, a time point t ∈ τ and a LTL formula ϕ, we

define σ, t |= ϕ recursively as follows.
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• σ, t |= p(u1, . . . , un) iff σ(t) |= p(u1, . . . , un), where p(u1, . . . , un) is a

Σ-atom;

• σ(t)(Ite(ϕ, u0, u1)) =

{
σ(t)(u0) if σ, t |= ϕ;

σ(t)(u1) otherwise;

• σ, t |= ϕ0 ∧ ϕ1 iff σ, t |= ϕ0 and σ, t |= ϕ1;

• σ, t |= ¬ϕ iff σ(t) 6|= ϕ;

• σ, t |= Xϕ iff ∃t′ ∈ τ such that instτ(t, t
′) holds and σ, t′ |= ϕ;

• σ, t |= Yϕ iff ∃t′ ∈ τ such that instτ(t
′, t) holds and σ, t′ |= ϕ;

• σ, t |= ϕ0Uϕ1 iff ∃t′ ∈ τ : t′ ≥ t such that σ, t′ |= ϕ1 and ∀t′′ ∈ τ : t ≤
t′′ < t′ then σ, t′′ |= ϕ0;

• σ, t |= ϕ0Sϕ1 iff ∃t′ ∈ τ : t′ ≤ t such that σ, t′ |= ϕ1 and ∀t′′ ∈ τ : t′ <

t′′ ≤ t then σ, t′′ |= ϕ0.

The semantics of next is defined only for the discrete time model as follows:

σ(t)(next(u)) =̇ σ(t+ 1)(u).

Finally, we define the semantics of the other temporal and Boolean

operators in terms of the ones above as:

• σ, t |= ϕ0 ∨ ϕ1 iff σ, t |= ¬(¬ϕ0 ∧ ¬ϕ1);

• σ, t |= ϕ0 → ϕ1 iff σ, t |= ¬(ϕ0 ∧ ¬ϕ1);

• σ, t |= ϕ0 ↔ ϕ1 iff σ, t |= (ϕ0 ∧ ϕ1) ∨ (¬ϕ0 ∧ ¬ϕ1);

• σ, t |= Fϕ iff σ, t |= >Uϕ;

• σ, t |= Gϕ iff σ, t |= ¬(>U¬ϕ);

• σ, t |= Pϕ iff σ, t |= >Sϕ;

• σ, t |= Hϕ iff σ, t |= ¬(>S¬ϕ).

The if-then-else operator is not standard in LTL. However, every if-

then-else term Ite(φ, u>, u⊥) appearing in some predicate p(u0, . . . , un) can
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be removed by bringing the condition φ outside the predicate.

σ, t |= p(u0, . . . , un) iff σ, t |=(φ ∧ p(u0, . . . , ui)[Ite(φ, u>, u⊥)/u>]) ∨

(¬φ ∧ p(u0, . . . , ui)[Ite(φ, u>, u⊥)/u⊥])

Therefore, the operator does not change the expressiveness of the language,

but allows for shorter and easier to read formulae.

A path σ satisfies a temporal property ϕ, written σ |= ϕ if and only if

the property holds in its initial state: σ,0 |= ϕ. A temporal formula ϕ is

satisfiable [resp. valid] iff there exists [resp. for all] σ such that σ |= ϕ.

Two temporal formulae are equivalent ϕ0 ≡ ϕ1 iff every model of ϕ0 is a

model for ϕ1 and viceversa.

≡ =̇{〈ϕ0, ϕ1〉 | ∀σ : σ,0 |= ϕ0 ⇐⇒ σ,0 |= ϕ1}

The notion of equivalence requires two formulae to hold on the same traces

starting from the first time point. We now introduce stronger notions of

entailment and equivalence to represent formulae that also hold on the same

sub-traces. Given two temporal formulae ϕ0 and ϕ1, ϕ0 globally entails ϕ1,

written ϕ0 |=G ϕ1, iff for all traces σ, for all time points t, σ, t |= ϕ0 implies

σ, t |= ϕ1. We say that ϕ0 and ϕ1 are globally equivalent, written ϕ0 ≡G ϕ1,

iff for every trace σ and every time point t, σ, t |= ϕ0 iff σ, t |= ϕ1.

≡G =̇{〈ϕ0, ϕ1〉 | ∀σ, t : σ, t |= ϕ0 ⇐⇒ σ, t |= ϕ1}

Therefore, since every trace must admit at least one time point, ≡⊆≡G.

We exemplify the difference between the two equivalence relations by con-

sidering rewritings. In rewritings we want to replace subformulae obtain-

ing equivalent formulae. In this cases we need to replace a subformula

with a globally equivalent formula, since the subformula can appear within

other temporal operators that require it to hold at previous or future time

points. For example, Ya ≡ Y¬a, however the equivalence cannot be used

as a rewriting: XYa 6≡ XY¬a.

50



CHAPTER 2. BACKGROUND

We remark that Y is always false in the first time point (t = 0) and

both X and Y are always false in the dense time model. This follows from

the definition of instτ and implies that, in general, X¬ϕ is not equivalent

to ¬Xϕ. In fact, this equivalence holds only when considering the discrete

time model. It is possible to introduce a counterpart for X [resp. Y] that

predicates about the next [resp. previous] time point in a dense sequence or

along the time dimension of the super-discrete and super-dense time mod-

els. We do not introduce such operators here since they are not standard

LTL operators; they are defined in Sec 4.1 as X̃ and Ỹ.

Notice that the semantics defined above in the case of discrete time

model reduces to the usual LTL semantics described for “untimed” (i.e.

discrete) systems [144]. In fact, in the case of discrete time model, a

path can be described as a sequence of states v0,v1, . . ., where state vi

corresponds to time point i and v(i) = i. Then, the temporal operators can

be interpreted as follows. Xϕ0 (next) holds in the current state if ϕ0 holds

in the next state, ϕ0Uϕ1 (until) states that ϕ1 holds in the current state, or

there exists a state vϕ1
in the future that satisfies ϕ1 and all states between

the current one and vϕ1
satisfy ϕ0, Gϕ0 (globally) holds in the current

state if ϕ0 will hold from now on, Fϕ0 (finally) states that there exists a

state in the future that satisfies ϕ0; Yϕ0 (yesterday), ϕ0Sϕ1 (since), Hϕ0

(historically) and Pϕ0 (previously) are the symmetric temporal operators

that consider past states.

2.7.3 Model Checking Problem

Given a transition system M and a LTL specification ϕ the model checking

problem is the problem of deciding whether M satisfies ϕ. We say that

M satisfies ϕ, written M |= ϕ if and only if every path of M satisfies the

property ϕ.

M |= ϕ ⇐⇒ ∀π ∈ L(M) : π |= ϕ
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A widely used approach to perform model checking of LTL specifica-

tions, known as automata-theoretic approach [159], relies on the construc-

tion of a (generalised) fair transition system whose language contains all

and only the paths in which the specification holds. Such fair transition

system is called tableau of the LTL specification. In general, the resulting

transition system can be exponentially larger than the LTL formula and

many different procedures have been proposed to perform this transfor-

mation while trying to minimise the size of the resulting transition sys-

tem [74, 154, 90, 13] or on-the-fly [91]. In this work we do not go into the

details of these transformations, but simply recall why they are important

in the context of LTL model checking.

The tableau construction for LTL specifications allows the reduction of

the LTL satisfiability and model checking problems to deciding whether

the language of some fair transition system is empty. In more detail, let ϕ

be an LTL formula, M be a fair transition system and M¬ϕ be the tableau

of the negation of the formula ϕ, then L(M¬ϕ) is the set of all paths such

that ¬ϕ holds.

π ∈ L(M¬ϕ) ⇐⇒ π |= ¬ϕ

The synchronous composition M ×M¬ϕ of the transition system with

the tableau is a fair transition system whose language is empty iff every

path in L(M) satisfies ϕ. In fact, a path π ∈ L(M) such that π |= ¬ϕ, by

construction, would also be a path of the tableau, i.e. πL(M¬ϕ). Therefore,

π is a path in the synchronous product of the two transition systems.

(M |= ϕ) ⇐⇒ (L(M ×M¬ϕ) = ∅)

A classical result in LTL model checking for finite-state system states

that if a finite-state transition system M admits a path π such that π 6|= ϕ,

for some LTL property ϕ, then M must admit also a lasso-shaped path

π′ such that π′ 6|= ϕ. A path is called lasso-shaped iff it is composed of a
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stem, also called prefix, and a loop as depicted in Fig. 2.7.

stem

loop

Figure 2.7: Lasso-shaped path.

Intuitively, this follows from the observation that given a finite number

of states, it is impossible to build a infinite sequence of distinct states.

Therefore, any infinite sequence must contain some state multiple times;

these repetitions correspond to the loops of lasso-shaped paths.

This result guarantees that, in the finite-state case, it is sufficient to look

for lasso-shaped paths in order to solve the LTL model checking problem.

This also implies that if the language of a fair transition system is not

empty, then it must contain at least one lasso-shaped path. Notice that

the loop of such path must contain at least one fair state.

These observations lead to a procedure that in polynomial-time decides

whether the language of a finite-state fair transition system is empty. This

procedure, combined with the exponential-time computation of the tableau

of a LTL formula, leads to an exponential-time decision procedure for the

LTL model checking problem.

We can decide whether the language of a fair transition system M is

empty in polynomial-time with respect to the number of states in the

system. An example of such decision procedures is the double-nested DFS

algorithm [70]. The algorithm performs a visit on the graph corresponding

to the transition system looking for a path from an initial state to a fair

state. If it identifies such a path, then it performs another visit starting

from the fair states and trying to reach a state in the path. If it succeeds
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then it found a lasso-shaped path such that the loop contains a fair state

and the language of the system is not empty. If no such path is found, then

the system admits no lasso-shaped fair path and we can conclude that its

language is empty.

Unfortunately, these results do not hold in the case of infinite-state sys-

tems. In fact, in such systems there can be infinite sequences of distinct

states and such sequences can correspond to fair paths in its language.

Intuitively, exploring an infinite sequence can require an infinite number

of steps and the LTL model checking problem on infinite-state transition

systems is, in general, undecidable. A 2-counter machine can be easily

represented as a infinite-state transition system and LTL specifications

are semantic properties over the system behaviour, hence by Rice’s theo-

rem [114] the model checking problem is undecidable.

2.8 Symbolic Model Checking

Model checking procedures can be classified in two main categories: sym-

bolic and explicit-state.

Explicit-state techniques try to decide the validity of some property φ

on a transition system M by exploring the graph representing it. Each

node in the graph corresponds to a single state and the edges represent the

transitions between states. The double-nested DFS procedure we briefly

described in §2.7.3 is an example of a explicit-state algorithm for LTL

model checking.

As the number of states grows explicit approaches become unpractical.

The number of states grows exponentially in the number of variables and

explicit techniques analyse one state at a time. Symbolic techniques miti-

gate this issue by reasoning about sets of states and transitions at a time.

The sets of states and transitions are usually represented as first-order for-
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mulae. A formula ψ(V ) denotes the set of states where the formula holds

bψc=̇{v | v |= ψ(V )}. In this context we say that a state v is in ψ meaning

that v ∈ bψc. Notice that the size of the formula is not related to the car-

dinality of the set it represents. For example, consider a transition system

with a single real valued variable x. In this setting, x ≥ 0 represents an

infinite set of states (the positive reals) and x = 0 represents a single state.

However, given a set of states there could be no finite formula to represent

it. Most symbolic techniques rely on Binary Decision Diagrams (BDD) or

SAT/SMT-solvers to perform operations on such sets. In this work we

are interested in symbolic techniques for infinite-state systems and we rely

on SMT-solvers.

In the following we briefly present some relevant SMT-based symbolic

model checking techniques.

2.8.1 Reachability

The reachability problem requires to decide whether a transition system

M admits a finite path ending in some state in φ, written M  φ. The

reachability problem is the complement of the invariant model checking

problem, which involves deciding whether a quantifier-free formula φ holds

in all reachable states of M (M |= φ). M |= φ holds if and only if M  φ

does not.

Reachability is a fundamental concept in model checking. Many tech-

niques and algorithms effectively reduce the model checking problem to

a sequence of reachability problems. For example, the double-nested DFS

algorithm outlined in §2.7.3 requires to solve two distinct reachability prob-

lems. The first one to identify a path from an initial state to a fair state

and the second one to find a path from the fair state to one of the other

states already visited.
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2.8.2 Bounded Model Checking

Bounded Model Checking (BMC) [32, 31] is a symbolic approach that in-

crementally builds formulae representing all paths of a system of length k.

In this sense BMC performs a BFS on the graph representing the system.

It progressively explores the state-space by increasing the bound k until

a counterexample is found or some upper bound of k is reached. At each

step k BMC builds a formula whose models are only counterexamples for

the property, hence the model checking problem is reduced to SAT, in the

finite-state case, and SMT in the infinite-state case.

We will describe how to apply BMC to solve the reachability problem.

However, BMC can also be used to directly search for a lasso-shaped coun-

terexample for a LTL property [31], avoiding the expensive tableau and

product construction. Notice that this still leads to an exponential-time

procedure in the finite case. In fact, the problem is reduced to a sequence

of SAT queries, each of which requires exponential time.

Let M=̇〈V, I, T 〉 be a transition system and φ(V ) a quantifier-free for-

mula. Consider the associated reachability problem M  φ. For k ∈ N
the BMC encoding unrolls k transitions of the system and builds a formula

that is satisfiable iff M admits a path of length k ending in some state in

φ. This can be written as

I(V0) ∧ φ(Vk) ∧
k−1∧
i=0

T (Vi, Vi+1),

where each Vi=̇{vi | v ∈ V } is a copy of the symbols in V representing the

assignment of the ith state in the path.

In practical cases, BMC proved to be very effective in falsifying prop-

erties. The intuition behind its success is that most of the time bugs that

cause a property to be false do not require a huge number of steps; they

are “shallow” and the unrolling will only visit a portion of the whole state-
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space. Notice that, since we progressively increase the bound k, BMC

will always find the path falsifying the property that requires the smallest

amount of steps.

Consider a model M and an invariant property φ defined as formulae

over a decidable SMT theory. Assume the theory to be LIA, M is still

expressive enough to model any 2-counter machine. For this reason, both

invariant model checking and reachability are undecidable for infinite-state

systems. Notice that in the case of a decidable theory, each SMT query

performed by BMC is decidable and BMC is a semi-procedure for the

reachability problem. This fact implies that the invariant model checking

problem cannot be semi-decidable.

2.8.3 Liveness to Safety

A popular approach to exploit algorithms originally developed for invariant

checking in LTL model checking is liveness-to-safety (L2S) [29]. At the

cost of doubling the size of the model, it reduces the language emptiness

problem (hence also of the LTL model checking problem) into an invari-

ant verification problem. Given a fair transition system M=̇〈V, I, T, F 〉
it constructs a transition system ML2S=̇〈VL2S, IL2S, TL2S〉 and a property

φL2S(VL2S) such that ML2S  φL2S implies ∃π ∈ L(M). In the case

of finite-state systems, the procedure is both sound and complete, i.e.

ML2S  φ ⇐⇒ ∃π ∈ L(M).

L2S builds a reachability problem that encodes the search for a fair

lasso-path of M . For every state variable in V it introduces a “monitor”

in the form of a fresh variable of the same type. The assignment to each

monitor is nondeterministically chosen in the initial state and then can

never change. L2S requires to search for a finite path that visits two times

the state where each variable in V is equal to its corresponding monitor

(i.e. a loop), and between them there is a fair state (i.e. a fair loop).
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More formally we define the transformation as follows.

Definition 17 - Liveness-to-Safety

Let M=̇〈V, I, T, F 〉 be a fair transition system, its liveness-to-safety trans-

formation is the transition system ML2S =̇L2S (M)=̇〈VL2S , IL2S , TL2S 〉 such

that:

• VL2S =̇ V ∪{mv | v ∈ V }∪{in loop}, where in loop is a fresh Boolean

atom and for each v ∈ V mv is a fresh variable with the same domain

of v;

• IL2S =̇ I ∧ ¬in loop;

• TL2S =̇ T∧(
∧
v∈V m

′
v = mv)∧in loop ′ → (in loop∨(F∧

∧
v∈V v = mv));

• φL2S =̇ in loop ∧
∧
v∈V v = mv.

In this encoding we require the loop-back state (
∧
v∈V v = mv) to be

a fair state. This does not affect the generality of the approach and sim-

plifies the encoding. The assignment to the monitors mv is chosen at the

beginning and then never changes. TL2S ensures that the Boolean sym-

bol in loop becomes true the first time we visit the fair state described

by the monitors. The reachability problem, given by φL2S , requires us to

find a path ending in a state where in loop holds and the assignment to

the symbols in V corresponds to the assignment to the monitors. The last

state, since in loop holds, must be the second time the path visits such

state. Therefore, the path is lasso-shaped and, since the loop-back state

is fair, it must correspond to a fair lasso-shaped path over the symbols in

V for M . Notice that, since we encode the search of a lasso-shaped path,

in infinite-state systems L2S can be used only to identify counterexamples

and does not allow to conclude that the property holds.
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2.8.4 Abstraction

In 1977 Cousot and Cousot described a technique called abstract interpre-

tation (AI) [72]. They propose to study properties of programs by ab-

stracting away all additional information that is not necessary to prove the

property. For example, to compute the sign of result of a multiplication,

it is sufficient to know the signs of all factors and we do not need to know

their precise value. While Cousot’s focus is on verification of software, the

applicability of AI is much broader and, as he stated in [71], provides a

mathematical formalisation of the concept of approximation. In this con-

text an abstraction function α maps objects from a concrete domain to

a corresponding abstract space and a concretisation function γ maps ele-

ments from the abstract space into their concretisation (i.e. element in the

concrete domain).

Given two fair transition systemsMu=̇〈Vu, Iu, Tu, Fu〉 andM=̇〈V, I, T, F 〉
we say that Mu underapproximates M and that M overapproximates Mu,

iff L(Mu) ⊆ L↓Vu(M).

Identifying the correct/ideal level of abstraction to prove a property

is a non-trivial challenge. In some specific contexts, such as invariant and

LTL verification on TA, there exist abstractions ensuring that the property

holds in the concrete system iff it does on the abstract one. However, in

general, when defining the abstraction function, on one hand we would

like to disregard as many details as possible in order to reason on a much

simpler system, but on the other hand if we abstract to much information,

then we could be unable to (dis)prove our property. In addition, identifying

the “right” level of abstraction a-priori is often unfeasible, for this reason

a key concept related to abstraction is the one of refinement. Given an

abstraction that is too coarse to (dis)prove some property, we refine it

obtaining another abstraction that is more “precise”. Key elements for
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refinements are the identification of some root cause for the abstraction

being too coarse and the application of a refinement to remove such cause.

Counterexample-Guided Abstraction Refinement

A popular approach for abstraction-refinement is counterexample-guided

abstraction refinement (CEGAR) [64], also referred to as CEGAR-loop.

Given a model checking problem M |= ϕ, we compute an overapproxima-

tion Mo of M such that Mo=̇α(M) and Mo |= ϕ implies that M |= ϕ

is also true. Therefore, we can apply model checking techniques in the

abstract space; if the property holds in the abstract system then it must

hold also in the concrete system. However, if Mo 6|= ϕo, then we obtain a

path πo ∈ L(Mo) such that πo 6|= ϕo. πo is a path in the abstract space

that corresponds to a set of paths in the concrete space given by γ(πo).

If there is some concrete path corresponding to πo in the language of M ,

then this is a counterexample in the concrete system and we can conclude

that M 6|= ϕ. Otherwise, if πo has no concrete counterpart in L(M), we

call πo spurious. In this case we refine the abstraction function α such that

we remove at least the spurious counterexample πo from the language of

the abstract system. We define α′ such that πo 6∈ L(α′(M)) and α′(M)

is still an overapproximation of M . In many cases, and depending on the

abstraction function considered, it is possible to compute a “reason” for πo

being spurious and refine the abstraction by removing a possibly infinite

set of spurious counterexamples at a time.

Predicate Abstraction

A widely used abstraction is predicate abstraction where the system is

abstracted by considering the truth assignments to a finite set of predicates

P. Notice that this implies that the abstract space is always finite. The

abstraction is such that if M̂P is the predicate abstraction of M and a
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M |= φ?
initial

abstraction
M̂P |= φ?

yes

M |= φ

π̂P |= ¬φ
π̂P spurious?

no

M 6|= φ

yes

Refine M̂P : π̂P 6∈ L(M̂P)

Figure 2.8: CEGAR loop.

condition φ is reachable in M then it must be reachable also in M̂P, written

(M  φ)→ (M̂P  φ).

Given a transition system M=̇〈V, I, T 〉 and a set of n predicates over V

P=̇{pi(V ) | n ∈ N ∧ 0 ≤ i < n} we define the abstract space as the

set of assignments to the abstract symbols VP=̇{vp | p ∈ P}, where each

vp is a Boolean symbol representing the truth assignment of predicate p.

The abstraction relation is defined as αP(V, VP)=̇
∧
p∈P vp ↔ p(V ). The

relation associates each abstract state (total assignment over VP) to the

region in the concrete space described by the corresponding assignments

to the predicates in P. The abstraction of a formula φ(V ) is defined as

φ̂P(VP)=̇∃V : φ(V ) ∧ αP(V, VP). Similarly, we define the abstraction of a

relation ψ(V, V ′) as ψ̂P(VP, V
′
P)=̇∃V, V ′ : ψ(V, V ′) ∧ αP(V, VP) ∧ αP(V ′, V ′P).

Finally, we define the abstraction of transition system M with respect to

predicates P as M̂P=̇〈VP, ÎP, T̂P〉, where ÎP is the abstraction of the initial

states of M and T̂P is the formula corresponding to the abstraction of the

transition relation of M .

Abstraction for Infinite-State Model Checking

Recently, abstraction has been exploited also in SMT-based model check-

ing [129]. Many SAT-based model checking techniques for finite-state
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systems have been extended for the infinite-state case by replacing the

SAT-solver with a SMT-solver combined with abstraction techniques.

Abstraction techniques have been applied to symbolic algorithms, such

as BMC [125], k-induction [124] and Property Directed Reachability (PDR) [56],

to obtain approaches capable of checking invariant specifications on infinite-

state transition systems. Simply replacing the SAT-solver with an SMT-

solver would not lead to viable model checking algorithms. The refinement

step applied by some of these algorithms (e.g. PDR) would remove a sin-

gle point from an infinite set, thus it is unlikely that the procedure will

converge and eventually terminate. For this reason, different approaches

have been proposed that try to improve the refinement by generalising the

state to be removed. In this context [34, 112, 116, 124, 130, 161] propose

generalisation techniques that are tailored to a specific theory used by the

SMT-solver or rely on particular restrictions of the modelling language,

while others [33, 56, 118, 120] try to reduce as much as possible the theory

specific component by reasoning on an abstract over-approximation of the

model.

Implicit Abstraction

Abstraction techniques require the computation of an abstract system.

The explicit computation of the abstract space could lead to the state-

explosion issue we already described for explicit-state techniques. Implicit

abstraction [155] avoids the upfront computation of the abstract system,

while preserving the advantages of reasoning on an abstract space.

In the following we describe implicit predicate abstraction, an approach

to embed the definition of the predicate abstraction in the formula used

to represent paths of the transition system. As in predicate abstraction,

we consider a finite set of predicates P over the symbols of the transition

system M=̇〈V, I, T 〉. We define a relation EQP such that two states v,
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v are in the relation iff they correspond to the same abstract state. The

relation can be symbolically represented as

EQP(V , V ) =̇
∧
p∈P

p(V )↔ p(V ),

where V =̇{v | v ∈ V }. Given this equivalence relation, we can symbolically

represent a path of length k of the abstraction of M as

P̂ athk,P =̇ T (V k−1, Vk)
∧

1≤i<k

T (V i−1, Vi) ∧ EQP(V i−1, Vi).
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Chapter 3

Problem Definition

This chapter describes the main problem we address in this thesis.

In many systems, time and delays play a significant role in their cor-

rect operation. For example, real-time systems often require actions to be

performed with precise timing constraints and in distributed systems the

interactions between components are often associated with timeouts that

allow the computation to continue even in the event of network or node

failures. In these contexts, we need a specification language capable of

precisely capture the interplay between computation and time. For this

reason, temporal logics have been extended with metric operators to quan-

tify the distance of events with respect to time [39]. However, there is a

lack of tools capable of verifying such properties and they often rely on

additional restrictions of the modelling or specification languages.

In this work, we propose the semantics for an extended version of Metric

Temporal Logic [127] that can be interpreted over different models of time.

We consider its model checking problem on timed systems and propose a

reduction to model checking of LTL specifications on ITS. This allows us

to employ all model checking techniques developed in this context. These

techniques show to be reasonably effective in proving the validity of the

properties, however they have limited falsification capability. In fact, exist-
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ing model checking approaches are capable of identifying only lasso-shaped

counterexamples. Other techniques capable of identifying counterexamples

not in lasso shape usually consider particular types of systems (e.g. lasso

programs) and represent counterexamples using ad hoc structures. There-

fore, they lack the generality we require and do not consider fairness.

These limitations severely hinder the definition of formal models for

infinite-state and timed systems. For any meaningful system the defini-

tion of its formal representation is usually an iterative process and careful

analysis is necessary to reach sufficient confidence in the correctness of

the model and its specifications. The formalisation of the system under

consideration is progressively refined by analysing the counterexamples to

the specifications. If the model checker is too limited in its falsification

capability it will fail to provide a definite answer, hence it will provide

no information to the designer. At this point the designer could lift the

abstraction level of the formalisation. However, identifying the correct

abstraction level and the component of the system to be abstracted is a

challenging problem that relies on the knowledge of both the formalisation

languages and verification procedures.

Furthermore, a model with an empty language satisfies all properties.

For this reason, in the development of the formalisation of a system it is

important to ensure that both model and specifications do not contain con-

tradictions. Therefore, counterexamples are important not only to identify

issues in the formalisation, but also to ensure that it correctly represent the

intended behaviours. This can be achieved by exploiting the falsification

capability of model checkers to ensure that the model allows every intended

behaviour. For every such behaviour it is sufficient to define a specification

that negates its existence. If the model checker identifies a counterexample

for such property we are guaranteed that the model admits at least one

such desired behaviour. From this perspective we can organise the specifi-
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cations of a system into two categories: valid properties that ensure that

the system does not admit any undesired behaviour and false properties

whose counterexamples correspond to desired executions of the system.

In this work, we address this issue by proposing novel techniques to

represent and identify fair paths at the ITS level. While the problem is in

general undecidable, the techniques proved to be effective on a wide range

of benchmarks and also capable of identifying witness that all other tools

could not find.
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Chapter 4

Extending Temporal Logics with

Metric Operators

Note. The work presented in this chapter is the result of the collabora-

tion with Stefano Tonetta and Marco Roveri. This chapter extends our

work [55] by considering also the super-discrete time model and adapting

the semantics and reductions accordingly.

Temporal logics, such as LTL, predicate about the relative ordering of

events but cannot quantify their distance with respect to some notion of

time. In the context of timed systems the capability of quantifying such

distance is, at the very least, desirable and timed temporal logics have been

defined and studied since the 1990’s. Many extensions of both branching

and linear time logics have been proposed [39], in this thesis we focus on

the linear-time case and consider Metric Temporal Logic (MTL) [127].

MTL extends LTL with decorators on the temporal operators in the form

of intervals specifying the time boundaries in which the formula must be

satisfied. In the literature there are different definitions for the semantics

of MTL that also consider different models of time.

The semantics of temporal logics can be partitioned into two broad cat-

egories: discrete-observation (or pointwise) and continuous-observation (or
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continuous) semantics [39]. They differ in the definition of which part of

the system is observed. In discrete-observation semantics the satisfaction

of subformulae is observed only at discrete time points and not while time

elapses; instead, in continuous-observation semantics every clock evalua-

tion in the time elapse is observed. This distinction can change the truth

value of a formula and also affects the complexity of the model checking

problem [37].

Specifications with discrete-observation semantics can always be re-

duced to the discrete and super-discrete time models, while continuous-

observation semantics require either the dense or super-dense time models.

For this reason, we will implicitly assume discrete-observation semantics

when dealing with discrete and super-discrete time models and continuous-

observation semantics in dense and super-dense time models.

The chapter is structured as follows. Sec. 4.1 defines LTL-EF: an ex-

tension of LTL with event-freezing functions. Then, we extend LTL-EF

with metric temporal operators and define MTLC in Sec. 4.2. MTLC

extends MTL, interpreted over first-order predicates, with parametric in-

tervals and counting operators. Sec. 4.3 reduces the model checking prob-

lem of MTLC0,∞ (a fragment of MTLC) on dense, super-dense or super-

discrete time to LTL verification on discrete time model. The reduction is

obtained by combining the following three steps. First, a MTLC0,∞ for-

mula is rewritten in LTL-EF (§4.3.1). Then, for every dense, super-dense

and super-discrete trace we show how to build a corresponding trace and

LTL-EF formula with discrete time model (§4.3.2). Finally, we remove

the event-freezing functions from the LTL-EF specifications obtaining the

problem of verifying a LTL property on a ITS (§4.3.3).
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4.1 LTL with Event-Freezing Functions

This section defines the syntax and semantics of LTL-EF. LTL-EF ex-

tends LTL (2.7) with four new temporal operators: X̃, Ỹ, @F̃ and @P̃. X̃

and Ỹ are the timed counterparts of X and Y. They predicate about the

“next state” along the time dimension, while X and Y specify constraints

about the next state reached via an instantaneous transition. The event-

freezing functions u@F̃(ϕ) (at next) and u@P̃(ϕ) (at last), take as input

a term u and a formula ϕ, and represent the value of u at the next point

in the future or last point in the past, respectively, in which ϕ holds. If no

such time point exists, then we define them equal to a default value rep-

resented by a variable def u@F̃(ϕ) for @F̃ and def u@P̃(ϕ) for @P̃. Therefore,

all occurrences of the same @F̃ [resp. @P̃] formula share the same default

value.

4.1.1 Syntax

The syntax of a LTL-EF is defined as follows.

ϕ :: p(u, . . . , u) | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ϕ→ ϕ | ϕ↔ ϕ |

Xϕ | Gϕ | Fϕ | ϕUϕ | Yϕ | Hϕ | Pϕ | ϕSϕ | X̃ϕ | Ỹϕ

u :: c | x | f(u, . . . , u) | u@F̃(ϕ) | u@P̃(ϕ) | Ite(ϕ, u, u)

where x, p, f and c are a variable in V , a predicate, a function and a

constant symbol in Σ respectively.

Therefore, LTL-EF allows for all the propositional and temporal op-

erators of LTL. LTL-EF introduces two additional temporal operators

(X̃, Ỹ) that evaluate to either true or false and two operators (@F̃, @P̃)

that can be used in terms and whose evaluation type depends on their

arguments. We define the last two operators, @F̃ and @P̃, such that their

evaluation is always some value in the domain of their first argument.
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4.1.2 Semantics

We now define the semantics of LTL-EF with respect to a time model τ ,

which is either discrete, dense, super-dense or super-discrete.

Let ordered τ(t, t
′′, t′) be a formula that holds for t, t′, t′′ ∈ τ if [t, t′′, t′] is

an ordered sequence of time points:

ordered τ(t, t
′′, t′)=̇


0 ≤ t < t′′ < t′ if τ ∈ {discrete, dense};

∃i, r, i′, r′, r′′ : 0 ≤ i ≤ i′ ∧ 0 ≤ r < r′′ ≤ r′∧

t = 〈i, r〉 ∧ t′ = 〈i′, r′〉 ∧ t′′ = 〈i, r′′〉 otherwise.

The formula ∀t′ > t ∃t′′ : ordered τ(t, t
′′, t′), requires the existence of a

intermediate time point t′′ for any successor t′ of t. It describes the time

points t that are followed by a time-elapse transition. In particular, the

formula is always false in the discrete time model, in fact for t′=̇t+ 1 there

is no t′′ in between. In the dense case t, t′ ∈ R+
0 , hence for every two points

t and t′ there always exists some point t′′ in between, e.g. t+t′

2 . Consider

now the super-dense and super-discrete time models and let t=̇〈i, r〉. The

universal quantification requires the formula to hold for every t′ > t. If

τ admits a successor t′=̇〈i + 1, r〉 for t, the formula is false, since there is

no r′′ such that r < r′′ ≤ r. Otherwise, τ admits a successor along the

second dimension of the time model. In the super-dense case the formula

implies the existence of a dense sequence of successors for t. Let t′=̇〈i, r′〉,
with r′ > r, be one time point in the dense interval, then t′′=̇t′ satisfies

the formula. In the super-discrete case there is no dense sequence and

the smallest time point is t′=̇〈i, r + 1〉, again we can define t′′=̇t′ and the

formula holds.

Given a path σ=̇〈M, τ, µ〉, a time point t ∈ τ and a LTL-EF formula ϕ,

we define σ, t |= ϕ recursively as follows. The semantics of the Boolean con-

nectives and temporal modalities is defined as the one reported in §2.7.2 for

LTL. In the following we report the semantics of the operators introduced
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by LTL-EF.

• σ, t |= X̃ϕ iff ∀t′ ∈ τ : t′ > t, ∃t′′ ∈ τ such that ordered τ(t, t
′′, t′) holds

and σ, t′′ |= ϕ;

• σ, t |= Ỹϕ iff t > 0 and ∀t′ ∈ τ : t′ < t, ∃t′′ ∈ τ such that

ordered τ(t
′, t′′, t) holds and σ, t′′ |= ϕ;

• σ(t)(u@F̃(ϕ)) =



σ(t)(u) if σ, t |= X̃ϕ;

σ(t′)(u) if ∃t′ > t : σ, t′ |= ϕ ∨ X̃ϕ and

∀t′′ ∈ τ : t < t′′ < t′ → σ, t′′ 6|= ϕ;

σ(t)(def u@F̃(ϕ)) otherwise;

• σ(t)(u@P̃(ϕ)) =



σ(t)(u) if σ, t |= Ỹϕ;

σ(t′)(u) if ∃t′ < t : σ, t′ |= ϕ ∨ Ỹϕ and

∀t′′ ∈ τ : t′ < t′′ < t→ σ, t′′ 6|= ϕ;

σ(t)(def u@P̃(ϕ)) otherwise;

where def u@F̃(ϕ) and def u@P̃(ϕ) are fresh variables representing the default

value of the expressions u@F̃(ϕ) and u@P̃(ϕ) respectively.

Given a trace σ, we say that a formula ϕ holds in the right [resp. left]

open-interval of time point t iff σ, t |= X̃ϕ [resp. σ, t |= Ỹϕ].

We now highlight some subtleties of the semantics of X̃ and Ỹ. Simi-

larly to the Y modality, also Ỹ is always false in the first state (t = 0).

However, while X and Y are always false in the dense time model, their

dense counterparts X̃ and Ỹ are always false in the discrete time model.

Therefore, in general, X̃¬ϕ is not equivalent to ¬X̃ϕ. The equivalence

holds only when considering the dense time model. We can express a con-

dition ϕ on a generic “next” state via the disjunction (Xϕ)∨ (X̃ϕ) and the

following equivalence holds:

¬((Xϕ) ∨ (X̃ϕ)) ≡ (X¬ϕ) ∨ (X̃¬ϕ).
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X̃ and Ỹ can be thought of as temporal operators that predicate on the

right, resp. left, open-interval of the current time point. However, the

interpretation of such open interval in the case of super-discrete time may

not be straightforward. Consider the formula X̃ϕ and two time points

t=̇〈i, r〉 and t′ such that t < t′ and v(t′) − v(t) > 0. In super-discrete

time this implies v(t′) − v(t) ≥ 1 and we can define t′′=̇〈i, r + 1〉 as the

immediate successor of t along time. t and t′′ are such that there exists no

intermediate time point t, t < t < t′′. Therefore, the semantics of X̃ in the

super-discrete case ensures that X̃ϕ holds at t iff ϕ holds at its immediate

time-successor t′′. A similar argument holds for Ỹ. Ỹϕ holds at t=̇〈i, r〉
iff r ≥ 1 and ϕ holds at its immediate time-predecessor 〈i, r − 1〉.

Abbreviations. We define shorthand notations for the strict and non-strict

versions of the temporal operators. We refer to the strict temporal modal-

ities also with counting as follows.

F̃ϕ =̇ (X̃Fϕ) ∨ (XFϕ); P̃ϕ =̇ (ỸPϕ) ∨ (YPϕ);

F̃
1
ϕ =̇ F̃ϕ; P̃

1
ϕ =̇ P̃ϕ;

F̃
k
ϕ =̇ F̃(ϕ ∧ F̃

k−1
ϕ); P̃

k
ϕ =̇ P̃(ϕ ∧ P̃

k−1
ϕ);

G̃ϕ =̇ ¬F̃¬ϕ; H̃ϕ =̇ ¬P̃¬ϕ;

G̃
k
ϕ =̇ ¬F̃

k¬ϕ; H̃
k
ϕ =̇ ¬P̃

k¬ϕ.

With respect to the event-freezing functions we define:

u@F(ϕ) =̇ Ite(ϕ, u, u@F̃(ϕ)); u@P(ϕ) =̇ Ite(ϕ, u, u@P̃(ϕ));

u@F̃
1
(ϕ) =̇ u@F̃(ϕ); u@P̃

1
(ϕ) =̇ u@P̃(ϕ);

u@F̃
k
(ϕ) =̇ (u@F̃(ϕ))@F̃

k−1
(ϕ); u@P̃

k
(ϕ) =̇ (u@P̃(ϕ))@P̃

k−1
(ϕ).

Finally, next(u) can be defined as an abbreviation of u@F̃(>). This def-

inition, with respect to the one reported in §2.7.2, assigns a semantics to

the operator in every time model and not only in the discrete one.
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4.1.3 Next Occurrence in Dense and Super-Dense Time

We now describe some subtleties that arise when considering dense and

super-dense time models. A well-known and intuitive fact about LTL is

that in the discrete-time setting Fϕ ≡ ¬ϕUϕ. The equivalence states

that if there is a point tF in the future in which ϕ holds, then there is

a (possibly empty) sequence of points in which ϕ does not hold before

reaching a point tU ≤ tF in which ϕ holds and vice versa. Therefore, in

the discrete-time case ¬ϕUϕ characterises the first time point in which ϕ

holds. However, this is not the case in dense-time settings (dense or super-

dense time models) [35]. In fact, ϕ can hold in a left-open interval I. Any

time point in such interval will have an unbounded number of predecessors

in which ϕ holds as well. In fact, any time value v ∈ I must be greater

than the lower bound of I, v > l(I), and the interval (l(I), v) ⊂ R+
0 is a

nonempty dense set.

We solve this issue by employing X̃ϕ to identify the time points in which

ϕ holds in a left-open interval whose lower bound is the current time point.

ϕ0UCϕ1 =̇ ϕ0U(ϕ1 ∨ (ϕ0 ∧ X̃ϕ1))

Using this definition we are guaranteed that there exists a minimum time

point satisfying the left-hand-side of the U and, assuming finite variability,

the following equivalence holds.

Fϕ ≡ (¬ϕ)UCϕ

4.1.4 LTL-EF with Explicit Time

We now extend LTL-EF with an explicit notion of time and define XLTL-EF.

XLTL-EF has an additional symbol time that represents the time elapsed

from the initial state. We restrict the use of this symbol such that it can

be compared only with constants. We define the syntax of XLTL-EF as
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follows.

ϕ :: p(u, . . . , u) | tu ./ cu | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ϕ→ ϕ | ϕ↔ ϕ |

Xϕ | Gϕ | Fϕ | ϕUϕ | Yϕ | Hϕ | Pϕ | ϕSϕ | X̃ϕ | Ỹϕ

u :: c | x | f(u, . . . , u) | u@F̃(ϕ) | u@P̃(ϕ) | Ite(ϕ, u, u)

cu :: c | f(cu, . . . , cu) | cu@F̃(ϕ) | cu@P̃(ϕ) | Ite(ϕ, cu, cu)

tu :: time | time@F̃(ϕ) | time@P̃(ϕ) |

time@F̃(ϕ)− time | time − time@P̃(ϕ)

./ :: ≤ | < | = | 6= | > | ≥

The semantic of XLTL-EF simply extends the one of LTL-EF by

setting σ(t)(time)=̇v(t), for every trace σ and time point t of σ.

In addition, we will write time until(ϕ) for time@F̃(ϕ) − time and

time since(ϕ) for time − time@P̃(ϕ).

4.2 MTL with Counting Operators

In this section we define MTLC as an extension of LTL-EF with bounds

on the temporal modalities. MTLC can also be seen as an extension of

MTL along the following directions: (i) it decorates temporal modalities

with parametric intervals; (ii) it allows for counting operators that pred-

icate about the number of times some event happens in a given interval

and (iii) it adds the temporal modalities we introduced for LTL-EF: X̃,

Ỹ, @F̃ and @P̃.
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4.2.1 Syntax

We define the syntax of a MTLC formula ϕ as follows.

ϕ :: p(u, . . . , u) | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ϕ→ ϕ | ϕ↔ ϕ |

Xϕ | X̃ϕ | Yϕ | Ỹϕ |

GIϕ | FIϕ | ϕUIϕ | HIϕ | PIϕ | ϕSIϕ |
−→
Ck

[0,cu)ϕ |
←−
Ck

[0,cu)ϕ

u :: c | x | f(u, . . . , u) | u@F̃(ϕ) | u@P̃(ϕ) | Ite(ϕ, u, u)

I :: [cu, cu] | [cu, cu) | (cu, cu] | (cu, cu) | [cu,∞) | (cu,∞)

cu :: c | f(cu, . . . , cu)

where x, p, f and c are a variable in V , a predicate symbol, a function

symbol and a constant in Σ respectively. cu is a Σ-term that does not

contain any variable. Therefore, the bounds on the temporal modalities

are rigid and may contain parameters, i.e. their interpretation cannot

change with time. For a temporal operator O ∈ {U,F,G,S,P,H}, we

will also use the following abbreviations for the intervals: O=cu for O[cu,cu],

O≤cu for O[0,cu], O<cu for O[0,cu), O>cu for O(cu,∞) and O≥cu for O[cu,∞).

4.2.2 Semantics

Given a path σ=̇〈M, τ, µ〉, a time point t ∈ τ and a MTLC formula ϕ,

we define σ, t |= ϕ recursively as follows. We define the semantics for

the bounded version of the temporal modalities; the semantics of all other

operators is the one reported in Sec. 4.1 for LTL-EF and is not repeated

here.

• σ, t |= ϕ0UIϕ1 iff ∃t′ ∈ τ : t′ ≥ t ∧ v(t′) − v(t) ∈ M(I) such that

σ, t′ |= ϕ1 and ∀t′′ ∈ τ : t ≤ t′′ < t′ then σ, t′′ |= ϕ0;

• σ, t |= ϕ0SIϕ1 iff ∃t′ ∈ τ : t′ ≤ t ∧ v(t) − v(t′) ∈ M(I) such that

σ, t′ |= ϕ1 and ∀t′′ ∈ τ : t′ < t′′ ≤ t then σ, t′′ |= ϕ0;
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• σ, t |=
−→
Ck

<cuϕ iff ∃t1, . . . tk ∈ τ : t < t1 < . . . < tk∧v(tk)−v(t) < M(cu)

such that ∀i ∈ {j}kj=1 : σ, ti |= ϕ;

• σ, t |=
←−
Ck

<cuϕ iff ∃t1, . . . tk ∈ τ : 0 ≤ tk < . . . < t1 < t ∧ v(t)− v(tk) <

M(cu) such that ∀i ∈ {j}kj=1 : σ, ti |= ϕ.

Where M(I) is the set obtained from I by substituting the terms at the

endpoints with their interpretation.

The semantics of the other temporal operators is defined in terms of the

ones above as in the LTL case.

σ, t |= FIϕ iff σ, t |= >UIϕ; σ, t |= GIϕ iff σ, t |= ¬(>UI¬ϕ);

σ, t |= PIϕ iff σ, t |= >SIϕ; σ, t |= HIϕ iff σ, t |= ¬(>SI¬ϕ).

We remark that the bounds on the temporal operators are to be inter-

preted as a distance with respect to the time dimension when considering

super-dense and super-discrete time models. Instead, in the discrete and

dense time models the distance is interpreted along the only dimension

they prescribe, i.e. the difference between the time points. We highlight

that if we consider the discrete time model with v(i) = i, i.e. a discrete

system in which the time value increases by one at every step, then the

time intervals specified in the MTL formulae correspond to the number of

discrete steps that the system performs. Other definitions of v still describe

systems with monotonically increasing discrete time, but define a different

mapping between the number of steps and the corresponding time value.

For example, v(0) = 0 and v(i) = v(i− 1) + δ for some δ ∈ R+
0 describes a

system with discrete time where δ is the discretization factor and every step

corresponds to a time elapse of δ. In addition, we highlight the significance

of this definition of MTL by pointing out that the intervals are specified

using expressions that can contain parameters, not only constants. For

this reason it is not possible to rewrite such operators via a simple nesting

of X operators.
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Finally, notice that for I=̇[0,∞) the semantics of every bounded tempo-

ral operator is equivalent to the semantics of its unbounded counterpart,

since every evaluation of the time points will always lie in the interval.

Therefore the following equivalences hold:

ϕ0U≥0ϕ1 ≡ ϕ0Uϕ1; ϕ0S≥0ϕ1 ≡ ϕ0Sϕ1.

We define MTLC0,∞ as the fragment of MTLC where the syntax of

the intervals is restricted to:

I :: [0, cu] | [0, cu) | (0, cu] | (0, cu) | [cu,∞) | (cu,∞)

Therefore, MTLC0,∞ allows only intervals such that the lower bound is 0

or the upper bound is ∞.

4.2.3 MTLC0,∞ Examples

We now provide some examples of MTLC0,∞ formulae interpreted over

different time models and motivate their satisfiability or validity.

Bounded Finally. The formula G(Xb → F=0b) states that it is always

the case that if we reach a state in which b holds via an instantaneous

transition, then we also reach a state in which b holds in 0 time. The

formula is not valid if we consider the discrete time model. Consider a

trace such that b is false at time point t and holds at t + 1. The distance

between these time points is v(t+ 1)− v(t) > 0, hence F=0b holds in t+ 1

but not in t.

In all other time models (dense, super-dense and super-discrete) the

formula is valid. In the dense time model Xb is always false, hence the

implication is valid. In the super-discrete and super-dense time models,

let t = 〈i, r〉 ∈ τ such that Xb holds in t; then, by definition of X, b holds

in the time point t′=̇〈i+ 1, r〉. The distance between t and t′ is defined as

v(t′)− v(t) = r − r = 0, therefore the implication holds.
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Bounded Globally. The formula (G≤kb ∧G≥kb) ↔ Gb, where k is a pa-

rameter, states that b holds at every time up to k (included) and from k

to infinity, iff b always holds. The formula is valid in all time models since

the union of the two intervals is exactly [0,∞).

Bounded Once. The formula G(P=0b → b) states that if no time has

passed since that last time we observed b, then b must hold at the current

time point. The formula is valid only if we consider the dense or discrete

time models. In fact, these models are strictly monotonic. Therefore, the

distance between any two consecutive time points t, t′ is strictly positive

(v(t′) > v(t)). For this reason, P=0b holds at the current time point iff b

does. In the other cases (super-discrete and super-dense) the time model

is not strictly monotonic and allows for consecutive time points t and t′

such that v(t) = v(t′). Therefore, if b holds in t′ then P=0b holds in t, but

b can be false in t.

4.3 Reduction to LTL Model Checking on ITS

In this section we show how the model checking problem of MTLC0,∞ and

XLTL-EF on timed models with dense, super-dense or super-discrete time

model can be reduced to LTL model checking on a “discrete” system, i.e.

with discrete time model.

First, in §4.3.1, we show how MTLC0,∞ formulae can be equivalently

written in XLTL-EF. Then, in §4.3.2, we define for every XLTL-EF for-

mula over dense, super-dense or super-discrete time model a correspond-

ing equisatisfiable XLTL-EF formula with discrete time model. Finally,

in §4.3.3, we describe how, in discrete time model, a XLTL-EF formula

can be written into a equisatisfiable LTL formula by rewriting the event-

freezing functions using an additional fresh variable and the next operator.
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4.3.1 MTLC0,∞ to XLTL-EF

Now, we provide a sequence of global equivalences between MTLC0,∞ and

XLTL-EF formulae. The global equivalences allow the recursive rewrit-

ing of the MTLC0,∞ formula into a (globally) equivalent XLTL-EF one.

The simple equivalence relations would not allow such recursive rewriting

because it would only guarantee equivalence at the first time point.

ϕ1U(0,p)ϕ2 ≡G ϕ1U(X̃ϕ1Uϕ2 ∧ time@F̃(ϕ2)− time < p); (4.1)

ϕ1S(0,p)ϕ2 ≡G ϕ1S(Ỹϕ1Sϕ2 ∧ time − time@P̃(ϕ2) < p); (4.2)

ϕ1U[0,p)ϕ2 ≡G ϕ1Uϕ2 ∧ time@F(ϕ2)− time < p; (4.3)

ϕ1S[0,p)ϕ2 ≡G ϕ1Sϕ2 ∧ time − time@P(ϕ2) < p; (4.4)
−→
Ck

[0,p)(ϕ) ≡G time@F̃
k
(ϕ)− time < p ∧ F̃

k
(ϕ); (4.5)

←−
Ck

[0,p)(ϕ) ≡G time − time@P̃
k
(ϕ) < p ∧ P̃

k
(ϕ); (4.6)

ϕ1U(0,p]ϕ2 ≡G ϕ1U((X̃ϕ1Uϕ2)∧ (4.7)

(((X̃¬ϕ2Uϕ2) ∧ (time@F̃(ϕ2)− time ≤ p))∨

((X̃¬ϕ2UX̃ϕ2) ∧ (time@F̃(ϕ2)− time < p))));

ϕ1S(0,p]ϕ2 ≡G ϕ1S((Ỹϕ1Sϕ2)∧ (4.8)

(((Ỹ¬ϕ2Sϕ2) ∧ (time − time@P̃(ϕ2) ≤ p))∨

((Ỹ¬ϕ2SỸϕ2) ∧ (time − time@P̃(ϕ2) < p))));

ϕ1U[0,p]ϕ2 ≡G ϕ1Uϕ2∧ (4.9)

(¬ϕ2Uϕ2 ∧ time@F(ϕ2)− time ≤ p∨

¬ϕ2UX̃ϕ2 ∧ time@F(ϕ2)− time < p);

ϕ1S[0,p]ϕ2 ≡G ϕ1Sϕ2∧ (4.10)

(¬ϕ2Sϕ2 ∧ time − time@P(ϕ2) ≤ p∨

¬ϕ2SỸϕ2 ∧ time − time@P(ϕ2) < p).
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The remaining metric operators can be rewritten in terms of the ones

above as follows:

ϕ1U(p,∞)ϕ2 ≡G (p = 0 ∧ ϕ1U6=0ϕ2)∨ (4.11)

(p > 0 ∧G[0,p](ϕ1 ∧ ϕ1U 6=0ϕ2));

ϕ1S(p,∞)ϕ2 ≡G (p = 0 ∧ ϕ1S6=0ϕ2)∨ (4.12)

(p > 0 ∧ time > p ∧H[0,p](ϕ1 ∧ ϕ1S6=0ϕ2));

ϕ1U[p,∞)ϕ2 ≡G (p = 0 ∧ ϕ1Uϕ2)∨ (4.13)

(p > 0 ∧G[0,p)ϕ1 ∧G[0,p]P=0(H̃=0ϕ1 ∧ ϕ1Uϕ2));

ϕ1S[p,∞)ϕ2 ≡G (p = 0 ∧ ϕ1Sϕ2)∨ (4.14)

(p > 0 ∧ time ≥ p ∧H[0,p)ϕ1 ∧H[0,p]F=0(G̃=0ϕ1 ∧ ϕ1Sϕ2)).

Where ϕ1U6=0ϕ2 and ϕ1S6=0ϕ2 are used as abbreviations of ϕ1UX̃(ϕ1Uϕ2)

and ϕ1SỸ(ϕ1Sϕ2) respectively.

We highlight the use of P=0 and F=0 in equations (4.13) and (4.14). In

the discrete and dense time models they can be simplified away. In fact,

these time models are monotonically increasing, hence P=0ϕ and F=0ϕ hold

at some time point iff ϕ does. Instead, due to instantaneous transitions,

in the super-discrete and super-dense time models there can be multiple

time points associated with the same time value. For example, consider

the case in which the formula ϕ2 holds exactly after p time. Then, there

exists one of the time points associated with the current time plus p in

which ϕ2 holds and all its predecessors [resp. successors] satisfy ϕ1. We

express these conditions via the F=0 and P=0 operators.

The following theorem proves the correctness of these global equiva-

lences, hence it allows the rewriting of MTLC0,∞ formulae into XLTL-EF

formulae.
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Theorem 1 - MTLC0,∞ to XLTL-EF

Every MTLC0,∞ formula can be equivalently written as a XLTL-EF for-

mula.

Proof. We show that all the global equivalences (4.1)-(4.14) are correct.

Let M be the first-order structure of trace σ and M(p) the evaluation of p

in σ. We first consider the future cases.

We prove Equivalence (4.5) by induction on k.

• If k = 1:
−→
Ck

[0,p)(ϕ) ≡G F̃[0,p)ϕ ≡G F̃
k
(ϕ) ∧ time@F̃

k
(ϕ)− time < p.

• Assume the equivalence holds for k − 1. σ, t |=
−→
Ck

[0,p) iff there exist

t1, . . . , tk with t < t1 < . . . < tk, v(tk) − v(t) < M(p), such that for

all i ∈ {j}kj=1, σ, ti |= ϕ. Let t′ = tk−1 and p′ = v(tk)− v(tk−1). Then,

σ, t |=
−→
Ck

[0,p) iff there exists t′ such that v(t′) − v(t) = p′ and σ, t′ |=
ϕ ∧
−→
Ck−1

[0,p−p′)ϕ. By induction, σ, t |=
−→
Ck

[0,p) iff there exists t′ such that

v(t′)−v(t) = p′ and σ, t′ |= ϕ∧F̃
k−1

(ϕ)∧time@F̃
k−1

(ϕ)−time < p−p′,
thus iff σ, t |= ϕ ∧ F̃

k
(ϕ) ∧ time@F̃

k
(ϕ)− time < p.

Equivalence (4.1)

• ϕ1U(0,p)ϕ2 |=G ϕ1U(X̃ϕ1Uϕ2 ∧ time@F̃(ϕ2)− time < p).

If σ, t |= ϕ1U(0,p)ϕ2 then there exists t′ < t such that 0 < v(t′) −
v(t) < M(p), σ, t′ |= ϕ2, and for all t′′, t ≤ t′′ < t′, σ, t′′ |= ϕ1.

Let t0 be the greatest time point such that t ≤ t0 and v(t) = v(t0).

Thus, for all t′′, t ≤ t′′ ≤ t0, σ, t |= ϕ1. Moreover, there exists t
′
,

t0 < t
′ ≤ t′, σ, t

′ |= ϕ2, v(t
′
)−v(t0) < M(p), and for all t′′, t0 ≤ t′′ < t

′
,

σ, t′′ |= ¬ϕ2. Thus, σ, t0 |= X̃ϕ1Uϕ2 ∧ time@F̃(ϕ2) − time < p and

σ, t |= ϕ1U(X̃ϕ1Uϕ2 ∧ time@F̃(ϕ2)− time < p).

• ϕ1U(X̃ϕ1Uϕ2 ∧ time@F̃(ϕ2)− time < p) |=G ϕ1U(0,p)ϕ2.

If σ, t |= ϕ1U(X̃ϕ1Uϕ2 ∧ time@F̃(ϕ2) − time < p), then there exists

t′, t ≤ t′, σ, t′ |= X̃ϕ1Uϕ2 ∧ time@F̃(ϕ2) − time < p and for all t′′,
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t ≤ t′′ < t′, σ, t′′ |= ϕ1. Therefore, there exists t
′
> t′, such that

σ, t
′ |= ϕ2, 0 < v(t

′
) − v(t′) < M(p), and for all t′′, t′ < t′′ < t

′
,

σ, t′′ |= ϕ1. Thus σ, t |= ϕ1U(0,p)ϕ2.

Equivalence (4.3)

• ϕ1U[0,p)ϕ2 |=G ϕ1Uϕ2 ∧ time@F(ϕ2)− time < p.

If σ, t |= ϕ1U[0,p)ϕ2 then there exists t′ ≥ t such that v(t′) − v(t) <

M(p), σ, t′ |= ϕ2, and for all t′′, t ≤ t′′ < t′, σ, t′′ |= ϕ1. Thus,

σ, t |= ϕ1Uϕ2. Moreover, there exists t
′
, t ≤ t

′ ≤ t′, σ, t
′ |= ϕ2 ∨ X̃ϕ2,

v(t
′
) − v(t) < M(p), and for all t′′, t ≤ t′′ < t

′
, σ, t′′ |= ¬ϕ2. Thus,

σ, t |= time@F(φ2)− time < p.

• ϕ1Uϕ2 ∧ time@F(ϕ2)− time < p |=G ϕ1U[0,p)ϕ2.

If σ, t |= ϕ1Uϕ2, then there exists t′, t ≤ t′, σ, t′ |= ϕ2 ∨ X̃ϕ2, and for

all t′′, t ≤ t′′ < t′, σ, t′′ |= ¬ϕ2. If σ, t |= time@F(ϕ2)− time < p, then

v(t′)− v(t) < M(p). Thus, σ, t |= ϕ1U[0,p)ϕ2.

Equivalence (4.7)

• ϕ1U(0,p]ϕ2 |=G ϕ1U((X̃ϕ1Uϕ2)∧(((X̃¬ϕ2Uϕ2)∧(time@F̃(ϕ2)−time ≤
p)) ∨ ((X̃¬ϕ2UX̃ϕ2) ∧ (time@F̃(ϕ2)− time < p)))).

If σ, t |= ϕ1U(0,p]ϕ2 then there exists t′ > t such that 0 < v(t′)−v(t) ≤
M(p), σ, t′ |= ϕ2, and for all t′′, t ≤ t′′ < t′, σ, t′′ |= ϕ1. Let t0 be the

greatest point such that t ≤ t0 and v(t) = v(t0). Therefore, for all

t′′, t ≤ t′′ ≤ t0, σ, t |= ϕ1. Moreover, σ, t0 |= X̃ϕ1Uϕ2. Thus, either

σ, t0 |= X̃¬ϕ2Uϕ2 or σ, t0 |= X̃¬ϕ2UX̃ϕ2. In the first case, there ex-

ists t
′
, t0 < t

′ ≤ t′, σ, t
′ |= ϕ2, and for all t′′, t0 ≤ t′′ < t

′
, σ, t′′ |= ¬ϕ2.

Since t
′ ≤ t′, σ, t0 |= time@F̃(ϕ2) − time ≤ p. Similarly, in the

second case, there exists t
′
, t0 < t

′ ≤ t′, σ, t
′ |= X̃ϕ2, and for all t′′,

t0 ≤ t′′ < t
′
, σ, t′′ |= ¬ϕ2. Since t

′ ≤ t′, σ, t0 |= time@F̃(ϕ2)−time ≤ p.

Thus, σ, t |= ϕ1U((X̃ϕ1Uϕ2) ∧ (((¬ϕ2Uϕ2) ∧ (time@F̃(ϕ2)− time ≤
p)) ∨ ((¬ϕ2UX̃ϕ2) ∧ (time@F̃(ϕ2)− time < p)))).
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• ϕ1U((X̃ϕ1Uϕ2) ∧ (((X̃¬ϕ2Uϕ2) ∧ (time@F̃(ϕ2)− time ≤ p))∨
((X̃¬ϕ2UX̃ϕ2) ∧ (time@F̃(ϕ2)− time < p)))) |=G ϕ1U(0,p]ϕ2.

If σ, t |= ϕ1U((X̃ϕ1Uϕ2)∧ (((¬ϕ2Uϕ2)∧ (time@F̃(ϕ2)− time ≤ p))∨
((¬ϕ2UX̃ϕ2)∧ (time@F̃(ϕ2)− time < p)))) then there exists t′, t ≤ t′,

σ, t′ |= (X̃ϕ1Uϕ2 ∧ (¬ϕ2Uϕ2 ∧ time@F̃(ϕ2)− time ≤ p∨¬ϕ2UX̃ϕ2 ∧
time@F̃(ϕ2)− time < p)) and for all t′′, t ≤ t′′ < t′, σ, t′′ |= ϕ1. Thus,

there exists t
′
> t′, such that σ, t

′ |= ϕ2, 0 < v(t
′
)− v(t′) ≤M(p), and

for all t′′, t′ < t′′ < t
′
, σ, t′′ |= ϕ1 and σ, t |= ϕ1U(0,p]ϕ2.

Equivalence (4.9)

• ϕ1U[0,p]ϕ2 |=G ϕ1Uϕ2∧(¬ϕ2Uϕ2∧time@F(ϕ2)−time ≤ p∨¬ϕ2UX̃ϕ2∧
time@F(ϕ2)− time < p).

If σ, t |= ϕ1U[0,p]ϕ2 then there exists t′ ≥ t such that v(t′) − v(t) ≤
M(p), σ, t′ |= ϕ2, and for all t′′, t ≤ t′′ < t′, σ, t′′ |= ϕ1. Thus,

σ, t |= ϕ1Uϕ2. Moreover, there exists t
′
, t ≤ t

′ ≤ t′, σ, t
′ |= ϕ2 ∨ X̃ϕ2,

and for all t′′, t ≤ t′′ < t
′
, σ, t′′ |= ¬ϕ2. Also, either σ, t

′ |= ϕ2 and

v(t
′
) − v(t) ≤ M(p), or σ, t

′ |= X̃ϕ2 and v(t
′
) − v(t) < M(p). Thus,

σ, t |= (ϕ1 ∧ ¬ϕ2)Uϕ2 ∧ time@F(ϕ2)− time ≤ p ∨ (ϕ1 ∧ ¬ϕ2)U(ϕ1 ∧
X̃ϕ2) ∧ time@F(ϕ2)− time < p.

• ϕ1Uϕ2∧(¬ϕ2Uϕ2∧time@F(ϕ2)−time ≤ p∨¬ϕ2UX̃ϕ2∧time@F(ϕ2)−
time < p) |=G ϕ1U[0,p]ϕ2.

If σ, t |= ϕ1Uϕ2, then there exists t′, t ≤ t′, σ, t′ |= ϕ2, and for all t′′,

t ≤ t′′ < t′, σ, t′′ |= ϕ1. If σ, t |= ¬ϕ2Uϕ2 ∧ time@F(ϕ2) − time ≤ p,

then there exists t
′
, t ≤ t

′ ≤ t′, such that σ, t
′ |= ϕ2, and for all t′′,

t ≤ t′′ < t
′
, σ, t′′ |= ¬ϕ2 and v(t

′
)− v(t) ≤ M(p). Since t

′ ≤ t′, σ, t |=
φ1U[0,p]ϕ2. Similarly, if σ, t |= ¬ϕ2UX̃ϕ2 ∧ time@F(ϕ2) − time < p,

then there exists t
′
, t ≤ t

′ ≤ t′, σ, t
′ |= X̃ϕ2, and for all t′′, t ≤ t′′ < t

′
,

σ, t′′ |= ¬ϕ2 and v(t
′
)− v(t) ≤M(p). Thus, σ, t |= ϕ1U[0,p]ϕ2.

Equivalence (4.11)
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• ϕ1U(p,∞)ϕ2 |=G (p = 0∧ϕ1U 6=0ϕ2)∨ (p > 0∧G[0,p](ϕ1 ∧ϕ1U 6=0ϕ2)).

If M(p) = 0, then the equivalence is trivial. Suppose instead that

M(p) > 0. If σ, t |= ϕ1U(p,∞)ϕ2, then there exists t′ > t such that

σ, t′ |= ϕ2, v(t′) − v(t) > M(p), and for all t′′, t ≤ t′′ < t′, σ, t′′ |= ϕ1.

For all t
′′ ≥ t, if v(t

′′
) − v(t) ≤ M(p), then t′ > t

′′
. Thus, σ, t

′′ |=
ϕ1 ∧ ϕ1U 6=0ϕ2.

• (p = 0∧ϕ1U6=0ϕ2)∨ (p > 0∧G[0,p](ϕ1 ∧ϕ1U 6=0ϕ2)) |=G ϕ1U(p,∞)ϕ2.

If M(p) = 0, then the equivalence is trivial. Suppose instead that

M(p) > 0. If σ, t |= G[0,p](ϕ1 ∧ ϕ1U 6=0ϕ2), then there exists t′ such

that v(t′)− v(t) = M(p) and σ, t′ |= ϕ1U(0,∞)ϕ2. Moreover, for all t′′,

t ≤ t′′ ≤ t′, σ, t′′ |= ϕ1. Thus, σ, t |= ϕ1U(p,∞)ϕ2.

Equivalence (4.13)

• ϕ1U[p,∞)ϕ2 |=G (p = 0∧ϕ1Uϕ2)∨(p > 0∧G[0,p)ϕ1∧G[0,p]P=0(H̃=0ϕ1∧
ϕ1Uϕ2)).

If M(p) = 0, then the equivalence is trivial. Suppose instead that

M(p) > 0. If σ, t |= ϕ1U[p,∞]ϕ2, then there exists t′ > t, such that

σ, t′ |= ϕ2, v(t′) − v(t) ≥ M(p), and for all t′′, t ≤ t′′ < t′, σ, t′′ |= ϕ1.

For all t
′′ ≥ t, if v(t

′′
) − v(t) < M(p), then t′ > t

′′
. Thus, σ, t

′′ |= ϕ1.

Moreover, if v(t′)−v(t) > M(p), then for all t′′, t ≤ t′′, if v(t′′)−v(t) ≤
M(p), then σ, t′′ |= ϕ1Uϕ2 and thus, σ, t′′ |= P=0(H̃=0ϕ1 ∧ ϕ1Uϕ2).

Similarly, if v(t′) − v(t) = M(p), then for all t′′, t ≤ t′′ ≤ t′, then

σ, t′′ |= ϕ1Uϕ2 and thus, σ, t′′ |= P=0(H̃=0ϕ1 ∧ ϕ1Uϕ2). Finally, for

all t′′ > t′, v(t′′) = v(t′), σ, t′′ |= P=0(H̃=0ϕ1 ∧ ϕ1Uϕ2).

• (p = 0∧ϕ1Uϕ2)∨(p > 0∧G[0,p)ϕ1∧G[0,p]P=0(H̃=0ϕ1∧ϕ1Uϕ2)) |=G

ϕ1U[p,∞)ϕ2.

If M(p) = 0, then the equivalence is trivial. Suppose instead that

M(p) > 0 and σ, t |= G[0,p)ϕ1 ∧G[0,p]P=0(H̃=0ϕ1 ∧ ϕ1Uϕ2). Let t0 be

the greatest point such that t ≤ t0 and v(t0) − v(t) = M(p). σ, t0 |=
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P=0(H̃=0ϕ1 ∧ ϕ1Uϕ2). Thus there exists t′, with v(t′)− v(t) ≥M(p),

such that σ, t′ |= ϕ1Uϕ2, and for all t′′ < t′, if v(t′′) − v(t) ≥ M(p),

then σ, t′′ |= ϕ1. Moreover, by hypothesis, also for all t′′ ≥ t, if

v(t′′)− v(t) < M(p), then σ, t′′ |= ϕ1. Thus, σ, t |= ϕ1U[p,∞)ϕ2.

All cases with past operators are analogous to the future counterpart

apart from the following two cases.

Equivalence (4.12)

• (p = 0 ∧ ϕ1S 6=0ϕ2) ∨ (p > 0 ∧ time > p ∧ H[0,p](ϕ1 ∧ ϕ1S 6=0ϕ2)) |=G

ϕ1S(p,∞)ϕ2.

If M(p) = 0, then the equivalence is trivial as before. Suppose instead

that M(p) > 0 and σ, t |= time > p ∧H[0,p](ϕ1 ∧ ϕ1S(0,∞)ϕ2). Since

M(p) > 0 and time > M(p), there exists t′ < t such that v(t)−v(t′) =

M(p). Thus, σ, t′ |= ϕ1S(0,∞)ϕ2. Moreover, for all t′′, t′ ≤ t′′ ≤ t,

σ, t′′ |= ϕ1. Thus, σ, t |= ϕ1S(p,∞)ϕ2.

Equivalence (4.14)

• (p = 0 ∧ ϕ1Sϕ2) ∨ (p > 0 ∧ time ≥ p ∧H[0,p)ϕ1 ∧H[0,p]F=0(G̃=0ϕ1 ∧
ϕ1Sϕ2)) |=G ϕ1S[p,∞)ϕ2.

If M(p) = 0, then the equivalence is trivial as before. Suppose instead

that M(p) > 0 and σ, t |= time ≥ p ∧ H[0,p)ϕ1 ∧ H[0,p]F=0(G̃=0ϕ1 ∧
ϕ1Sϕ2). Since M(p) > 0 and time ≥M(p), then there exists a small-

est point t0 such that t > t0 and v(t) − v(t0) = M(p). Thus, σ, t0 |=
F=0(G̃=0ϕ1 ∧ ϕ1Sϕ2). Thus, there exists t′, with v(t)− v(t′) ≥M(p),

such that σ, t′ |= ϕ1Sϕ2, and for all t′′ > t′, if v(t) − v(t′′) ≤ M(p),

then σ, t′′ |= ϕ1. Moreover, by hypothesis, also for all t′′ ≤ t, if

v(t)− v(t′′) < M(p), then σ, t′′ |= ϕ1. Thus, σ, t |= ϕ1S[p,∞)ϕ2.
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4.3.2 Discretization

We now show that given a XLTL-EF formula with dense, super-dense

or super-discrete time model, we can build an equisatisfiable XLTL-EF

formula with discrete time model.

The discretization approach is similar to the one described in [61]. The

time evolution is split into a sequence of singular or open intervals in such

a way that the trace is fine for the input formula on such intervals. In

the case of dense time it is always possible to split an interval into two or

more nonempty sub-intervals. This is not the case for super-discrete time

because a time interval of 1 cannot be split.

Given a trace σ=̇〈M, τ, µ〉 satisfying ϕ, we derive a sequence of time

intervals I0, I1, . . . and use it to build a trace σD with discrete time model

that satisfies a corresponding formula ϕD. The time interval sequence is

obtained from the one of τ by splitting each interval finitely many times so

that (i) σ is fine in each interval for all subformulae of ϕ, (ii) each interval

in the sequence is singular or open, (iii) for every interval Ii and subformula

ϕ1Uϕ2 of ϕ, if Ii is open and ϕ2 holds in Ii, then ϕ2 must also hold on Ii−1

or Ii+1 (this last requirement allows for a simpler encoding).

We encode the time interval sequence by relying on two extra Boolean

variables open and closed . closed holds iff the current interval is singular.

open holds iff the current interval is open or we are in super-discrete time

and this is a singular interval reached from another singular interval via a

time elapse of 1 time unit. Therefore, in the case of dense and super-dense

time models, we build a corresponding discrete time model such that the

two variables are mutually exclusive (open ↔ ¬closed), while this is not

the case in super-discrete time. In this setting, for a time point t=̇〈i, r〉,
its immediate successor along time t′=̇〈i, r + 1〉 corresponds to a singular

interval in which both open and closed hold. Such interval represents the
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immediate successors along time of t and X̃ϕ holds in t iff ϕ holds in t′ (as

discussed in Sec. 4.1).

We rewrite a formula ϕ over V into ϕD over V ∪ {open, closed} as

ϕD=̇D(ϕ) ∧ ψint ∧ ψtime ;

where D, ψint and ψtime are defined as follows. D(ϕ) is defined recursively

on the structure of ϕ and rewrites its temporal operators distinguishing

the case in which the current interval is singular from the one in which it is

open. D is homomorphic with respect to Boolean connectives, functions,

constants and variables.

D(p(u0, . . . , un)) =̇ p(u0, . . . , un);

D(¬ϕ) =̇ ¬D(ϕ);

D(ϕ1 ∧ ϕ2) =̇ D(ϕ1) ∧ D(ϕ2).

Consider ϕ1Uϕ2. The formula holds at time point t iff there exists a

future state t′ satisfying ϕ2 and ϕ1 always holds in between. However, in

the discretized version if t′ > t and t′ belongs to an open interval, then

also ϕ1 must hold in that interval. Therefore, ϕ1 must hold until either ϕ2

holds on a singular interval or ϕ2 ∧ ϕ1 holds in a open interval. Similar

reasoning applies for the corresponding past formula ϕ1Sϕ2.

D(ϕ1Uϕ2) =̇ D(ϕ2) ∨ D(ϕ1)U(D(ϕ2) ∧ (D(ϕ1) ∨ closed));

D(ϕ1Sϕ2) =̇ D(ϕ2) ∨ D(ϕ1)S(D(ϕ2) ∧ (D(ϕ1) ∨ closed)).

Consider now X and X̃. X requires to perform an instantaneous transition,

hence a transition from a singular interval to another singular interval

without elapse of time. In the super-dense case, there is always no time

elapse between two singular intervals. Instead, in the super-discrete case,

we need to consider that it is possible to perform a time elapse of 1 and

reach a singular interval. Therefore, we need to state that the next state
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does not satisfy open. In fact, open holds in all open intervals and the state

corresponding to a singular interval reached via a time elapse of 1 satisfies

both open and closed . Instead, X̃ϕ holds if either the current interval is

open and ϕ holds now, or ϕ holds in the immediate time successors of the

current interval. Therefore, the interval must be either an open interval

or, in super-discrete time, a singular interval reached via a time elapse of 1

(i.e. a state in which open holds). Similar reasoning applies to the Y and

Ỹ cases.

D(Xϕ) =̇ closed ∧X(¬open ∧ D(ϕ));

D(X̃ϕ) =̇ (open ∧ D(ϕ)) ∨X(open ∧ D(ϕ));

D(Yϕ) =̇ closed ∧Y(¬open ∧ D(ϕ));

D(Ỹϕ) =̇ (open ∧ D(ϕ)) ∨Y(open ∧ D(ϕ)).

Finally, consider the event-freezing functions; we discuss the future case

and the symmetric argument holds for the past case. u@F̃(ϕ) evaluates

to D(u) at the current time point if D(X̃ϕ) holds now. Otherwise, we

translate it into its discrete counterpart and retrieve the value of u at the

next time point in which D(ϕ) holds in a singular interval or in a right

open-interval.

u@F̃(ϕ) =̇ Ite((open ∧ D(ϕ)) ∨X(open ∧ D(ϕ)),

D(u),

D(u)@F̃(D(ϕ) ∨X(open ∧ D(ϕ))));

u@P̃(ϕ) =̇ Ite((open ∧ D(ϕ)) ∨Y(open ∧ D(ϕ)),

D(u),

D(u)@P̃(D(ϕ) ∨Y(open ∧ D(ϕ)))).

ψint encodes the structure of the time model. It ensures that after every

open interval there is a singular one and that time remains constant in
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instantaneous transitions. In the following let δ be next(time)− time.

ψint =̇ closed ∧ ¬open ∧G((closed ∧ δ = 0 ∧X(closed ∧ ¬open))∨

(closed ∧ δ > 0 ∧Xopen ∧ ψτ)∨

(open ∧ ¬closed ∧ δ > 0 ∧X(closed ∧ ¬open)));

where ψτ is defined depending on the time model τ as follows:

ψτ =̇

{
X¬closed if τ ∈ {dense, super − dense};

δ = 1↔ Xclosed otherwise.

Therefore, in the dense and super-dense cases there is a strict alterna-

tion between states in which closed ∧ ¬open holds and states in which

¬closed ∧ open holds: open ↔ ¬closed and open ↔ X¬open. Instead, in

the super-discrete case, from a state in which closed holds, by performing

a time elapse of 1 time unit, we reach a state that is both open and closed .

Therefore, states in which ¬open holds correspond to singular intervals,

while states where ¬closed holds correspond to open intervals.

Finally, ψtime forces the uniformity of predicates over time in open in-

tervals:

ψtime=̇
∧

tu./cu∈Sub(ϕ)

G(¬closed → ((D(tu ≤ cu)→ XD(tu ≤ cu))∧

(D(tu ≥ cu)→ YD(tu ≥ cu))))

where Sub(ϕ) denotes the set of subformulae of ϕ. ψtime splits the time

intervals such that for every constant cu occurring in a time constraint,

[cu, cu] is a singular interval in the sequence. In addition, the discretization

described above generates formulae whose size is exponential in the size

of the input. However, since we are interested in equisatisfiability, it is

possible to rely on extra variables, one for each subformula, to obtain a

linear-size discretized formula.
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The following theorem ensures the correctness of the discretization pro-

cedure.

Theorem 2 - Discretization generates equisatisfiable formulae

ϕ and ϕD=̇D(ϕ) ∧ ψint ∧ ψtime are equisatisfiable.

Proof. Given a trace σ=̇〈M, τ, µ〉 satisfying ϕ we can build a trace σD with

a discrete time model satisfying ϕD as follows. Let I0, I1, . . . be a sequence

of time intervals such that i) σ is fine for all subformulas of ϕ in each

interval Ii, ii) each interval Ii in the sequence is singular or open, and iii)

in case of super-dense or super-discrete time, for all i ≥ 0 and t ∈ Ii, there

exists an integer ni such that 〈ni, t〉 ∈ τ .

We define the discrete time model by setting the value v(i) for all i ∈ N
based on the time interval sequence as follows:

v(i)=̇


0 if i = 0;

v(i− 1) + l(Ii)− r(Ii−1) if i > 0 and both Ii−1, Ii are singular;

v(i− 1) + r(Ii)−l(Ii)
2 if i > 0, Ii−1 is singular and Ii is open;

v(i− 1) + r(Ii−1)−l(Ii−1)
2 otherwise.

Let ti = v(i), note that ti ∈ Ii for every i. Moreover, notice that if Ii and

Ii+1 are both singular then δ is the distance between the two time values.

This δ is always 0 in the dense and super-dense cases, while it is either 0

or 1 in the super-discrete case. If Ii is singular and Ii+1 is open then δ is

equal to half of the length of Ii+1 and if Ii is not singular then δ is equal

to half of the length of Ii.

We build an assignment to closed and open also based on the time

interval sequence. The value of closed is determined by the sequence of

intervals as follows: σD(i)(closed) = > iff Ii is singular. While open holds

in all open intervals and, in super-discrete time model, in the singular

intervals reached via a time elapse of 1: σD(i)(open) = > iff Ii is open or
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the time model is super-discrete, Ii−1 is singular and l(Ii) − r(Ii−1) = 1.

Thus, σD |= ψint.

Let ti = ti in case σ has a dense time and ti = 〈ni, ti〉 in case of super-

dense or super-discrete time. Let us complete the definition of σD by saying

that for all i ≥ 0, σD(i)(x) =̇ σ(ti)(x).

We now prove that, for all i ≥ 0, for all subformulas ψ of ϕ, σ, ti |= ψ iff

σD, i |= D(ψ) and for all terms z in ϕ, σ(ti)(z) = σD(i)(D(z)). The proof

works by induction on the structure of ψ and z.

In the base cases, when z is equal to either a constant or a variable,

σ(ti)(z) = σD(i)(z) by the definition of σD.

In the recursive cases in which D is applied to Boolean connectives and

functions, the proof follows immediately from the inductive hypothesis.

We detail the proof in the other cases focusing on the future operators,

while the cases of past operators are similar.

• ψ =̇ ϕ1Uϕ2.

– If σ, ti |= ϕ1Uϕ2, then either σ, ti |= ϕ2 or there exists t′ > ti

such that σ, t |= ϕ2 and for all t′′, ti ≤ t′′ < t′, σ, t′′ |= ϕ1. In

the first case, σD(i) |= D(ϕ2) by induction. In the second case,

t′ ∈ Ij for some j. Since σ is fine, σ, tj |= ϕ2 and, if Ij is open then

σ, tj |= ϕ1 too. Thus, by induction, σD, j |= ϕ2 ∧ (ϕ1 ∨ closed),

and thus σD, i |= D(ϕ1Uϕ2).

– If σD, i |= D(ϕ1Uϕ2), then either σD, i |= D(ϕ2) or there exists

j > i such that σD, j |= D(ϕ2) ∧ (D(ϕ1) ∨ closed) and for all k,

i ≤ k < j, σD, k |= D(ϕ1). By induction, either σ, ti |= ϕ2 or

σ, tj |= ϕ2 and for all k, i ≤ k < j, σ, tk |= ϕ1. Moreover, if Ij

is open, then σ, tj |= ϕ1. Since σ is fine, σ, t′′ |= ϕ1 for all t′′,

ti ≤ t′′ < tj. Thus, σ, t |= ϕ1Uϕ2.

• z =̇ u@F̃(φ).
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– Suppose there exists t′ > ti such that σ, t′ |= φ and for all t′′, ti <

t′′ < t′, σ, t′′ 6|= φ. Thus σ(t)(z) = σ(t′)(u). Let t′ ∈ Ij for some

j ≥ i. Since σ is fine for φ and for all t′′, ti < t′′ < t′, σ, t′′ 6|= φ,

then Ij is singular and tj = t′, thus z = σ(tj)(u). Moreover, by

induction, σD, j |= D(φ) and σ, k 6|= D(φ) for i < k < j. Thus,

σD(i)(D(u)@F̃(D(φ))) = σD(j)(D(u)) = σ(tj)(u). Moreover, for

k, i ≤ k ≤ j, σD, k 6|= (open ∧ D(φ)). Thus, σD(i)(D(z)) =

σD(i)(D(u)@F̃(D(φ))) = σ(t)(z).

– Similarly, suppose there exists t′ ≥ ti such that σ, t′ |= X̃φ and

for all t′′, ti < t′′ < t′, σ, t′′ 6|= φ. Thus, z = σ(t′)(u). If t′ = ti

and Ii is open, then, since σ is fine for φ, σ, ti |= φ. By induction

σD, i |= D(φ) and thus σD(i)(D(z)) = σ(ti)(z). Similarly, if t′ = ti

and Ii is singular, then Ii+1 is open σ, ti+1 |= φ. By induction,

σD, i + 1 |= D(φ) and thus σD(i)(D(z)) = σ(ti)(z). If instead

t′ > ti, let t′ ∈ Ij for some j > i. Since σ is fine for φ and

for all t′′, ti < t′′ < t′, σ, t′′ 6|= φ, then Ij is singular, tj = t′,

thus Ij+1 is open, σ, tj+1 |= φ and σ(ti)(z) = σ(tj)(u). Moreover,

by induction, σD, j |= D(X̃φ) and σ, k 6|= D(φ) for i < k < j.

Thus, σD(i)(D(u)@F̃(D(φ)∨X(open ∧D(φ)))) = σD(j)(D(u)) =

σ(tj)(u).

– Considering now the opposite direction, suppose σD, i |= open ∧
D(φ). Then, σD(i)(D(z)) = σD(i)(D(u)), which by induction is

equal to σ(ti)(u). Also by induction, σ, ti |= φ. Since Ii is open,

or reached via a time elapse of 1 in super-discrete time, σ, ti |= X̃φ

and thus σ(ti)(z) = σ(ti)(u).

– Similarly, suppose σD, i |= X(open ∧D(φ)). Then, σD(i)(D(z)) =

σD(i)(D(u)), which by induction is equal to σ(ti)(u). Also by

induction, σ, ti+1 |= φ. Since Ii+1 is open, σ, ti |= X̃φ and thus

σ(ti)(z) = σ(ti)(u).
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– Finally, suppose that we are not in the previous cases and there

exists j > i such that σD, j |= D(φ)∨X(closed ∧D(φ)) and for all

k, i < k < j, σD, k 6|= D(φ). Then by induction, σ, tj |= X̃φ and

for all k, i < k < j, σ, tk 6|= φ. Thus, since interval Ii is singular or

ti 6|= φ (considered in the previous cases), for all t′′, ti < t′′ < tj,

σ, t′′ 6|= φ. Thus, σ(ti)(z) = σ(tj)(u).

It is routine to prove the cases of X and X̃ and we can conclude that

σD |= D(ϕ).

Finally, σD |= ψtime. In fact, σD |= time = 0∧G(next(time)−time = δ)

by definition of σD; the rest of ψtime is trivially satisfied because σ is fine

for ϕ.

In order to prove the other direction of the theorem, suppose that there

exists σ with discrete time such that σ |= D(ϕ). Then, we can build a σC

with super-dense or super-discrete time such that σC |= ϕ as follows. Let

ti =
∑i−1

h=0 δh, where δh is the value of δ in the h-th step of σ. Ii=̇[ti, ti] if

σ, i |= closed ; otherwise Ii := (ti−1, ti+1). Let σ(t)(v) = σ(i)(v) for every

t ∈ Ii.
We prove that σC is fine for ϕ. Let M be the first-order structure of

σC and consider an open interval Ii = (ti−1, ti+1). For every t, t′ ∈ Ii,

M(t)(x) = M(t′)(x) and M(t)(c) = M(t′)(c), hence, by induction, for

every term in form u according to the grammar of XLTL-EF, M(t)(u) =

M(t′)(u). Thus, for every predicate in the form p(u1, . . . , un), σC , t |=
p(u1, . . . , un) iff σC , t

′ |= p(u1, . . . , un). Moreover, for every term cu, the

interpretation M(cu) is constant; since σ |= ψtime, if σC , ti |= time ≤ cu

then σC , ti+1 |= time ≤ cu and if σC , ti |= time ≥ cu then σC , ti−1 |=
time ≥ cu; since ti−1 < ti < ti+1, then either ti < M(cu) and so for all

t ∈ Ii ti−1 < t < ti+1 ≤ M(cu), or ti > M(cu) and thus so for all t ∈ Ii
M(cu) ≤ ti−1 < t < ti+1. Thus, for every predicate in the form time ./ cu,

for all t, t′, σC , t |= time ./ cu iff σC , t
′ |= time ./ cu. The proof for the
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remaining predicates in the form tu is similar, taking into account that

time@F̃(ϕ) and time@P̃(ϕ) are either constant within Ii (when ϕ does

not hold in Ii) or they are equivalent to time (when ϕ holds in Ii).

Finally, it is routine to prove that σC |= ϕ.

Notice that the discretization generates formulae without the X̃ and Ỹ

operators. In fact, in discrete time model we can replace every occurrence

of X̃ and Ỹ with the constant ⊥. Therefore, we have obtained a XLTL-EF

formula interpreted over the discrete time model that does not contain any

X̃ and Ỹ and the only remaining operators that are not in LTL are the

event-freezing functions @F̃ and @P̃.

4.3.3 Removing Event-Freezing Functions

We now consider the satisfiability of XLTL-EF properties in the discrete

time model. For every such property we construct a corresponding equi-

satisfiable one that does not contain the event-freezing functions @F̃ and

@P̃.

We replace every occurrence of u@F̃(φ) and u@P̃(φ) with a fresh vari-

able pu@F̃(φ) and pu@P̃(φ) respectively. pu@F̃(φ) is a “monitor” for the value

of u at the next time φ holds. The value of pu@F̃(φ) is chosen nondeter-

ministically when φ holds in the next state and remains constant in all

other transitions. Furthermore, the assignment to pu@F̃(φ) must be equal

to next(u) when φ holds in the next state. This ensures that, in every in-

finite path, the nondeterministic choice must correspond to an oracle that

guesses the value u will have at the next occurrence of φ. We can apply

the symmetric reasoning to constrain the assignment of pu@P̃(φ) and obtain

an oracle for u@P̃(φ). More formally, we define the rewriting R of u@F̃(φ)
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and u@P̃(φ) in a XLTL-EF formula ϕ as follows:

R(ϕ, u@F̃(φ)) =̇ φ[pu@F̃(φ)/u@F̃(φ)] ∧

G(Xφ→ pu@F̃(φ) = next(u)) ∧

G(next(pu@F̃(φ)) = pu@F̃(φ) ∨Xφ);

R(ϕ, u@P̃(φ)) =̇ φ[pu@P̃(φ)/u@P̃(φ)] ∧

G(φ→ next(pu@P̃(φ)) = u) ∧

G(next(pu@F̃(φ)) = pu@F̃(φ) ∨ φ).

The rewriting yields a formula over an extended set of variables. Given

a formula φ over V , R(ϕ, u@F̃(φ)) is a formula over V ∪ {pu@F̃(φ)}, where

pu@F̃(φ) does not occur in φ. However, the value of the monitors introduced

by the rewriting is uniquely determined by a trace over V . In fact, given

a trace σ over the symbols V , we can define a trace R(σ, u@F̃(φ)) over

V ∪ {pu@F̃(φ)} such that σ |= ϕ iff R(σ, u@F̃(φ)) |= R(ϕ, u@F̃(φ)). We

define the trace corresponding to σ as follows:

R(σ, u@F̃(φ))(t)(x) = σ(t)(x), x ∈ V ;

R(σ, u@F̃(φ))(t)(pu@F̃(φ)) = σ(t)(u@F̃(φ));

R(σ, u@P̃(φ))(t)(x) = σ(t)(x), x ∈ V ;

R(σ, u@P̃(φ))(t)(pu@P̃(φ)) = σ(t)(u@P̃(φ)).

Theorem 3 - R yields equisatisfiable formulae

ϕ is equisatisfiable to both R(ϕ, u@F̃(φ)) and R(ϕ, u@P̃(φ)).

Proof. In the following we report the proof for the future case; the proof

for the past case is symmetric.

• If σ |= ϕ then R(σ, u@F̃(φ)) |= R(ϕ, u@F̃(φ)).

Assume σ |= ϕ. Given the definition of R(σ, u@F̃(φ)), the prophecy

variable pu@F̃(φ) is given the value of the term u@F̃(φ), and thus

R(σ, u@F̃(φ)) |= ϕ[pu@F̃(φ)/u@F̃(φ)].
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For every t, if σ, t |= F(φ), then there exists t′ > t such that σ, t′ |= φ

and for all t′′, t < t′′ < t′, σ, t′′ 6|= φ. Thus, σ(t′)(u@F̃(φ)) =

σ(t′′)(u@F̃(φ)) = σ(t′)(u). Therefore, σ, t |= (Xφ → pu@F̃(φ) =

next(u)) ∧ (next(pu@F̃(φ)) 6= pu@F̃(φ) → Xφ).

• If R(σ, u@F̃(φ)) |= R(ϕ, u@F̃(φ)) then σ |= ϕ.

Assume R(σ, u@F̃(φ)) |= R(ϕ, u@F̃(φ)).

We need to show that σ |= ϕ, where σ is obtained from R(σ, u@F̃(φ))

by assigning σ(def u@F̃(φ))=̇R(σ, u@F̃(φ))(pu@F̃(φ)).

It is sufficient to prove thatR(σ, u@F̃(φ))(t)(pu@F̃(φ)) = σ(t)(u@F̃(φ)).

Let us assume that there exists t′ > t such that, for all t′′, t <

t′′ < t′, R(σ, u@F̃(φ)), t′′ 6|= φ and R(σ, u@F̃(φ)), t′ |= φ. Thus,

R(σ, u@F̃(φ))(t)(u@F̃(φ)) = R(σ, u@F̃(φ))(t′)(u). SinceR(σ, u@F̃(φ)), t′′ |=
(Xφ → pu@F̃(φ) = next(u)) ∧ (next(pu@F̃(φ)) 6= pu@F̃(φ) → Xφ) for all

t′′, R(σ, u@F̃(φ))(t′ − 1)(pu@F̃(φ)) = R(σ, u@F̃(φ))(t′)(u) and

R(σ, u@F̃(φ))(t′′ − 1)(pu@F̃(φ)) = R(σ, u@F̃(φ))(t′)(pu@F̃(φ)) for all t′′,

t < t′′ < t′. Therefore, R(σ, u@F̃(φ))(t)(pu@F̃(φ)) = σ(t′)(u).

If such t′ does not exist, then σ(t)(u@F̃(φ)) = σ(t)(def u@F̃(φ)) =

R(σ, u@F̃(φ))(t)(pu@F̃(φ)).

Notice that since we are considering the discrete time model the operator

next is defined for LTL, hence R progressively removes freezing functions

relying only on LTL operators.

Finally, the combination of the discretization D and the recursive appli-

cation of R is a procedure that rewrites a MTLC0,∞ formula on discrete,

dense, super-dense or super-discrete time model into an equisatisfiable LTL

formula over discrete time model.
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4.4 Related work

Many different temporal logics have been defined and extended for timed

systems. We will restrict our discussion to the ones related to metric tem-

poral logics, hence to extensions of temporal logics that allow quantitative

constraints with respect to the timing of events. We refer to [39] for a

broader discussion on the specification languages that have been defined

in this context.

The works [8, 78] present two alternatives for the @F and @P function

symbols. In [8] TPTL is defined as the extension of propositional LTL

with freeze quantifiers. Freeze quantifiers are used to freeze a time variable

to the temporal context in which the quantified TPTL formula holds.

These quantifiers allow metric temporal constraints by comparing the time

at which different formulae held / will hold. A similar objective is achieved

in [78]. This work uses registers to store the time at which a formula holds;

LTL is extended with store and load operators to write and read from the

registers. Our definition of LTL-EF adopts a more declarative style with

functions that directly return the value of variables at the next or last

state in which a formula will be/was true, resulting in a more natural

specification.

Event-Clock Automata, introduced in [6], restrict the clock variables of

TA such that they can only refer to the amount of time passed since the

last time an event occurred in the past or required to reach the next time

it will occur in the future. Therefore, an Event-Clock Automaton does not

allow for arbitrary resets of clock symbols and corresponds to a TA with

two clock variables for each event. One clock variable describes the time

since the last occurrence of the event (event-recording clock) and the other

represents the time until its next occurrence (event-predicting clock). A

key aspect of this modelling formalism is that it is closed under complement
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and the problem of deciding language inclusion is decidable, while TA are

not closed under complement and language inclusion is undecidable. The

logical counterpart of Event-Clock Automata, called Event-Clock Tempo-

ral Logic, has been studied in [148, 109, 149] and @F and @P of LTL-EF

are a generalisation of event clocks. In fact, they allow the encoding of the

fragment MTL0,∞ [6] of MTL [127] extended with counting [111, 142]. Our

semantics for LTL-EF is close to the one defined in [109] for event clocks

and for the corresponding quantifiers in the equally-expressive monadic

logic. However, [109] relies on nonstandard real numbers to handle left-

open time intervals, while we do not require the use of any nonstandard

real number.

The discretization of LTL-EF, described in §4.3.2, is similar to the

one of [61]. In both cases the executions are represented as sequences of

singular or open intervals. However, the considered temporal logics are

different. In our case time points are quantified over a discrete, dense,

super-dense or super-discrete time model, while [61] considers sequences

of intervals. Therefore, the discretization of formulae differs even in the

common fragment.

Finally, with respect to tool support, we are not aware of any other tool

capable of proving the validity of MTL0,∞ with parametric bounds in the

case of dense or super-dense time. Instead, our implementation in nuXmv

supports also first-order constraints. We are aware of only four related

tools, namely MigthyL [42], Zot [26], ATMOC [125] and CTAV [136].

However, MigthyL uses a (discrete) pointwise semantics for MTL, while

Zot and ATMOC only support bounded satisfiability of MTL properties.

To the best of our knowledge CTAV is the only other tool capable of both

proving and falsifying MTL specifications on timed automata. Therefore,

all of the above implement techniques specific for timed automata, while

our approach is applicable to the broader class of timed transition systems.
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Falsification of Temporal Properties





Chapter 5

Representation of Fair Paths

In the first part of this thesis we have described how the verification of

expressive temporal logics on systems with discrete, dense, super-dense

and super-discrete time models can be reduced to the LTL model checking

problem in the discrete time case. Furthermore, as described in §2.8.2, this

problem can be reduced to deciding whether the language of an ITS is

empty. Unfortunately, this problem is undecidable. Therefore, the failure

of a procedure in identifying a proof for the emptiness of the language does

not imply the existence of a fair path and, vice-versa, if we are unable to

identify a fair path we cannot conclude that the language is empty. For

this reason, we can split the verification problem into two complementary

search problems: the search for a proof of emptiness of the language (the

property holds) and the search for a fair path (a counterexample to the

property).

Most of the techniques proposed in the literature focus on proving that

the language is indeed empty, hence that the property holds, while the

complementary falsification problem received relatively little attention.

Verification techniques in this context often rely on an abstraction-

refinement loop (§2.8.4) to deal with the infinite system. Overapproxi-

mations can disregard many details of the model that are not significant
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to prove the validity of the property at hand. The main idea is that if we

are able to prove that some property holds for a superset of the paths of

the system, then the property must hold in the system. However, if some

path in the overapproximation does not satisfy the property, then we do

not know if such path is an actual counterexample (a path of the origi-

nal system) or it is a spurious execution. Therefore, we need a procedure

to distinguish the two cases and in the second one we need to refine the

abstraction.

The undecidability of the problem implies that the abstraction-refinement

loop cannot be guaranteed to converge. Therefore, there will always be

cases in which it generates an infinite sequence of refinements and spurious

paths. This can happen both because the refinements are not “power-

ful” enough and fail to remove some spurious paths, but also because the

spuriousness check fails to identify a path in the concrete system that cor-

responds to the abstract trace.

In this work we focus on this second case and propose techniques that

allow the representation of more complex paths. In the finite-state case, as

discussed in §2.7.3, we can always decide whether a fair transition system

admits a fair path by looking for a lasso-shaped trace. This also gives

a natural way to represent such executions: a finite sequence of states.

However, in infinite-state systems there might be no lasso path and we

need represent infinite sequences of possibly distinct states. We require a

finite representation for an infinite set of states. FOL is a language suitable

to represent infinite sets of states (i.e. interpretations to the variables) and

SMT-solvers are powerful tools that enable automated reasoning over such

formulae.

Recurrent sets (Sec. 2.3) are a FOL representation of infinite chains

of states and have been used to represent infinite executions of software

programs. However, apart from some trivial cases, they are not sufficient to
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conclude that every infinite execution visits some fair state infinitely often.

In fact, unless the set underapproximates the fair states, without additional

information we cannot conclude that the infinite executions described by

the recurrent set are fair.

For this reason, we split the recurrence set into at least two subsets S and

D such that D is a subset of the fair states. The union of S and D must

describe a closed recurrent set and, in addition, the left-total transition

relation must not allow for infinite sequences of S states; every state in

S must reach a state in D in a finite number of steps. Notice that this

representation does not impose any upper bound on the distance between

consecutive fair states and, in addition, it can describe multiple fair paths

at the same time.

In this chapter we formally define the structures we use to represent

fair paths and show that such representation is sound and also relatively

complete. In more detail, we define funnels in Sec. 5.1 and in Sec. 5.2 we

compose them to obtain a structure we call funnel-loop that represents a

nonempty set of fair paths. Then, we discuss the soundness and expressive-

ness of this representation in Sec. 5.3. The chapter concludes in Sec. 5.4

by presenting an example.

5.1 Funnel

A funnel is a structure representing finite paths that start in a source re-

gion, remain in such region for a finite number of steps and finally reach

a destination region. We define a funnel over a set of symbols V as the

5-tuple 〈V, S(V ), T (V, V ′), D(V ),Rf(V )〉. S and D are formulae repre-

senting respectively the source and destination regions, T is the transition

relation and Rf is a ranking function for S with respect to the transition

relation T . A funnel can be seen as compact witnesses for universal and
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existential reachability [10]. It represents a terminating loop over S where

D are the end states of the loop. Depending on the shape of the ranking

function, the loop might correspond to a simple loop or to more complex

termination arguments such as nested loops.

S

D
Rf = 0

T

Rf′ < Rf T

Figure 5.1: Funnel 〈V, S, T,D,Rf〉.

Fig. 5.1 depicts a funnel and highlights its components using different

colours. The source region S is represented by the largest square in orange.

The orange arrows inside this shape represent the transitions within the

source region that progressively decrease the ranking function Rf until it

becomes equal to its minimal element 0 and the blue square is reached.

This square corresponds to the states such that S ∧Rf = 0 holds. Finally,

the blue arrows represent the transitions that map every state in the blue

region to some state in the destination region, depicted in green.

Every path through the funnel starts from a state in S. Then, it follows

the transition relation T and remains in S while the ranking function Rf is

greater than the minimal element 0. Every such step decreases the ranking

function, hence the path eventually reaches a state in S ∧Rf = 0. Finally,

from such state the path reaches a state in D in a single step. If we consider

a trivial ranking function that is always equal to the minimal element 0

the 5-tuple simply asserts that every state in S is mapped into D by a

single transition T .
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Definition 18 - Funnel

A funnel fnl is a the 5-tuple

fnl =̇ 〈V, S(V ), T (V, V ′), D(V ),Rf(V )〉

where: V is a set of symbols, Rf is a ranking function with minimal ele-

ment 0 and, S, D and T are formulae representing respectively the source

region, destination region and transition relation of fnl . Every funnel must

satisfy the following hypotheses:

F.1 ∀V ∃V ′ : S → T ;

F.2 ∀V, V ′ : (S ∧ 0 < Rf ∧ T )→ S ′;

F.3 ∀V, V ′ : (S ∧ 0 < Rf ∧ T )→ Rf′ < Rf;

F.4 ∀V, V ′ : (S ∧Rf = 0 ∧ T )→ D′.

For a funnel fnl i we write Si, Ti, Di and Rfi to refer to its components.

Hyp. F.1 requires the relation T to be left-total restricted to the source

region S. Notice that we only care about the successors of the states

in S, hence we can define a corresponding left-total relation by providing

arbitrary successors for the states not in S. For example, given T satisfying

all the hypotheses above, the relation (S ∧ T ) ∨ (¬S ∧
∧
v∈V v

′ = v) is

left-total in both S and ¬S, and also satisfies all the conditions above.

Therefore, for every funnel there exists a corresponding one with a left-

total transition relation.

Hypotheses F.2 and F.3 share the same left-hand-side of the implication

and could be easily written as a single formula. We keep them separated

because they correspond to two different features of funnels that we will

discuss separately also in the proofs. In fact, Hyp. F.2 ensures that the

source region is closed with respect to the transition relation for the states

in which the ranking function is not equal to its minimal element. Instead,

Hyp. F.3 guarantees that there cannot be infinite chains of T transitions in
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S where the ranking function is greater than its minimal element. There-

fore, every path must eventually reach a state in S where the ranking

function is equal to 0. Together they imply that any path starting from S

will reach some state in S ∧Rf = 0 via a finite number of T steps.

Finally, Hyp. F.4 implies that T must map every state in S ∧ Rf = 0

into a state in the destination region D. The destination region may or

may not intersect the source region, in particular, if D ⊆ S it can be easily

observed that the funnel describes infinite paths.

We define the transition system corresponding to a funnel fnl repre-

sented by the 5-tuple 〈V, S, T,D,Rf〉 asMfnl=̇〈V, S, (¬D∧T )∨(D∧D′),>〉.
Every path in L(Mfnl) starts from the source region S and follows the tran-

sition relation of fnl until it reaches the destination region D; from that

point on we simply constrain it to remain within the set D. Therefore, if

S is not empty then also D must be nonempty and, since all infinite paths

are fair in Mfnl , L(Mfnl) must contain at least one infinite path. For this

reason we can write fnl |= ϕ meaning that ϕ holds in every path in L(Mfnl),

interpreted using the infinite-trace semantics described for temporal logics

(e.g. LTL in Sec. 2.7). From the definition it easily follows that every

funnel fnl satisfies the following:

fnl |= S U D.

In addition, we refer to the paths through a funnel fnl meaning the finite

paths of Mfnl that end the first time they visit region D. Notice that the

paths through a funnel are all finite and each of them is a prefix of some

path in L(Mfnl).

5.2 Funnel-loop

We define a funnel-loop as a circular chain of funnels [fnl i]
n−1
i=0 such that

the destination region of each funnel is included in the source region of the
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Fair
S0

D2

S1

D0

S2

D1

Figure 5.2: Funnel-loop of length 3.

following one and the destination region of the last funnel is included in

the source region of the first one.

Fig. 5.2 shows a funnel-loop composed of 3 funnels. Each destination

region (in green) is a subset of the source region (in orange) of the following

funnel. In addition, the last destination region is also a subset of the

rectangle representing the fair states.

Definition 19 - Funnel-loop

A sequence of n ≥ 1 funnels [fnl i]
n−1
i=0 over symbols V is a funnel-loop iff

the following holds.

FL.1 ∀i ∈ {h}n−1
h=0, V : Di → Si+n1.

Hyp. FL.1 requires the destination region of every funnel to be included

in the source region of the following one, where the funnel following fnln−1

is fnl0.

We define the set of paths through a funnel-loop floop, written L(floop),

as the infinite paths obtained by infinite concatenation of the paths through

the funnels in the corresponding chain. We will write floop |= ϕ meaning

that ϕ holds in all such paths. For every funnel, Hyp. FL.1 ensures that we

can extend every path through such funnel, which ends in its destination

region, by following the transition relation of the next funnel. Therefore,

every path starting in any source region will eventually reach the destina-
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tion region of the last funnel:

floop |= (
n−1∨
i=0

Si) U Dn−1.

In addition, Hyp. FL.1 also implies that every time we reach the destination

region of the last funnel in floop we are also in the source region of the first

one. Therefore, we can extend the execution by appending another finite

number of steps, i.e. a finite path starting from S0 and ending in the last

destination region Dn−1. We can do this infinitely many times obtaining

infinite paths. Notice that, by construction, each path through a funnel

must contain at least one transition. Therefore, the infinite concatenation

of such finite paths leads to an infinitely long path, since each finite path

adds at least one transition.

floop |= G((
n−1∨
i=0

Si) U Dn−1).

5.2.1 Funnel-loop with Disjoint Regions

We now show that for every funnel-loop there exists a corresponding one

that admits the same paths and whose regions are pairwise disjoint. Let

floop=̇[fnl i]
n−1
i=0 be a funnel-loop of length n over symbols V . We define a

corresponding funnel-loop fl̂oop=̇[f̂nl i]
n−1
i=0 over symbols V̂ =̇V ∪ {l}, where

l is a fresh integer variable with domain {i}n−1
i=0 . We construct fl̂oop such

that it admits the same set of paths of floop projected over the symbols in

V and whose regions are pairwise disjoint. We achieve this by relying on l

to keep track of the index of the current region. Therefore, every state in

the same region of fl̂oop prescribes the same assignment to l, while every

pair of distinct regions assigns l to different values. This guarantees that

the regions of fl̂oop are pairwise disjoint.
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More formally, we define each f̂nl i=̇〈V̂ , Ŝi, T̂i, D̂i,Rfi〉 corresponding to

fnl i such that:

• Ŝi =̇ Si ∧ l = i;

• D̂i =̇ Di ∧ l = i+n 1;

• T̂i =̇ Ti ∧ (0 < Rfi ∧ l′ = l) ∨ (Rfi = 0 ∧ l′ = l +n 1).

In the following we first show, in Th. 4, that the resulting structure fl̂oop

is still a funnel-loop. This requires us to show that each f̂nl i is a funnel

and they are correctly chained in fl̂oop. Then, Th. 5 proves that the paths

in the language of fl̂oop, projected over the symbols in V , are all and only

the paths in L(floop).

Theorem 4 - fl̂oop is a funnel-loop

Let floop be a funnel-loop, then all [f̂nl i]
n−1
i=0 satisfy the hypotheses of Def. 18

and fl̂oop satisfies the hypotheses of Def. 19.

Proof. We first show that each f̂nl i in [f̂nl i]
n−1
i=0 is a funnel and then show

that they are correctly concatenated in fl̂oop.

• Consider first Hyp. F.1.

By definition T̂i=̇Ti ∧ (0 < Rfi ∧ l′ = l) ∨ (Rfi = 0 ∧ l′ = l +n 1). In

each state either Rfi = 0 holds or 0 < Rfi does. Therefore, in the

first case T̂i admits a successor such that l′ = l+n1, in the second case

it admits a successor in which l′ = l. Since Hyp. F.1 holds for fnl i, its

transition relation Ti(V, V
′) is left-total with respect to Si. Therefore,

T̂i is left-total over Si and also over Ŝi. Therefore, Hyp. F.1 holds for

each f̂nl i in fl̂oop.

• We now consider Hyp. F.2.

By definition T̂i=̇Ti ∧ (0 < Rfi ∧ l′ = l) ∨ (Rfi = 0 ∧ l′ = l +n 1).

Therefore, every pair of states 〈v̂, v̂′〉 ∈ T̂i such that v̂ |= Ŝi∧Rfi > 0

must be such that v̂ and v̂′ assign the same value i to l. In order to
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show that v̂′ |= Ŝ ′i we need to show that v̂′ |= S ′i ∧ l′ = i. However,

we have already observed that v̂′ |= l′ = i, hence we only need to

prove that v̂′ |= S ′i. Let v=̇v̂↓V and v′=̇v̂′↓V ′ be the projections of

the two states to the symbols V . Then, 〈v,v′〉 ∈ Ti and v |= Si.

Since, Hyp. F.2 holds for fnl i, then v′ |= S ′i also holds. v̂′ agrees

with v′ |= S ′i on the assignment to all symbols in V , hence v̂′ |= S ′.

Therefore, Hyp. F.2 holds for f̂nl i.

• We now show that Hyp. F.3 holds.

By applying the same reasoning as above, for every such step in f̂nl i

we obtain a corresponding step in fnl i by projecting the assignments

over the symbols in V . Hyp. F.3 holds for fnl i hence those assignments

must decrease the value of the ranking function Rfi. Therefore, since

Rfi does not depend on l its value must decrease also in all such steps

of f̂nl i and Hyp. F.3 must hold.

• Finally, consider Hyp. F.4.

By applying the same reasoning as the previous two cases, for every

step 〈v̂, v̂′〉 ∈ T̂i in f̂nl i, where v̂ |= Ŝi ∧ Rfi = 0 we obtain a corre-

sponding step in fnl i by projecting the assignments over the symbols

in V : v=̇v̂↓V and v′=̇v̂′↓V ′. v |= Si ∧ Rfi = 0 since it agrees with v̂

on the assignment of all symbols in V . Hyp. F.4 holds for fnl i hence

the v′ must be in Di. By construction v̂′ agrees with v′ on the as-

signment of all symbols in V and, by definition of T̂ , it must assign l

to the index of the next region. Such an assignment agrees with the

assignment required by D̂i, hence Hyp. F.4 holds for f̂nl i.

We now show that fl̂oop is a funnel-loop, hence that that Hyp. FL.1

holds. We need to prove that ∀V̂ : D̂i → Ŝi+n1 holds for every 0 ≤ i < n.

For every i, by substituting the definitions we obtain: ∀V, l : (Di ∧ l =

i +n 1) → (Si+n1 ∧ l = i +n 1). There is only one possible assignment to
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l making the left-hand-side true and it is exactly the assignment required

on the right-hand-side. Therefore, in order for the formula to hold it is

sufficient to prove: ∀V : Di → Si+n1. This is exactly Hyp. FL.1 for floop

that holds by hypothesis. Therefore, Hyp. FL.1 must hold for fl̂oop.

Theorem 5 - floop and fl̂oop admit the same language

The languages of floop and fl̂oop describe the same set of paths projected

over the symbols V : L(floop) = L(fl̂oop)↓V .

Proof. We show that f̂ loop admits all paths of floop and vice-versa by

induction on their funnels and the length of the path.

• Assume floop admits a path starting from some state v. Then by

definition v |= Si for some i. Let v̂ be the state that assigns l to i and

agrees with v on the assignment of all symbols in V . Then v̂ |= Ŝi

and v̂ is an initial state for f̂ loop.

Viceversa, assume f̂ loop admits a path starting from some state v̂.

Then by definition v̂ |= Ŝi for some i. Let v=̇v̂↓V be its projection

over the symbols V , then v |= Si and is an initial state for floop.

• By induction, assume σ and σ̂ are two corresponding paths ending

in state v of region Si of floop and state v̂ of region Ŝi of f̂ loop

respectively.

Assume floop admits a successor state v′ of v. Then either v′ |= S ′i or

v′ |= S ′i+n1. Let v̂′ be the assignment that extends v′ with l′ = i in the

first case and l′ = i+n1 otherwise. v̂′ is a successor of v̂ corresponding

to v′ such that σ extended with v′ corresponds to σ̂ extended with v̂′.

Viceversa, assume f̂ loop admits a successor state v̂′ of v̂. Let v′=̇v̂′↓V ′

be the projection of v̂′ to the symbols in V . Then, v′ is a successor

for v such that σ̂ extended with v̂′ corresponds to σ extended with v′.
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These results allow us to assume, without loss of generality, the regions

of a funnel-loop to be pairwise disjoint and we will exploit this result to

simplify our proofs. However, in the definition of funnel-loop we allow for

regions with non-empty intersections. This eases the construction of the

structure in practical cases. It is possible to consider one funnel at a time

and then chain them simply by checking the inclusion of each destination

into the corresponding source region.

5.3 Soundness and Relative Completeness

We propose to identify a nonempty set of fair paths for a transition sys-

tem M as a funnel-loop floop, hence every (infinite) path through floop

must correspond to a fair execution of M . The totality of the transition

relation of each funnel (Hyp. F.1) and their chaining (Hyp. FL.1) ensure

that all the paths in L(floop) are infinite. We need such paths to be fair

paths, hence they must visit the fairness condition infinitely often. By con-

struction of floop we know that every path goes through each Si and each

Di infinitely many times. Since, by Hyp. FL.1, for every source region Si,

there exists a destination region Dj that is contained in it, it is sufficient to

require one of the destination regions to contain only fair states. Without

loss of generality we assume such a region to be the last one. These condi-

tions ensure that floop represents a set of fair paths of M . However, such

set might be empty or not reachable in M . Therefore, we finally require

the union of the source regions to contain at least one state reachable in

M . The existence of such state is sufficient to conclude nonemptiness of

L(floop) because the transition relation of each funnel always allows for a

successor state (F.1) and, by induction, this ensures that every region and

the language of floop are not empty.

Th. 6 shows that these requirements are sufficient for a funnel-loop
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to prove the existence of a fair path in M and Th. 7 shows that if M

admits a fair path then there exists a funnel-loop of length one for M .

Therefore, funnel-loops composed of a single funnel are expressive enough

to represent any fair path. However, funnel-loops of greater length can

lead to a description easier to understand for a person and, in addition,

could simplify the search procedure. We discuss the possible advantages

of considering longer funnel-loops in Sec. 6.2.

Theorem 6 - Funnel-loops are sound

Let M=̇〈V, IM , TM , FM〉 be a fair transition system. Let floop be a funnel-

loop of length n over the symbols V and funnels [fnl i]
n−1
i=0 that satisfy the

following hypotheses.

FF.1 There is at least one state in the union of the source regions of

floop that is reachable in M :

M  
n−1∨
i=0

Si.

FF.2 The destination region of the last funnel contains only fair states

of M .

∀V : Dn−1 → FM .

FF.3 Every transition of every funnel underapproximates the transi-

tion relation of M . For every funnel fnl i in [fnl i]
n−1
i=0 :

∀V, V ′ : Si ∧ Ti → TM .

Then M admits at least one fair path.

Proof. We first prove that every path in L(floop) is infinite. Then we

prove that every such path is fair with respect to the fairness condition

FM and that every step in every such path satisfies the transition relation

TM . Finally, we prove that L(floop) allows for at least one path which is

a suffix of some path of M .
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• Every path in L(floop) is infinite.

Consider a funnel fnl=̇〈V, S, T,D,Rf〉 in floop. Hyp. F.1 ensures that

its transition relation T allows for a successor state for every state in

S. Hyp. F.2 ensures that every path of fnl remains in S while 0 < Rf.

Hyp. F.3 ensures that every such path will eventually reach a state

in S ∧ Rf = 0. Hyp. F.4 ensures that every state in such region in

one T step reaches a state in D. Therefore, every path starting from

the source region S of each funnel can be extended until it reaches

its destination region D and it must perform at least 1 transition. If

fnl i−1 has a successor fnl i in floop, by Hyp. FL.1 the destination region

Di−1 is included in Si: every state in Di−1 is also in Si. Therefore, the

concatenation of fnl i−1 and fnl i allows to extend every path starting

from either Si−1 or Si until it reaches Di. By induction this shows

that the funnel chain allows the extension of every path starting from

the union of the source regions until it reaches the last destination

region:

floop |= (
n−1∨
i=0

Si) U Dn−1.

In addition, Hyp. FL.1 requires the last destination region Dn−1 to be

a subset of the first source region S0. As stated above, we can extend

every path starting in every region until it reaches Dn−1, hence from

S0 we reach Dn−1 again in a finite number of steps and at least one.

Therefore, since we can extend each path of a finite non-zero number

of steps infinitely many times every path in L(floop) is infinite.

• Every path in L(floop) visits FM infinitely often.

Hyp. FF.2 ensures that Dn−1 underapproximates the fair states FM .

We have already shown above that every path of floop reaches a state

in Dn−1 infinitely often. Therefore, such paths visit FM infinitely

often.

118



CHAPTER 5. REPRESENTATION OF FAIR PATHS

• Every step of every path in L(floop) satisfies TM .

Every step of every path in L(floop), by definition, corresponds to a

transition of some funnel fnl . By hypotheses F.2, F.4 and FL.1 every

such path remains within the union of the regions and visits them

following the order of the funnels. Therefore, every transition in every

path of floop must satisfy S ∧ T for some funnel fnl in the sequence.

Hyp. FF.3 ensures that if S∧T holds than also TM is true. Therefore

every step of every path of floop is also a step of M .

• L(floop) allows for at least one path which is a suffix of some path of

M .

Hyp. FF.1 ensures that there exists a finite path σpref of M starting

in IM and ending in some state v such that v |=
∨n−1
i=0 Si. Therefore,

v must be in Si for some 0 ≤ i < n. Then, in floop we can extend

v to an infinite fair path σsuf starting in v. As shown above, every

step of σsuf satisfies the transition relation of M and visits the fairness

condition FM infinitely often. The concatenation σ of σpref and σsuf

without repetition of v, starts from a state in IM , every steps satisfies

TM and visits FM infinitely often. Therefore, σ is a fair path for M :

σ ∈ L(M).

Th. 7 ensures that if a transition system admits a fair path then there

exists a corresponding funnel-loop. However, it may not be possible to

represent it using finite formulae. In finite-state systems it is always pos-

sible to represent any set of states and relation between them via a finite

formula. In fact, every relation and subset of the states is finite and can

be represented as a finite quantifier-free formula, for example as the dis-

junction of the assignments in the set. However, this might not be the case

in infinite-state systems. In such systems there could be an infinite set of
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states which cannot be represented by a finite formula. This is possible iff

there exists a finite formula equivalent to the disjunction of all states in the

set. Therefore, Th. 7 guarantees completeness relative to the expressive-

ness of the logic used to represent the regions and the transition relation of

the funnel. We remark that we are dealing with an undecidable problem,

hence there exist no decision procedure that is both sound and complete.

In addition, we highlight that the expressiveness of the considered logic

is not the only source of incompleteness of an hypothetical search proce-

dure that given a fair transition system tries to identify a corresponding

funnel-loop. Any such procedure needs to explore the space of all possible

formulae in order to find the ones that denote the desired region, transi-

tion and ranking function. This is achievable via a decision procedure if we

consider, for example, propositional logic. However, the problem quickly

becomes undecidable if we consider more expressive languages, such as the

quantifier-free fragment of FOL. Therefore, the two main sources of incom-

pleteness are the expressiveness of the considered logic and the capability

of synthesising formulae in such logic. The following theorem concerns the

existence of a funnel-loop and shows it to be dependent from the expres-

siveness of the logic, while it says nothing about the problem of actually

identifying it, which we discuss in Chapter 7.

Theorem 7 - Funnel-loops are relatively complete

If a fair transition system M admits at least one fair path, then there exists

a funnel-loop floop of length 1 for M .

Proof. In the following we define a predicate φ(V ) as the set of assignments

v such that v |= φ, meaning that φ(V ) is a formula equivalent to the

disjunction of the assignments in the set. Notice that there could be no

finite representation of φ.

Let M=̇〈V, IM , TM , FM〉 and assume there exists a fair path σ ∈ L(M).

Without loss of generality we assume that σ visits every state at most once.
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If this is not the case, it is sufficient to add an additional integer symbol

whose assignment increases by one at every transition. In more detail,

consider the fair transition system 〈V ∪ c, IM ∧ c = 0, TM ∧ c′ = c+1, FM〉.
If σ is a fair path of M then, we can obtain a fair path for the modified

system by extending the assignment of every state of σ such that c = 0

in the first state and in all other states the value of c is its value in the

previous state plus 1.

Let floop be a funnel-loop of length 1 and fnl=̇〈V, S, T,D,Rf〉 be its

funnel. We define the components of fnl as follows:

• S contains all and only states of σ: S=̇{v | v ∈ σ};

• D contains all and only the fair states of σ: D=̇{v | v ∈ σ ∧FM(v)};

• T is a relation containing all pairs of states 〈v,v′〉 such that v′ is the

successor state of v in σ: T =̇{〈v,v′〉 | 〈v,v′〉 ∈ σ};

• Rf associates to every state in σ the number of steps required to

reach the next fair state in σ minus 1: ∀k > 0,∀V1, . . . , Vk : Rf(V1) =

k − 1 ↔ (FM(Vk) ∧
∧k−1
i=1 T (Vi, Vi+1)); this is well-defined since each

state appears only once in σ and, by construction, T allows for a single

successor for each state. In addition, σ is a fair path by hypothesis,

hence there can be at most a finite number of non-fair states between

every pair of fair states.

We now show that fnl satisfies all hypotheses of Def. 18.

• Consider first Hyp. F.1.

σ is an infinite sequence of states, all its states are in S and each

pair of subsequent states is in T . Therefore, T must be left-total with

respect to S and Hyp. F.1 holds.

• Consider now Hyp. F.2.

By construction, S contains all states of σ and T is a relation between

states of σ. Thus, S is an inductive invariant and Hyp. F.2 holds.
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• We now prove Hyp. F.3.

By construction, Rf is greater than 0 in all states that require more

than 1 transition to reach a fair state and T brings all such states 1

step closer to the next fair state in σ. Therefore, (S(V ) ∧ Rf(V ) >

0 ∧ T (V, V ′))→ Rf(V ) = Rf(V ′) + 1 is valid and implies Hyp. F.3.

• Finally, we show that Hyp. F.4 holds.

By construction, Rf assigns the minimal value 0 to the states that

reach a fair state in 1 step. Therefore, Hyp. F.4 holds.

We now show that fnl corresponds to a funnel-loop floop of length one;

we prove it satisfies the hypothesis of Def. 19.

• We need to show that Hyp. FL.1 holds.

floop contains a single funnel and we need to prove that its destination

region D is included its source region S. By construction, S contains

all states of σ while D contains the subset of states of σ that are also

fair. Therefore, D → S is valid and Hyp. FL.1 holds.

Finally, floop represents fair paths of M and Th. 6 applies.

• Consider first Hyp. FF.1.

σ is a path of M , hence its first state is an initial state of M . All

states of σ are in S. Therefore, S contains at least 1 initial state of

M and Hyp. FF.1 holds.

• Now we consider Hyp. FF.2.

The last destination region of floop is D. By construction, D contains

only fair states, hence Hyp. FF.2 holds.

• Finally we prove that Hyp. FF.3 holds.

σ is a path of M and every pair of states 〈v,v′〉 such that v′ is the

successor state of v in σ satisfies v,v′ |= TM . T contains only such

pairs, hence T → TM is valid and Hyp. FF.3 holds.
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5.4 Funnel-loop Example

We exemplify funnel-loops by showing how they can be used to prove the

nontermination of the imperative program reported in Fig. 5.3. In the

procedure nondet returns a nondeterministic value selected from the set

provided as input. Assume we are interested in infinite runs in which

c is equal to 0 infinitely often, i.e. fair nontermination. We can easily

observe that one such run does indeed exist. It is sufficient to replace the

nondeterministic assignments of c and n such that c is always set to 0 and

n increases its value.

1: int c, n, old;

2: while n > old do

3: while c < n do

4: c← c+ 1

5: end while

6: old← n

7: c← nondet(Z)

8: n← nondet(Z)

9: end while

Figure 5.3: Nonterminating procedure.

We first encode the software procedure as a transition system. Since

we are interested in the fair nontermination of the procedure, we need to

define a corresponding transition system whose language is empty iff the

procedure does not admit any such path. In order to simplify our dis-

cussion, we do not model the program counter explicitly and define the

transition relation such that all updates happen simultaneously. We con-

sider the transition system M=̇〈V, IM , TM , FM〉, where: (i) V =̇{c, n, old},
IM=̇>, (ii) FM=̇c = 0 and (iv) TM=̇n > old ∧ ((c < n ∧ c′ = c+ 1 ∧ n′ =
n ∧ old′ = old) ∨ (c ≥ n ∧ old′ = n)).
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Fig. 5.4 reports the definition of M in SMV language. The VAR key-

word introduces the state variables of the system. Each TRANS statement

is a quantifier-free formula over the state variables that must hold in every

transition of the system. In these formulae, the keyword next refers to

the next state assignment. Finally, FAIRNESS defines the quantifier-free

formula representing the fair states.

VAR c : integer ; n : integer ; o l d : integer ;

TRANS n > o l d ;

TRANS

( c < n ∧ next ( c)=c+1 ∧ next ( n)=n ∧ next ( o l d )=o l d ) ∨
( c ≥ n ∧ next ( o l d )=n ) ;

FAIRNESS c = 0 ;

Figure 5.4: ITS corresponding to Fig. 5.3.

We now define a funnel-loop floop of length one proving the fair non-

termination of the procedure. Let floop=̇[fnl ] and fnl=̇〈V, S, T,D,Rf〉,
where its components are defined as follows. The set of symbols V is the

same as for the transition system M . We define the source and destination

regions as S=̇0 < old ∧ old < n and D=̇0 < old ∧ old < n ∧ c = 0 respec-

tively. The ranking function ensures the termination of the inner loop of

the procedure and is defined as Rf=̇n−c with minimal element 0. Finally,

the transition relation T mimics TM when c < n and if c ≥ n it replaces

the nondeterministic assignments by resetting c to 0 and increasing n by 1:

(c < n∧c′ = c+1∧n′ = n∧old′ = old)∨(c ≥ n∧old′ = n∧c′ = 0∧n′ = n+1).

floop is represented in Fig. 5.5, where the outer rectangle corresponds to

the source region S, while the two inner rectangles correspond to the region

where Rf = 0 and the destination region D respectively.

Our goal is now to show that floop meets all requirements of Th. 6 for

M , hence that it represents a nonempty set of fair paths of M . In order

to do that we must first show that fnl is indeed a funnel, i.e. it satisfies all
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Rf =̇ n− c

c ≤ n ∧ 0 < old < n

Rf = 0c = 0

c′ = c+ 1

c′ = c+ 1

old′ = n ∧ n′ = n+ 1

c′ = 0

Figure 5.5: Funnel-loop proving the nontermination of Fig. 5.3.

requirements of Def. 18, and similarly floop needs to satisfy all conditions

of Def. 19 to be a funnel-loop. Finally, we will show that also all hypothesis

of Th. 6 are met.

fnl is a funnel. We begin by showing that fnl satisfies the requirements

of Def. 18. Hyp. F.1 requires the transition relation of fnl to be left-total

restricted to S. T is defined as the disjunction of two components and both

prescribe a functional assignment to the state variables. The first disjunct

applies to all states such that c < n, while the second one requires c ≥ n.

Therefore, they cannot contradict each other (they are complementary)

and define a left-total relation. Hyp. F.2 requires the transition relation to

map states in S ∧ Rf > 0 into states in S. Rf > 0 implies c < n, hence

the transition relation increases c by one, while all other symbols remain

constant. Therefore, every such transition remains in S and Rf decreases

by one, proving that Hyp. F.3 holds. Finally, Hyp. F.4 requires T to map

states in S ∧Rf = 0 into D. This holds since in such states T assigns c to

0, hence it maps them into states where D holds.
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floop is a funnel-loop. Def. 19 of funnel-loop requires Hyp. FL.1 to hold,

hence to prove that the funnels of floop are correctly concatenated. floop

contains a single funnel fnl and we need to show that its destination region

D is included in the source region S. This trivially follows from their

definition, D contains the subset of states of S where c = 0.

Th. 6 applies. Finally, we show that floop represents a nonempty set of

fair paths of M . The assignment c = 0 ∧ old = 0 ∧ n = 1 is an initial

state of M and is also in S, hence Hyp. FF.1 holds. Hyp. FF.2 trivially

holds since D implies c = 0, hence it contains only fair states. T is an

underapproximation of TM , it removes the nondeterminism of TM by pre-

scribing a specific next value for c and n. Therefore, S ∧ T → TM and

Hyp. FF.3 holds. Finally, by Th. 6, we conclude that floop is a witness for

the existence of at least one fair path in the language of M .
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Chapter 6

Partitioning the search space of

funnel-loops

Chapter 5 and, in particular, Theorems 6 and 7, show that any fair path

can be represented as a funnel-loop of length one. However, they do not

guarantee the existence of one described by finite formulae and, in addition,

such formulae could be arbitrarily complex.

In order to better support the exploration of the space of all possible

funnel-loops, this chapter organises the search space along two orthogonal

directions. We first segment fair paths into a finite sequence of funnels.

The infinite path is represented as a concatenation of finite paths. This

often allows for funnels described by formulae with a simpler structure

and also less complex ranking functions. The other direction is decompo-

sition. In this case, a fair transition system is decomposed with respect

to a partitioning of its symbols. For each subset of the symbols, we iden-

tify components, called existential components or E -comps, that represent

their behaviour with respect to a sequence of regions. E -comps distinguish

three kinds of transitions between their regions and all states in the same

region must exhibit transitions of the same kind. In this sense, the regions

of an E -comp group states with similar behaviour. We define two opera-

tors over these structures. The first operation, called projection, shrinks
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the set of paths described by an E -comp by considering only a subset of its

regions. The second operation, called composition, defines how E -comps

can be composed to obtain a description of the behaviour of a larger set of

symbols, given by the union of the symbols of the composed elements. In

this setting we represent fair paths as the composition and projection of a

finite set of E -comps and show their correspondence to funnel-loops.

First, in Sec. 6.1, we introduce the running example we will use to exem-

plify the structures, operations and observations reported in this chapter.

Then, we discuss the potential benefits of segmentation in Sec. 6.2. Instead,

Sec. 6.3 formally defines E -comps and the two operators, while theorems 11

and 12 highlight the relationship between funnel-loops and E -comps. In

more detail, Th. 11 shows that a funnel-loop also defines a corresponding

E -comp and, viceversa, Th. 12 details the conditions under which an E -

comp corresponds to a funnel-loop that proves the existence of at least one

fair path for some fair transition system.

6.1 Running Example

This section introduces a simple LTL verification problem on a software

program that will be used as running example throughout this chapter.

Consider the simple program described by Fig. 6.1, where nondet is

a function that nondeterministically selects a value from the set provided

as input. Our objective is to check whether in every infinite execution

of such program the value of y will eventually remain always positive or

always negative. This statement can be written in LTL as (FGy ≥ 0) ∨
(FGy ≤ 0). Intuitively, any counterexample to such specification must be

a nonterminating execution of the program in which both y > 0 and y < 0

hold infinitely often.

We encode the software program as an infinite-state transition system
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1: int x← nondet(Z)

2: real y ← nondet(R)

3: while x2 ≥ xy do

4: y ← nondet(R)

5: x← x+ 1

6: end while

Figure 6.1: Running example.

using an additional variable pc to model the program counter. Then, we

employ the reduction from LTL model checking to the existence of a fair

path. The resulting infinite-state transition system is Ex =̇〈V, IEx , TEx , FEx 〉.
Its components are defined as follows. V =̇{x, y, pc, f0, f1} is the set of vari-

ables, pc and x are two integer variables, y is a real variable, f0 and f1 are

two Boolean symbols. The initial states are all the states where pc = 3

holds: IEx =̇pc = 3. The fair states are those in which both f0 and f1 hold:

FEx =̇f0 ∧ f1. f0 and f1 have been introduced by the reduction to keep

track of whether in the current path we visited a state in y > 0 and y < 0

respectively. Finally, the transition relation is defined as follows.

TEx =̇ (pc = 3→ (x2 ≥ xy ∧ pc′ = 4 ∧ x′ = x ∧ y′ = y)) ∧

(pc = 4→ (pc′ = 5 ∧ x′ = x)) ∧

(pc = 5→ (pc′ = 3 ∧ x′ = x+ 1 ∧ y′ = y)) ∧

((f0 ∧ f1)→ (¬f ′0 ∧ ¬f ′1)) ∧

(f ′0 → (f0 ∨ y > 0)) ∧ (f ′1 → (f1 ∨ y < 0)).

The first three lines of the formula encode the transition relation of the

program. Notice that every state such that pc = 3 and ¬(x2 ≥ xy) hold

is a deadlock for Ex , i.e. the relation admits no successor state. Finally,

the last two lines of the formula ensure that in every path in which f0 ∧ f1

holds infinitely often also y > 0 and y < 0 hold infinitely often.
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6.2 Segmentation

Th. 7 shows that it is always possible to find a funnel-loop of length one as

a witness for some fair path of any transition system. Conversely, one could

also represent a fair path as an infinite sequence of funnels such that each

source region corresponds to a single state in the sequence. While such

sequence does not fit into our definition of funnel-loop, since it involves an

infinite number of funnels, it still represents a fair path. Moreover, every

ranking function is always equal to 0 and all source and destination regions

can be represented as quantifier-free formulae written as the conjunction of

a constant number of terms. In fact, every state is a total assignment over

V and can be represented as the conjunction of |V | equalities. Therefore,

the two extremes are given by a funnel-loop of length one whose funnel

could require infinite formulae and a structure represented by an infinite

sequence of funnels, each of which is defined by formulae with constant size.

However, unsurprisingly, it is not the case that the size of the formulae

always decreases as the number of funnel increases.

Th. 8 shows that any sequence of two funnels can be represented as a

single funnel corresponding to their concatenation. In addition, the recur-

sive application of this transformation constructs, from a funnel-loop of

arbitrary length, a corresponding one of length 1. The construction builds

an increasingly complex representation for the funnel, hence it outlines a

correspondence between considering longer funnel-loops and shorter ones

with more complex descriptions. For this reason, funnel-loops of greater

length could simplify the search procedure and might not require complex

disjunctive representations of the regions, ranking functions and transition

relations. In addition, funnel-loops of greater length lead to a descrip-

tion easier to understand for a person, since it clearly defines the ordered

sequence of regions that the system must visit.
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Theorem 8 - Shrink funnel-loop

Given two funnels fnl0 and fnl1 such that D0 → S1, there exists a funnel

fnl whose paths are obtained as the concatenation of the paths of fnl 0 and

fnl1.

Proof. Let fnl0=̇〈V, S0, T0, D0,Rf0〉 and fnl1=̇〈V, S1, T1, D1,Rf1〉 be the

two funnels. Theorems 4 and 5 allow us to assume S0 and S1 to be disjoint.

We define a funnel fnl=̇〈V, S, T,D,Rf〉 where:

S =̇ S0 ∨ S1;

T =̇ (S0 ∧ T0) ∨ (S1 ∧ T1);

D =̇ D1;

Rf(V ) =̇

{
〈1,01,Rf0(V )〉 if S0(V );

〈0,Rf1(V ),00〉 otherwise;

with minimal element 〈0,01,00〉 and lexicographic ordering.

We now show that fnl is a funnel: it satifies all hypotheses of Def. 18.

• Hyp. F.1 requires T to be left-total in S. S is defined as the disjunction

of S0 and S1. S0 ∧ T is equivalent to T0 since S0 ∧ S1 is unsatisfiable.

T0 is left-total relative to S0 since Hyp. F.1 holds for fnl0, hence T is

left-total relative to S0. Similarly S1 ∧ T is equivalent to T1 and T1 is

left-total relative to S1. Therefore, T is left-total relative to S0 ∨ S1,

hence also relative to S.

• Hyp. F.2 requires T to map every state in which the ranking function

is greater than the minimal element into states in S. First we show

that every state in S1 with Rf > 0 is mapped into S. S1 ∧ Rf > 0,

by definition of Rf, implies Rf1 > 0. S1 ∧ T is equivalent to T1, and

Hyp. F.2 guarantees that T1 maps every state in S1∧Rf1 > 0 into S1,

hence in S. Therefore, T maps every such state in S. Consider now

a state in S0. If Rf0 > 0 then by the same reasoning of the previous

case, we conclude that T maps such state into S. Otherwise, consider

a state in S0 ∧ Rf0 = 0, hence Rf = 〈1, 0, 0〉. In S0 the transition

relation T is equivalent to T0. Since Hyp. F.4 holds for fnl0, T0 maps
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every such state into D0. By hypothesis D0 → S1 is valid, hence every

such state is in S1 and also in S. Therefore, T maps every state in

S ∧Rf > 0 into a state in S.

• Hyp. F.3 requires Rf to decrease at every transition T . For states in

S1 and S0 ∧ Rf0 > 0 it directly follows from the fact that Hyp. F.3

holds for both fnl0 and fnl1 and the fact that Si ∧ T is equivalent

to Ti, for i ∈ {0, 1}. Consider states in S0 ∧ Rf0 = 0. By defini-

tion, this implies Rf = 〈1,01,00〉. Hyp. F.4 ensures that every such

state is mapped by T0 into some state in D0. As stated above, this

implies that T maps every such state in some state into S1. There-

fore, in every successor state the ranking function Rf evaluates to

〈0,Rf1,00〉. Since we are considering the lexicographic ordering we

have that 〈0,Rf1,00〉 < 〈1,01,00〉, hence Hyp. F.3 holds for fnl .

• Hyp. F.4 requires fnl to reach its destination regionD once the ranking

function becomes equal to its minimal element. Rf = 0 = 〈0,01,00〉
implies we are in some state in region S1 and Rf1 = 01. Again, S1∧T
is equivalent to T1 and by Hyp. F.4 for fnl1, S1∧Rf1 = 01∧T1 → D′1

is valid. Therefore, S ∧Rf = 0→ D′ is also valid.

Then, it is sufficient to observe that any path through fnl is the concate-

nation of a possibly empty path through fnl0 and one of fnl1. In addition,

every path through fnl0 [resp. fnl1] is a prefix [resp. suffix] of some path

through fnl .

6.2.1 Example Segmentation

We now define two funnel-loops, of length respectively 6 and 1, for the fair

transition system Ex =̇〈V, IEx , TEx , FEx 〉 we defined in the running example

introduced in Sec. 6.1. Both funnel-loops are sufficient to conclude the exis-

tence of a fair path for Ex . We first describe the funnel-loop floop=̇[fnl i]
5
i=0
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FEx

FEx

T0

x′ = x

y′ = y
T1

x′ = x

y′ = −y

T2

x′ = x+ 1

y′ = y

T5

x′ = x+ 1

y′ = y

S0
pc = 3

x ≥ y > 0

f0 ∧ f1

S1
pc = 4

x ≥ y > 0

¬f0 ∧ ¬f1

S2
pc = 5

x ≥ −y > 0

f0 ∧ ¬f1

T3

x′ = x

y′ = y

T4

x′ = x

y′ = −y

S3
pc = 3

x ≥ −y > 0

f0 ∧ f1

S4
pc = 4

x ≥ −y > 0

¬f0 ∧ ¬f1

S5pc = 5

x ≥ y > 0

¬f0 ∧ f1

Figure 6.2: funnel-loop floop of length 6.

depicted in Fig. 6.2. The figure reports the source regions and transition

relations of each funnel. The transitions in the figure report only the con-

straints for x and y, while the ones for pc, f0 and f1 can be trivially inferred

by the assignments in the regions. More formally, each funnel fnl i is the

tuple 〈V, Si, Ti, Di,Rfi〉. We define each ranking function such that it is

always equal to its minimal element, ∀V : Rfi(V ) = 0i, and each des-

tination region as the corresponding source region, Di=̇Si+61. We define

the remaining components, source regions and transition relations, as fol-

lows. The first funnel fnl0 represents the step from location 3 to location

4 of Fig. 6.1. In S0 both f0 and f1 are true, hence S0 contains only fair

states and also D5=̇S0 does. Notice that x ≥ y ∧ y > 0 implies x2 ≥ xy.

Therefore, the condition of the while loop is satisfied.

S0 =̇ pc = 3 ∧ x ≥ y ∧ y > 0 ∧ f0 ∧ f1;

T0 =̇ pc′ = 4 ∧ x′ = x ∧ y′ = y ∧ ¬f ′0 ∧ ¬f ′1.

The second funnel fnl1 performs the step from pc = 4 to pc = 5. In

this step, the program of Fig. 6.1 assigns a nondeterministic value to y.
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The funnel underapproximates this transition by always assigning to y the

opposite of its current value. In addition, since y > 0 in S1, the transition

relation assigns f ′0 to true.

S1 =̇ pc = 4 ∧ x ≥ y ∧ y > 0 ∧ ¬f0 ∧ ¬f1;

T1 =̇ pc′ = 5 ∧ x′ = x ∧ y′ = −y ∧ f ′0 ∧ ¬f ′1.

The third funnel fnl2 performs the last step of the first iteration of the

while loop. Its transition relation increases the value of x by one and,

since y < 0 holds in the current state, f1 is true in the next one.

S2 =̇ pc = 5 ∧ x ≥ −y ∧ y < 0 ∧ f0 ∧ ¬f1;

T2 =̇ pc′ = 3 ∧ x′ = x+ 1 ∧ y′ = y ∧ f ′0 ∧ f ′1.

The fourth funnel fnl3 represents the first step of the loop of Fig. 6.1 as

fnl0. However, in this case y is negative.

S3 =̇ pc = 3 ∧ x ≥ −y ∧ y < 0 ∧ f0 ∧ f1;

T3 =̇ pc′ = 4 ∧ x′ = x ∧ y′ = y ∧ ¬f ′0 ∧ ¬f ′1.

The fifth funnel fnl4 is analogous to fnl1, but has negative value of y.

S4 =̇ pc = 4 ∧ x ≥ −y ∧ y < 0 ∧ ¬f0 ∧ ¬f1;

T4 =̇ pc′ = 5 ∧ x′ = x ∧ y′ = −y ∧ ¬f ′0 ∧ f ′1.

Finally, funnel fnl5 is analogous to fnl2, but has positive value of y.

S5 =̇ pc = 5 ∧ x ≥ y ∧ y > 0 ∧ ¬f0 ∧ f1;

T5 =̇ pc′ = 3 ∧ x′ = x+ 1 ∧ y′ = y ∧ f ′0 ∧ f ′1.

It can be easily observed that each funnel satisfies all hypotheses of

Def. 18 and the funnels are correctly chained (Def. 19) by definition of the

destination regions. Notice that every region and transition of floop is a
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purely conjunctive formula and both S0 and S3 underapproximate the fair

states. Therefore, in every iteration through floop we visit the fair states

twice, in S0 with positive y and in S3 with negative y. floop satisfies all

hypotheses of Th. 6 and represents at least one counterexample for our

LTL model checking problem.

Th. 7 ensures the existence of a funnel-loop of length one. In particular,

one such funnel-loop can be obtained via the recursive application of the

transformation of Th. 8. In the following we describe the resulting funnel

fnl=̇〈V, S, T,D,Rf〉. Its components can be defined in terms of the funnels

we defined above as follows. The source region is the union of the source

regions of the {fnl i}5
i=0: S=̇

∨5
i=0 Si. The destination region is the last des-

tination region of floop: D=̇D5. The transition relation can be defined as

T =̇
∨5
i=0(Si∧Ti) by observing that the source regions {Si}5

i=0 are pairwise-

disjoint. Finally, the ranking function Rf is defined as a function that

maps every assignment to the symbols in V to a number in N such that

it assigns decreasing values to states in the regions S0, . . . , S4 and assigns

the constant 0 to states in S5:

Rf(V )=̇



0 if S5(V ),

1 if S4(V ),

2 if S3(V ),

3 if S2(V ),

4 if S1(V ),

5 otherwise.

By construction, the transition relation maps every state in S0 to some

state in S1, which is in turn mapped into S2 and so on. Therefore, every

state in S ∧ Rf > 0 is mapped to some other state in S in which the

ranking function has lower value. S ∧ Rf = 0 is equivalent to S5 and in

such region T corresponds to T5. Therefore, in a single transition we reach
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D5 that, by definition, is equivalent to D and contained in S0.

Notice that floop is described by purely conjunctive formulae and all

its ranking function are always equal to their minimal element. Instead,

the description of fnl requires longer disjunctive formulae and the ranking

function represents the sequence of regions that was explicit in floop.

6.3 Decomposition

In the previous section we segmented the paths of a fair transition system

into funnels representing finite paths. In the following we adopt an orthog-

onal view and decompose the system with respect to a partitioning of its

symbols. A component, called existential component or E -comp, describes

the behaviour of all the symbols in a partition with respect to a set of

regions and defines a set of loops over such regions. This is done under

the assumption that the symbols in the other partitions satisfy some con-

ditions. Therefore, while funnels characterise sets of finite paths, E -comps

describe (possibly empty) sets of infinite paths.

We will show how E -comps can be obtained from funnel-loops with an

additional restriction on their transition relation, hence how an E -comp

can be constructed by concatenating funnels (Th. 11).

Vice-versa we obtain a funnel-loop from a set of E -comps via the fol-

lowing steps. First, we compose E -comps to obtain another E -comp whose

loops consider the union of the symbols of the smaller ones. We do this

until we obtain a component that considers all the symbols of the system

and then, among all its loops we search for one that is also fair. Finally,

we restrict its language to only the fair paths by projecting the E -comp

over the regions of the fair loop. We show that such E -comp corresponds

to a funnel-loop for the transition system, hence proving the existence of

at least one fair path (Th. 12).
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The section is organised of follows. First, §6.3.1 defines the structure and

properties of E -comps. Then, in §6.3.3, we describe the conditions under

which a funnel-loop corresponds to an E -comp and defines in which case

an E -comp implies the existence of a funnel-loop for a transition system.

Finally, §6.3.4 defines the composition and projection operators for E -

comps and show that the set of E -comps is closed under such operations.

6.3.1 Existential Components

An existential component, or E -comp, is a transition system associated

with a set of regions, assumptions and ranking functions. We call the

conjunction of a region and its corresponding assumption restricted region

and, in addition, E -comps associate to each restricted region a ranking

function. Restricted regions group states that have “similar behaviour”

with respect to the transition relation. If some state in a restricted region

allows for a transition with certain characteristics, then a transition with

the same characteristics must exist for all states in the restricted region,

hence the name existential components. In the following, we first describe

what we mean by similar behaviour via the definition of three predicates

that classify the transitions. Then, we employ these predicates to formally

define E -comps. Finally, we characterise the language of such components.

We are interested in transitions representing self-loops over the restricted

regions of two types: self-loops in which the ranking function decreases,

called ranked transitions, and self-loops in which the ranking function re-

mains constant, called stutter transitions. We characterise them using two

relations rankedT j(V, V
′) and stutterT j(V, V

′) over symbols V and V ′ such

that a transition in the restricted region with index j is a ranked transition

iff rankedT j holds and it is a stutter transition iff stutterT j does. Finally,

we consider transitions between possibly distinct restricted regions, start-

ing from a state in which the ranking function is 0 and reaching some state
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in the second region. We call them progress transitions and characterise

them using the relation progressT j,j′(V, V
′). We call a transition a progress

transition from region j to region j′ iff progressT j,j′ holds. Therefore, we

distinguish three kinds of transitions between regions and require that ei-

ther no state allows for a transition of a given kind or all states in the

same restricted region admit such a transition. Fig. 6.3 depicts an E -comp

R0

A0

Rf0 = 0

Rf1 = 0
R1

A1

Figure 6.3: E -comp with two regions; transitions of the three types are highlighted with

different colors: orange for ranked, green for stutter and blue for progress transitions.

with two regions R0 and R1, assumptions A0 and A1 and ranking functions

Rf0 and Rf1. The orange arrows within the regions represent the ranked

transitions, the green circular arrows correspond to the stutter transitions

and, finally, the blue arrow from R0 to R1 corresponds to the progress

transition. Notice that this transition starts from the states in R0 in which

the ranking function Rf0 is equal to its minimal element 0.

We now introduce the formal definitions of the predicates classifying the

transitions and of E -comps. For a set of symbols V , let Ri=̇{Ri
j(V )}m−1

j=0 ,

Ai=̇{Ai
j(V )}m−1

j=0 andW i=̇{Rfij(V )}m−1
j=0 be, respectively, the set of regions,

assumptions and ranking functions of an E -comp H i. Then, Ri
j ∧Ai

j is the

jth restricted region and Rfij is the ranking function associated to it. We

define the three relations that classify the transitions as follows.

rankedT i
j(V, V

′) =̇ Ri
j ∧ Ai

j ∧ 0ij <
i
j Rfij ∧Ri

j
′ ∧ Ai

j
′ ∧Rfij

′
< Rfij;

stutterT i
j(V, V

′) =̇ Ri
j ∧ Ai

j ∧Ri
j
′ ∧ Ai

j
′ ∧Rfij

′
= Rfij;

progressT i
j,j′(V, V

′) =̇ Ri
j ∧ Ai

j ∧ 0ij = Rfij ∧Ri
j′
′ ∧ Ai

j′
′
.
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Notice that, for every j, the relations rankedT i
j and sutterT i

j are always

disjoint. In the first case the ranking function strictly decreases, while in

the second one it must remain constant. However, they are not a parti-

tioning of all possible transitions. In fact, transitions in which the ranking

function increases or that move to another region are in neither of the two

sets of transitions. In addition, progressT i
j,j′ and rankedT i

j are always dis-

joint by definition, while the first one could have a non-empty intersection

with sutterT i
j if j = j′. In particular, all transitions that both start and

end in a state satisfying Ri
j ∧ Ai

j ∧ Rfij = 0ij are in the intersection of

stutterT i
j and progressT i

j,j. Therefore, the existence of one such transi-

tion implies that all states in the restricted region must allow for at least

one stutter transition. In addition, for the states in which Rfj = 0j, this

transition is also a progress transition, hence they all admit at least one

progress transition that remains in the same region.

We remark that E -comps represent the possibility of performing such

transitions and group states for which there exists a successor along the

same transition types. Given a partitioning {V i}ni=0 of the symbols V , we

want to define the restricted regions such that they allow a set of next as-

signments to the symbols in a single partition V i, while the assignment to

the symbols in V 6=i=̇V \ V i is abstracted and only the assumptions are re-

tained. For this reason, we introduce a quantifier alternation (∃V i′∀V 6=i′),
and require the existence of a transition of the given type for every as-

signment to the V 6=i
′

satisfying the corresponding assumptions. We apply

this reasoning to each of the three types of transitions (stutter, ranked and

progress) and formally define E -comps as follows.
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Definition 20 - E -comp

Given a set of symbols V such that {V i}ni=0 is a partitioning of V for some

n ∈ N. An E-comp H i of length mi ∈ N and responsible for V i is a

transition system 〈V, I i(V ), T i(V, V ′)〉 associated with:

• a set of regions Ri=̇{Ri
j(V ) | 0 ≤ j < mi};

• a set of assumptions Ai=̇{Ai
j(V

6=i) | 0 ≤ j < mi},
where V 6=i=̇

⋃
0≤k<n,k 6=i V

k and Ai
j(V

6=i)=̇
∧

0≤k<n,k 6=iA
i,k
j (V k);

• a set of functions W i=̇{Rfij(V ) | 0 ≤ j < mi} such that each Rfij

is a ranking function with respect to a well-founded relation <i
j and

minimal element 0ij;

such that the following hold:

EC.1 H i |=
∨mi−1
j=0 Ri

j ∧ Ai
j;

EC.2 ∀j : 0 ≤ j < mi →

∃V, V ′ : rankedT i
j(V, V

′) |= ∀V ∃V i′∀V 6=i′ :

Ri
j ∧ Ai

j ∧ 0ij <
i
j Rfij ∧ Ai

j
′ → Ri

j
′ ∧ T i ∧Rfij

′
<i
j Rfij;

EC.3 ∀j : 0 ≤ j < mi →

∃V, V ′ : stutterT i
j(V, V

′) |= ∀V ∃V i′∀V 6=i′ :

Ri
j ∧ Ai

j ∧ Ai
j
′ → Ri

j
′ ∧ T i ∧Rfij

′
= Rfij;

EC.4 ∀j, j′ : 0 ≤ j < mi ∧ 0 ≤ j′ < mi →

∃V, V ′ : progressT i
j,j′(V, V

′) |= ∀V ∃V i′∀V 6=i′ :

Ri
j ∧ Ai

j ∧Rfij = 0ij ∧ Ai
j′
′ → Ri

j′
′ ∧ T.

In the definition, each assumption Ai
j(V

6=i) of E -comp i at index j is

composed of n conjuncts {Ai,k
j (V k)}0≤k<n,k 6=i, where each conjunct is a

formula over the symbols in a single partition V k different from V i. In
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addition, when clear from the context we will simply write 0 and < for 0ij
and <i

j respectively.

Hyp. EC.1 requires all initial states of H i to be in the union of its

restricted regions. Hypotheses EC.2, EC.3 and EC.4 require that if there

exists, respectively, a ranked, stutter or progress transition from the jth

restricted region, then every state in the region allows for a successor via

a transition of the same kind, provided the assumptions are met. In the

case of Hypotheses EC.2 and EC.3 every such transition must remain in

the jth restricted region (a self-loop). Finally, Hyp. EC.4 requires that for

every j′ either no state in the jth restricted region admits a successor in

the j′th restricted region or all of them admit at least one.

We define the language of an E -comp H=̇〈V, I, T 〉 over R, A and

W , written L(H), as the language of the corresponding transition system

M=̇〈V, I, TM ,>〉, where TM is defined as follows:

TM =̇ T ∧ (
m−1∨
j=0

R′j ∧ A′j)∧

m−1∧
j=0

(Rj ∧ Aj ∧ 0 < Rfj)→ (R′j ∧ A′j ∧Rf′j ≤ Rfj).

Therefore, we consider only paths that remain within the set of restricted

regions and move from one region to another only if the corresponding

ranking function is equal to the minimal element. In fact, as long as the

ranking function of the current region is greater than its minimal element,

TM allows only ranked or stutter transitions.

The following two paragraphs highlight the differences between E -comps

and two well-known concepts: equivalence relations and bisimulating ab-

stractions. We do this to better motivate the need for this novel structure

and the reason why we did not resort those concepts in its definition.
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E -comp and equivalence relation. For some equivalence relation, defined in

terms of the three transition predicates (stutterT , rankedT and progressT ),

one might want to define the restricted regions as equivalence classes. How-

ever, equivalence classes are required to be maximal; they contain the clo-

sure of the equivalence relation. This is not the case for the restricted

regions that represent a weaker notion. Two restricted regions could have

a non-empty intersection without being the very same restricted region,

but this is not possible in the case of equivalence classes; in fact, they

are either disjoint or the same class. However, any subset of our hypo-

thetical equivalence class is a valid restricted region. In addition, we are

interested in building an underapproximation for a fair transition system,

hence the capability of shrinking the regions as much as needed is welcome

and simplifies the definition of E -comps.

E -comp and (bi)simulation. The representation of a transition system as

an E -comp can be seen as a simulation relation between two transition

systems by introducing an additional assumption on the ranking functions.1

Assume that every ranking function maps states into some natural number

and, when decreasing, decreases of exactly 1. Then, given an E -comp H

of size m, we define a transition system that has a location corresponding

to Rj ∧ Aj ∧ Rfj = k, for every restricted region j and k ∈ N. We

define its transitions such that: (i) a location admits a self-loop iff the

corresponding restricted region in H admits a stutter transition, (ii) from

every location corresponding to Rj ∧ Aj ∧ Rfj = k with k > 0 there is a

transition to the location that corresponds to Rj ∧Aj ∧Rfj = k− 1 iff the

restricted region j of H admits ranked transitions and (iii) finally, for every

1Given two transition systems A=̇〈V A, IA, TA,>〉 and B=̇〈V B , IB , TB ,>〉 and a relation rel(V A, V B)

between states of A and states of B. B simulates A with respect to rel iff:

∀V A, V B , V A′ : rel(V A, V B) ∧ TA(V A, V A′)→ ∃V B ′ : TB(V B , V B ′) ∧ rel(V A′, V B ′).

In addition, there is a bisimulation between A and B if both B simulates A and A simulates B.
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0 ≤ j, j′ < m there are the transitions from the location corresponding to

Rj∧Aj∧Rfj = 0 to each of the locations Rj′∧Aj′∧Rfj′ = k for all k iff H

admits a progress transition from the restricted region with index j to the

one with index j′. It is easy to see that such a transition system simulates

the E -comp. However, this is not guaranteed to be a bisimulation. In fact,

in the progress transitions there could be a mismatch between the value of

the ranking function in H with respect to the one required by the location

of the transition system.

E -comp with disjoint regions

We now show that every E -comp admits a corresponding one with the

same language, projected over the common symbols, and whose regions

are pairwise disjoint. Given an E -comp H=̇〈V, I(V ), T (V, V ′)〉 of length

m over regions R, assumptions A, ranking functions W and responsible

for Vr ⊆ V , we define a corresponding E -comp Ĥ=̇〈V̂ , Î(V̂ ), T̂ (V̂ , V̂ ′)〉
over regions R̂, assumptions A, ranking functions W and responsible for

V̂r whose regions and pairwise disjoint. Ĥ, with respect to H, has an

additional symbol l: V̂ =̇V ∪ {l}. The fresh variable is used to keep track

of the index of the current region and each region of H is strengthened

by requiring the correct assignment for such symbol, while the sets of

assumptions and ranking functions remain the same. More formally we

define the components of Ĥ as follows:

• V̂ =̇ V ∪ {l}, where l 6∈ V is a fresh symbol whose domain are the

integers from 0 to m− 1;

• V̂r =̇ Vr ∪ {l};

• R̂ =̇ {Rj ∧ l = j | Rj ∈ R};

• Î(V̂ ) =̇ I(V ) ∧
∨m−1
j=0 (l = j ∧Rj(V ) ∧ Aj(V ));

• T̂ (V̂ , V̂ ′) =̇ T (V, V ′) ∧
∨m−1
j=0 (l′ = j ∧Rj(V

′)).
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Notice that, by construction, the regions in R̂ are pairwise disjoint. We now

show that H and Ĥ admit the same paths with respect to the assignments

over the common symbols V and that Ĥ is in fact an E -comp.

In the following we first show, in Th. 9, that the resulting structure Ĥ

is still an E -comp. Then, Th. 10 proves that the paths in the language of

Ĥ projected over the symbols V are all and only the paths in L(H).

Theorem 9 - Ĥ is an E -comp

If H satisfies all hypotheses of Def. 20 then so does Ĥ.

Proof. We need to show that Ĥ satisfies all hypotheses of Def. 20.

• We first consider Hyp. EC.1.

The initial states of Ĥ are a subset of its restricted regions iff:

(I ∧
m−1∨
j=0

(l = j ∧Rj ∧ Aj))→
m−1∨
j=0

(l = j ∧Rj ∧ Aj).

The left-hand-side of the implication contains the right-hand-side as

a conjunction, hence the formula is valid.

• Consider now Hypotheses EC.2, EC.3 and EC.4.

If Ĥ admits a transition between two restricted regions R̂j0 ∧Aj0 and

R̂j1∧Aj1 of one of the 3 kinds then, by construction of T̂ , the projection

of the two assignments over the symbols V satisfies T . Thus, H must

admit a transition of the same kind between its restricted regions

Rj0 ∧Aj0 and Rj1 ∧Aj1. Let t be the kind of the transition. All three

hypotheses hold for H, hence every state in Rj0 ∧ Aj0 admits at least

one successor in Rj1 via a t-transition, provided Aj1 holds. For every

state v̂ in R̂j0 ∧Aj0, let v=̇v̂↓V be its restriction to the symbols in V .

v is in Rj0 ∧Aj0 and it admits a successor v′ via a t-transition. Then,

v̂′ defined by extending v′ with l′ = j1, is a t-successor for v̂ in Ĥ.
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Theorem 10 - Ĥ and H recognise the same language

The languages of H and Ĥ admit the same set of paths projected over the

symbols V : L(H) = L(Ĥ)↓V .

Proof. We proceed by induction on the length of the path. We first show

that there is a one-to-one correspondence between the initial states and

then that a one-to-one correspondence exists also between the transitions.

• For every initial state v of H, v |= I holds and, by Hyp. EC.1, v |=
Rj ∧ Aj for some 0 ≤ j < m. Define v̂ over V̂ as the extension of

v with the assignment l = j. By construction v̂ |= R̂j ∧ Aj ∧ l = j,

hence v̂ |= Î and v̂ is an initial state for some path in L(Ĥ).

Viceversa, given an initial state v̂ of Ĥ, define v=̇v̂↓V as the restriction

of v̂ to V . By construction, v |= I and v̂ |= R̂j ∧Aj for some 0 ≤ j <

m. Thus, by definition of R̂j, v̂ |= Rj ∧ Aj holds. Rj and Aj do not

contain l and v |= Rj ∧ Aj holds, hence v is an initial state of H.

• Consider a transition of H from v to v′: v,v′ |= Rj∧Aj∧T ∧Rj′∧Aj′

for some 0 ≤ j < m and 0 ≤ j′ < m. By inductive hypothesis, there is

an assignment v̂ for the symbols V̂ corresponding to v. We show that

Ĥ admits a successor v̂′ for v̂ that corresponds to v′. By hypothesis,

v′ |= Rj′ ∧ Aj′. We define v̂′ by extending the assignment v′ with

l = j′. Then, v̂′ corresponds to v′ and v̂, v̂′ |= R̂j ∧Aj ∧ T̂ ∧ R̂j′ ∧ Âj′.

Viceversa, consider a transition of Ĥ from v̂ to v̂′ and an assignment

v=̇v̂↓V for the symbols V corresponding to v̂. By hypothesis, v̂ |=
R̂j ∧Aj and v̂′ |= R̂j′ ∧Aj′ for some j and j′. By definition of R̂j′ the

following holds: v̂′ |= Rj′. v′=̇v̂′↓V is an assignment over the symbols

V corresponding to v̂′. Since Rj′ and Aj′ do not depend on l and

v̂′ |= Rj′∧Aj′, then v′ |= Rj′∧Aj′. Hence, v,v′ |= Rj∧Aj∧T∧Rj′∧Aj′.

Therefore, v′ is a successor for v in H corresponding to v̂′.
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Similarly to funnel-loops, the definition of E -comps allows for regions

with non-empty intersection. This eases their construction and, we ex-

ploit the results above to simplify proofs and formal arguments about the

language of E -comps.

6.3.2 Example Decomposition: E -comps Definition

We now describe a possible strategy to decompose the fair transition system

Ex defined in Sec. 6.1. Ex is defined over the set of variables {x, y, pc, f0, f1}.
We consider one variable at a time and define a component representing

some of its possible behaviours in the system. It is possible to define many

different components for every subset of the symbols, for the sake of brevity

and clarity we only describe one for each symbol. In the following E -comps

we implicitly define every set of initial states as the disjunction of the re-

gions and every ranking function as always equal to its minimal element,

hence the E -comps will admit no ranked transition.

Consider first the program counter pc. From the transition relation of

Ex the variable will keep assuming the values [3, 4, 5] in this order. For this

reason, we define an E -comp Hpc with three regions as depicted in Fig. 6.4.

Rpc
0

pc = 3

Rpc
1

pc = 4

Rpc
2

pc = 5

Figure 6.4: E -comp responsible for pc.

Hpc is responsible for pc and its three

regions are defined as Rpc
0 =̇pc = 3,

Rpc
1 =̇pc = 4 and Rpc

2 =̇pc = 5. Then,

its transition relation is the disjunc-

tion of the three progress transitions be-

tween the regions: T pc=̇(pc = 3 ∧ pc′ =
4)∨(pc = 4∧pc′ = 5)∨(pc = 5∧pc′ = 3).

We do not introduce any self-loop on

the regions, since none exists in the

transition relation of Ex . Finally, this

behaviour does not require any assumption. In fact, the transition relation
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T pc is sufficient to ensure that we move from one region to another without

having to assume anything about the other symbols.

Rfi
0

fi

Rfi
1

¬fi

Figure 6.5: E -comp responsible for fi.

Consider now the Boolean symbols

f0 and f1 and define two E -comps: Hf0

for f0 and Hf1 for f1. The E -comps

are shown in Fig. 6.5 for i ∈ {0, 1}. In

both E -comps we need to distinguish

the truth value of the two symbols in

order to identify the fair states, hence

we define each E -comp using two regions. For i ∈ {0, 1}, let Rfi
0 , Rfi

1 be

the regions of Hfi and T fi its transition relation. We define the two regions

such that one corresponds to the case in which the variable is assigned to

true (Rfi
0 ) and the other to the case in which the variable is false (Rfi

1 ).

In Ex the two variables can remain constant for any number of steps and

toggle their truth value when a certain condition is met. The simplest

components we can define in this case are defined as Rfi
0 =̇fi, R

fi
1 =̇¬fi and

T fi=̇>, for i ∈ {0, 1}, with no assumptions on the other symbols.

Consider now the variable y and we define Hy as the E -comp responsible

for it. In the transition relation of Ex the variable appears in the following

predicates {y < 0, y > 0, x2 ≥ xy, y′ = y}. In only one case it appears

together with another symbol: x2 ≥ xy. We can observe that if |x| ≥ |y|
then the predicate must hold. This suggests a dependency between x and

y and for this reason we could define a single E -comp that considers both

symbols together. However, we would like to keep them separated for this

example. We break the dependency between the two by considering the

stronger conditions x ≥ 1 and y ≤ 1. Then, the presence of y < 0 and y > 0

suggests the need for two regions to distinguish the sign of the variable.
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Ry
0

y = −1

x ≥ 1

Ry
1

y = 1

x ≥ 1

y′ = y

y′ = y

y′ = y y′ = y

Figure 6.6: E -comp responsible for y.

Fig. 6.6 depicts Hy. The E -comp

has two regions: Ry
0=̇y = −1 and

Ry
1=̇y = 1. The regions differentiate

the two cases and we introduce two cor-

responding assumptions Ay
0=̇x ≥ 1 and

Ay
1=̇x ≥ 1. Finally, we define the tran-

sition relation T y of Hy such that it al-

lows stutter transitions in both regions and also progress transitions to

move from one region to the other: T y=̇y′ = y ∨ y′ = −y.

Rx
0

x ≥ 1

y ≤ 1

x′ = x+ 1 x′ = x

Figure 6.7: E -comp responsible for x.

The only remaining symbol is x, for

which we define the E -comp Hx depicted

in Fig 6.7. In the transition relation of

Ex the variable appears in the following

predicates {x2 ≥ xy, x′ = x, x′ = x + 1}.
We apply the same reasoning as above to

analyse the predicate x2 ≥ xy and obtain

a single region Rx
0=̇x ≥ 1 with assump-

tion Ax
0=̇y ≤ 1 for Hx. We define the transition relation T x of Hx as the

disjunction of the two remaining predicates, T x=̇x′ = x ∨ x′ = x+ 1.

The purpose of E -comps is to split the process of identifying some fair

path into two phases. In the first phase, one symbol or one group of closely

related symbols should be considered at a time to identify possible infinite

behaviours over them, as exemplified above. The successive step requires

to identify how they should be composed in order to obtain a structure

that represents fair paths of the transition system. For this reason, we

first formally define the conditions required for an E -comp to correspond

to a funnel-loop, in §6.3.3. Then, in §6.3.4 we introduce two operators over

E -comps. The operators allow the search for an E -comp satisfying the

conditions mentioned above. They need to ensure that the components to
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be combined are compatible and preserve the existence of the infinite be-

haviours. We achieve this by combining E -comps such that the respective

assumptions are met. §6.3.5 shows how the E -comps we defined above can

be composed to prove the existence of a fair path in Ex .

6.3.3 Correspondence between Funnel-loops and E -comps

We now characterise the correspondence between funnel-loops and E -comps.

The first result, formally stated in Th. 11, shows how a funnel-loop can

be used in the decomposition of a system by defining a corresponding E -

comp. Then, Th. 12 describes the sufficient conditions for an E -comp to

correspond to a funnel-loop for a transition system, hence representing a

nonempty set of fair path of such model. These two results provide the

formal basis to exploit the segmentation and decomposition of the system

for the search of a fair path.

Theorem 11 - Funnel-loop to E -comp

Given a set of symbols V̂ ⊆ V , a funnel-loop floop composed of the funnels

[fnl j]
m−1
j=0 such that all its transition relations are of the form Tj(V, V̂

′) cor-

responds to an E-comp H=̇〈V,
∨m−1
j=0 Sj,

∨m−1
j=0 Sj ∧Tj〉 responsible for sym-

bols V̂ and associated with regions {Sj}m−1
j=0 , ranking functions {Rfj}m−1

j=0

and assumptions {>}m−1
j=0 .

Proof. We show that H satisfies all hypotheses of Def. 20.

• Consider first Hyp. EC.1.

By definition all assumptions are > and the initial states are defined

as the union of the regions. Therefore, Hyp. EC.1 holds.

• We now prove that Hyp. EC.2 holds.

Hyp. F.1 ensures that in every region Sj, Tj always allows for a suc-

cessor state. Therefore, also
∨m−1
j=0 Sj ∧ Tj is left-total in the union of

the regions. Hyp. F.3 ensures that every self-loop on Sj decreases the
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associated ranking function Rfj. If a self-loop exists, the transition

is a ranked transition and all such transitions are ranked. All such

states admit a successor and the successor must decrease the value of

the ranking function. Therefore, Hyp. EC.2 holds.

• Consider now Hyp. EC.3.

As observed in the previous case, all self-loops on a region must de-

crease the corresponding transition relation. Therefore, H admits no

stutter transitions and Hyp. EC.3 holds.

• Finally we show that Hyp. EC.4 holds.

Hyp. F.4 ensures that from every region Sj if Rfj = 0, then in one

transition Tj we always reach a state in Dj and, by Hyp. FL.1, such

state is in the following region Sj+m1. Since, the transition relation is

left-total by Hyp. F.1, all states in Sj ∧ Rfj = 0 admit at least one

and only successors in Sj+m1, hence Hyp. EC.4 holds.

We now describe the conditions under which an E -comp H represents

a nonempty set of fair paths for a transition system M . Th. 12 shows this

by defining a corresponding funnel-loop for M that satisfies all hypotheses

of Th. 6. H needs to be responsible for all symbols in V and describe a

reachable fair lasso over its regions. H must allow for transitions moving

from one region to the following one and also transitions remaining in the

same region that decrease the corresponding ranking functions. Therefore,

H must allow for infinite paths along the loop described by its regions.

In order for such paths to be fair, one of the regions must underapproxi-

mate the fair states of M and, without loss of generality, we assume such

region to be the last one. Finally, every such path must also be a path

of M , hence every transition of H within and between its regions must

underapproximate the transition relation of M .
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Theorem 12 - E -comp to Funnel-loop

Let M be a fair transition system M=̇〈V, IM , TM , FM〉. The existence of

an E-comp H=̇〈V, I, T 〉 responsible for all symbols V over regions R and

ranking functionsW of length m ∈ N satisfying all the following conditions,

implies the existence of a funnel-loop for M .

H.1 M  I;

H.2 ∀j ∈ {i}m−1
i=0 , V, V

′ : Rj ∧ T ∧ ((Rf′j < Rf ∧ R′j) ∨ (Rfj = 0 ∧
R′j+m1))→ TM ;

H.3 ∀V, V ′ : Rm−1 ∧Rfm−1 = 0 ∧ T ∧R′0 → FM ′;

H.4 ∀j ∈ {i}m−1
i=0 ∃V, V ′ : Rj ∧Rfj = 0 ∧ T ∧R′j+m1;

H.5 ∀j ∈ {i}m−1
i=0 : (∀V : Rfj = 0)∨(∃V, V ′ : Rj∧T ∧R′j∧Rf′j < Rf).

Proof. Since H is responsible for all symbols V , then all assumptions in

A are empty. We first define the funnel-loop floop corresponding to the

E -comp H and then prove the following: (i) all of its funnels meet the

hypotheses of Def. 18, (ii) floop is indeed a funnel-loop (Def. 19) and (iii)

floop meets all the hypotheses of Th. 6.

Let floop=̇[fnl j]
m−1
j=0 , where for all j, fnl j=̇〈V, Sj, Tj, Dj,Rfj〉 such that:

(i) Sj=̇Rj for Rj ∈ R; (ii) Tj=̇T ∧((Rf′j < Rfj∧R′j)∨(Rfj = 0∧R′j+m1));

(iii) Dj=̇∃V ′ : Rj ∧Rfj = 0 ∧ T ∧R′j+m1; and (iv) Rfj ∈ W .

We show that each fnl j is a funnel (Def. 18).

• Consider Hyp. F.1.

Tj is left-total with respect to Sj. In fact, it always allows for at

least one successor that is either in the same region with decreasing

ranking function or in the following region. H is an E -comp, hence it

satisfies Hyp. EC.2 and Hyp. EC.4. Hypotheses H.4 and H.5 ensure

that at least one transition of both kinds exists in H. Thus, from

every state in Sj ∧0 < Rfj there exists a successor in the same region
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with Rf′j < Rfj and from every state in Sj ∧ Rfj = 0, T admits a

successor in Sj+m1.

• Hyp. F.2 holds by construction of Tj.

0 < Rfj implies that the second component of the disjunction in Tj

is false and Tj becomes equivalent to T ∧Rf′j < Rfj ∧R′j, hence R′j.

• Also Hyp. F.3 holds by construction of Tj.

0 < Rfj implies that the second component of the disjunction in Tj

is false and Tj is equivalent to T ∧Rf′j < Rfj ∧R′j, hence Rf′j < Rfj.

• Consider now Hyp. F.4.

Hyp. F.4 holds by construction of Di; in fact, we defined it as the

existential image of Rj ∧Rfj = 0 with respect to T ∧R′j+m1.

We now show that floop is a funnel-loop (Def. 19), by proving that

Hyp. FL.1 holds. By construction, each Tj, from a state in Rj ∧ Rfj =

0 with j < m can only reach states that are in Rj+m1. Therefore, by

construction of Dj Hyp. FL.1 holds.

Finally, we show that floop meets all hypotheses of Th. 6.

• Consider first Hyp. FF.1.

Hyp. EC.1 ensures that the initial states of H underapproximate the

union of its regions. Hyp. H.1 ensures that there exists a reachable

initial state in H. Therefore, there is a reachable state in the union

of the regions and Hyp. FF.1 holds.

• Consider now Hyp. FF.2.

Dm−1 is the existential image of Rm−1 ∧ Rfm−1 = 0 with respect to

T ∧R′0. By Hyp. H.3, all such states are fair and Hyp. FF.2 holds.

• Finally, we show that Hyp. FF.3 holds.

By construction, each Sj∧Tj underapproximates T and, by Hyp. H.2,

T underapproximates TM . Therefore, Sj∧Tj underapproximates TM .
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6.3.4 Operators over E -comps

We now define the projection and composition operators for E -comps. The

first operator shrinks an E -comp by considering only a subset of its regions,

while the second operator computes the product of n E -comps. The oper-

ators define the search space that needs to be explored to find an E -comp

satisfying all hypotheses of Th. 12, i.e. corresponding to a funnel-loop.

E -comp projection

The projection of a E -comp is a smaller E -comp describing a subset of

the paths of the original structure. We project an E -comp over an ordered

subset of its regions. We restrict the transition relation by removing all

stuttering transitions and by requiring the progress transitions to follow

the order of the regions. Therefore, projection restricts the language of an

E -comp to the paths that visit only regions in the sequence in order and

are either finite or reach the last region infinitely often.

Definition 21 - E -comp projection

Given an E-comp H=̇〈V, I, T 〉 over m regions R, assumptions A and

ranking functions W, we define its projection to a sequence of k indexes

idxs=̇〈j↓0 , . . . , j
↓
k−1〉 ⊆ {j}

m−1
j=0 as the E-comp H↓=̇〈V, I↓, T ↓〉 associated

with regions R↓, assumptions A↓ and ranking functions W↓ such that:

• I↓=̇I ∧
∨
j∈idxs(Rj ∧ Aj);

• T ↓=̇T ∧
∧k−1
h=0Rj↓h

→ ((R′
j↓h
∧Rf′

j↓h
< Rfj↓h

) ∨ (Rfj↓h
= 0 ∧R′

j↓h+k1

));

• R↓=̇{Rj | j ∈ idxs ∧Rj ∈ R};

• A↓=̇{Aj | j ∈ idxs ∧ Aj ∈ A};

• W↓=̇{Rfj | j ∈ idxs ∧Rfj ∈ W}.

Notice that the projection operator does not modify the formulae rep-

resenting regions, assumptions and ranking function of an E -comp, but
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considers a subset of them. Instead, the operator restricts the set of ini-

tial states to only those in one of the restricted regions corresponding to

the indexes idxs, and the transition relation is strengthened such that it

imposes that the regions in idxs are always visited in order.

Theorem 13 - E -comps are closed with respect to projection

The projection H↓ over indexes idxs of an E-comp H over regions R,

assumptions A and ranking functions W is an E-comp.

Proof. We prove that hypotheses EC.1–EC.4 hold for H↓.

• We begin considering Hyp. EC.1.

Hyp. EC.1 holds by construction since every state v such that I↓(v)

must also satisfy
∨
j∈idxsRj ∧Aj hence, by definition of R↓ and A↓, v

is also in some restricted region of H↓.

• Consider now Hyp. EC.2.

For any j↓ ∈ idxs, the region R↓
j↓

, assumption A↓
j↓

and ranking func-

tion Rf↓
j↓

are in bothH↓ andH. In all transitions such that Rj∧Rf′j <

Rfj ∧ R′j holds for some j ∈ idxs, T ↓ is equivalent to T . Therefore,

since Hyp. EC.2 holds for H, it must also hold for H↓: if T admits a

successor for every state in Rj ∧ Aj such that Rf′j < Rfj ∧ R′j hold,

then so does T ↓.

• Consider now Hyp. EC.3.

By construction of T ↓ admits no stutter transition. Therefore, the

left-hand-side of the entailment is false and Hyp. EC.3 holds.

• Finally, consider Hyp. EC.4.

For any j↓, j↓
′ ∈ idxs, if they do not denote consecutive regions in

the sequence, H↓ does not admit any transition between them and

Hyp. EC.4 holds. Otherwise, j↓ and j↓
′
are the consecutive indexes of

the regions R↓
j↓

, R↓
j↓
′, the assumptions A↓

j↓
, A↓

j↓
′ and ranking functions
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Rf↓
j↓

, Rf↓
j↓
′. If H does not admit any progress transition between

these regions, neither does H↓ and Hyp. EC.4 holds. Otherwise if

H admits at least one transition between these regions, the following

holds:

∃V, V ′ : R↓
j↓
∧ A↓

j↓
∧Rf↓

j↓
= 0 ∧ T ∧R↓

j↓
′ ∧ A↓

j↓
′.

Every such V and V ′ satisfies T ↓, hence it is also a transition for H↓.

Therefore, since Hyp. EC.4 holds for H, every state in R↓
j↓
∧ A↓

j↓
∧

Rf↓
j↓

= 0 admits a successor in R↓
j↓
′ ∧ A↓

j↓
′. Every such transition is

also admitted by H↓ and Hyp. EC.4 holds for H↓.

E -comp composition

We compose E -comps such that they meet their respective assumptions.

Given a set {H i}ni=0 of E -comps, we say that a set of transitions from re-

gions {Ri
ji
}ni=0 to regions {Ri

j′i
}ni=0 are compatible, if every transition T i en-

sures that
∧n
s=0,s6=iA

s,i
j′s

holds. In addition, we compose restricted regions of

E -comps iff the corresponding ranking functions are independent, hence iff

it is possible to decrease one independently from the others. In the follow-

ing we define two binary predicates compatible{Hi}ni=0
and indepRank {Hi}ni=0

that hold iff the two conditions are met.
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Definition 22 - Compatible transitions

Let {H i}ni=0 be a set of E-comps such that {V i}ni=0 are pairwise disjoint

and
⋃n
i=0 V

i ⊆ V . A transition from state v to v′ is compatible iff the

transitions of the E-comps, from every pair of states in the same regions,

meet the respective assumptions of the E-comps.

compatible{Hi}ni=0
(V̂ , V̂ ′)=̇∀V, V ′ :

∧
0≤j0<m0,0≤j′0<m0,...,0≤jn<mn,0≤j′n<mn︸ ︷︷ ︸

all possible pair of indexes for the E-comps {Hi}ni=0

(
n∧
i=0

Ri
ji

(V̂ ) ∧ Ai
ji

(V̂ 6=i) ∧Ri
j′i

(V̂ ′) ∧ Ai
j′i

(V̂ 6=i′)︸ ︷︷ ︸
ji,j′i containing both V̂ and V̂ ′

∧

Ri
ji

(V ) ∧ Ai
ji

(V 6=i) ∧Ri
j′i

(V ′) ∧ Ai
j′i

(V 6={h}
n
h=0
′
) ∧ T i(V, V ′)︸ ︷︷ ︸

for all V in ji, V
′ in j′i such that V, V ′ |= T i and V ′ meets all

assumptions of Hi at j′i on symbols of E-comps not in {Hi}ni=0

∧

(Rfij′i(V̂
′) < Rfiji(V̂ )↔ Rfij′i(V

′) < Rfiji(V ))︸ ︷︷ ︸
transition V,V ′ of the same type of transitionV̂ ,V̂ ′

∧

(0 < Rfiji(V̂ )↔ 0 < Rfiji(V )) ∧ (0 < Rfij′i(V̂
′)↔ 0 < Rfij′i(V

′)))→
n∧
i=0

n∧
h=0,h6=i

Ai,h
j′i

(V h′).︸ ︷︷ ︸
all assumptions of Hi on the {V h}nh=0 are met

A set of transitions has independent ranks if it is possible to decrease

each ranking function independently from the others. Consider the re-

stricted regions {Ri
ji
∧ Ai

ji
}ni=0, there exist transitions with independent

ranks if, for each Rfirjir with 0 ≤ ir ≤ n, it is possible to perform a

self-loop on the conjunction of the restricted regions
∧n
i=0R

i
ji
∧ Ai

ji
such

that Rfirjir decreases and all the other ranking functions remain constant:∧n
i=0,i6=ir Rfiji

′
= Rfiji.
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Definition 23 - Independent ranks

Let {H i}ni=0 be a set of the E-comps such that {V i}ni=0 are pairwise dis-

joint and
⋃n
i=0 V

i ⊆ V . A self-loop over the intersection of the restricted

regions has independent ranks iff for every ranking function there exists a

compatible conjunction of the transitions decreasing only that function.

indepRank{Hi}ni=0
(V̂ , V̂ ′)=̇

∧
0≤j0<m0,...,0≤jn<mn︸ ︷︷ ︸

all possible indexes for the E-comps {Hi}ni=0

(( (
n∑
i=0

Rfiji)(V̂
′) < (

n∑
i=0

Rfiji)(V̂ )︸ ︷︷ ︸
some ranking function decreases, all others remain constant

∧

n∧
i=0

Ri
ji

(V̂ ) ∧ Ai
ji

(V̂ 6=i) ∧Ri
ji

(V̂ ′) ∧ Ai
ji

(V̂ 6=i′)︸ ︷︷ ︸
V̂ ,V̂ ′are in restricted regions ji,j′i

)→

n∧
i=0

(∀V : (
n∧
h=0

Rh
jh

(V ) ∧ Ah
jh

(V 6=h))→ Rfiji(V ) = 0)︸ ︷︷ ︸
current ranking function Rfiji is always 0

∨

∃V, V ′ : (
n∧
h=0

Rh
jh

(V ) ∧ Ah
jh

(V 6=h) ∧ T h(V, V ′) ∧Rh
jh

(V ′) ∧ Ah
jh

(V 6=h
′
))︸ ︷︷ ︸

V,V ′ in same restricted regions of V̂ ,V̂ ′

∧

Rfiji(V
′) < Rfiji(V ) ∧ (

n∧
h=0,h6=i

Rfhjh(V
′) = Rfhjh(V ))︸ ︷︷ ︸

current ranking function decreases, all others remain constant

∧

compatible{Hk}nk=0
(V, V ′))

The composition operator for a set of E -comps {H i}ni=0 requires the

corresponding sets {V i}ni=0 to be pairwise disjoint. We write {V i}i6∈{0,...,n}
for the possibly empty list of other sets to complete the partitioning and
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V 6={i}i 6∈{0,...,n} for their union. {V i}ni=0 ∪ {V i}i6∈{0,...,n} is a partitioning of V .

Definition 24 - Composition of E -comps

We define the composition of a set of E-comps {H i}ni=0, such that the sets

of local symbols {V i}ni=0 are pairwise disjoint, as Hc=̇
⊗n

i=0H
i = 〈V, Ic, T c〉

responsible for symbols V c and associated with regions Rc, assumptions Ac

and ranking functions Wc; where:

• V c =̇
⋃n
i=0 V

i;

• Rc =̇ {
∧n
i=0R

i
ji
∧
∧n
h=0,h6=iA

i,h
ji
| ji ∈ {k}m

i−1
k=0 ∧ Ri

ji
∈ Ri ∧ Ai

ji
∈

Ai ∧ Ai,h
ji
∈ Ai

ji
};

• Ac =̇ {
∧n
i=0

∧
h6∈{k}nk=0

Ai,h
ji
| ji ∈ {k}m

i−1
k=0 ∧ Ai

ji
∈ Ai ∧ Ai,h

ji
∈ Ai

ji
};

• Wc =̇ {
∑n

i=0 Rfiji | ji ∈ {k}
mi−1
k=0 ∧Rfiji ∈ W

i};

• Ic =̇
∧n
i=0 I

i;

• T c =̇ compatible{Hi}ni=0
∧ indepRank {Hi}ni=0

∧
∧n
i=0 T

i.

The composition Hc of n + 1 E -comps {H i}ni=0, is responsible for the

symbols V c defined as the union, for every 0 ≤ i ≤ n, of the symbols V i

for which H i is responsible. The regions, assumptions and initial states

of Hc are obtained as the conjunction of the corresponding components

of the {H i}ni=0. Each region is defined as the conjunction of a region for

each E -comp and the corresponding assumptions over the symbols in V c.

Instead, the assumptions are defined as the conjunction of the remaining

assumptions, i.e. the ones over the symbols not in V c. The ranking func-

tions are obtained as the sum of the ranking functions of the {H i}ni=0.

Finally, the transition relation restricts the conjunction of the transition

relations of the E -comps to the steps that are both compatible and allow

for independent ranks. Therefore, it allows only for transitions that meet

all the assumptions of the E -comps {H i}ni=0 on the symbols in V c.
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Theorem 14 - E -comps are closed w.r.t. composition

Given a set of E-comps {H i}ni=0, their composition Hc=̇
⊗n

i=0H
i = 〈V, Ic, T c〉

is an E-comps with respect to regions Rc, assumptions Ac and ranking

functions Wc.

Proof. We prove that hypotheses EC.1–EC.4 hold for Hc of length mc. In

the following, we write Ai,6=c
ji

for
∧
h6∈{k}nk=0

Ai,h
ji

(V h).

• Consider first Hyp. EC.1.

The initial states ofHc are a subset of the union of the regions because,

by definition of Ic, every state in this set must satisfy
∨mc

jc=0R
c
jc
∧Ac

jc
.

• Hyp. EC.2 requires us to prove the following:

∀j : 0 ≤ j < mc →

∃V, V ′ : (Rc
j ∧ Ac

j ∧ T c ∧Rfcj
′ < Rfcj ∧Rc

j
′ ∧ Ac

j
′) |=

∀V ∃V c′∀V 6=c′ : Rc
j ∧ Ac

j ∧ 0 < Rfcj ∧ Ac
j
′ → Rc

j
′ ∧ T c ∧Rfcj

′ < Rfcj.

Hc=̇
⊗n

i=0H
i hence, by definition of ⊗, Rc

j and Ac
j are the conjunction

of some region and assumptions of {H i}ni=0. Therefore, we can rewrite

it as follows:

∀{ji}ni=0 : (
n∧
i=0

0 ≤ ji < mi)→

∃V, V ′ : (
n∧
i=0

Ri
ji
∧ (

n∧
h=0,h6=i

Ai,h
ji

) ∧ Ai, 6=c
ji
∧ T i) ∧ compatible{Hi}ni=0

∧

indepRank {Hi}ni=0
∧Rfcj

′ < Rfcj ∧ (
n∧
i=0

Ri
ji

′ ∧ (
n∧

h=0,h6=i

Ai,h
ji

′
) ∧ Ai,6=c

ji

′
) |=

∀V ∃{V i′}ni=0∀V 6=c
′
: ((

n∧
i=0

Ri
ji
∧ (

n∧
h=0,h6=i

Ai,h
ji

) ∧ Ai,6=c
ji

) ∧ Ac
j
′ ∧ 0 < Rfcj)→

((
n∧
i=0

Ri
ji

′ ∧ (
n∧

h=0,h6=i

Ai,h
ji

′
) ∧ T i) ∧ compatible{Hi}ni=0

∧ indepRank {Hi}ni=0
∧

Rfcj
′ < Rfcj).
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For any 0 ≤ i ≤ n Ai
j(V

6=c) ∧
∧n
h=0,h6=iA

i,h
ji

(V h) is equivalent to

Ai
j(V

6=i). Therefore, our objective formula can be rewritten as:

∀{ji}ni=0 : (
n∧
i=0

0 ≤ ji < mi)→

∃V, V ′ : (
n∧
i=0

Ri
ji
∧ Ai

ji
∧ T i ∧Ri

ji

′ ∧ Ai
ji

′
) ∧ compatible{Hi}ni=0

∧

indepRank {Hi}ni=0
∧Rfcj

′ < Rfcj |=

∀V ∃{V i′}ni=0∀V 6=c
′
: ((

n∧
i=0

Ri
ji
∧ Ai

ji
) ∧ Ac

j
′ ∧ 0 < Rfcj)→ ((

n∧
i=0

T i ∧Ri
ji

′∧

n∧
h=0,h6=i

Ai,h
ji

′
) ∧ compatible{Hi}ni=0

∧ indepRank {Hi}ni=0
∧Rfcj

′ < Rfcj).

If indepRank {Hi}ni=0
[resp. compatible{Hi}ni=0

] does not hold in the left-

hand-side of the entailment the formula is trivially true. By definition

of indepRank {Hi}ni=0
[resp. compatible{Hi}ni=0

], if it holds in the left-

hand-side of the entailment it must also hold on the right-hand-side,

since on both sides V and V ′ belong to the same regions. Therefore,

compatible{Hi}ni=0
must hold and when both sides of the implication

on the right-hand-side of the entailment hold,
∧n
i=0

∧n
h=0,h6=iA

i,h
j′i

(V h′)

must be true. We can further simplify our objective formula as follows:

∀{ji}ni=0 : (
n∧
i=0

0 ≤ ji < mi)→

∃V, V ′ : (
n∧
i=0

Ri
ji
∧ Ai

ji
∧ T i ∧Ri

ji

′ ∧ Ai
ji

′
) ∧ compatible{Hi}ni=0

∧

indepRank {Hi}ni=0
∧Rfcj

′ < Rfcj |= ∀V ∃{V i′}ni=0∀V 6=c
′
:

((
n∧
i=0

Ri
ji
∧ Ai

ji
) ∧ Ac

j
′ ∧ 0 < Rfcj)→ ((

n∧
i=0

T i ∧Ri
ji

′
) ∧Rfcj

′ < Rfcj).

If the left-hand-side of the entailment is false, then the formula is triv-
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ially true. Therefore, assume that there exists a transition performing

a self-loop on the restricted region Rc
j ∧Ac

j with independent ranks in

which the sum of the ranking function decreases. Under this assump-

tion, we need to prove the following for any j=̇〈j0, . . . , jn〉 satisfying

the above:

∀V ∃{V i′}ni=0∀V 6=c
′
:

((
n∧
i=0

Ri
ji
∧ Ai

ji
) ∧ Ac

j
′ ∧ 0 < Rfcj(V ))→ ((

n∧
i=0

T i ∧Ri
ji

′
) ∧Rfcj

′ < Rfcj).

Since indepRank {Hi}ni=0
holds for indexes 〈j0, . . . , jn〉 we have:

n∧
i=0

(∀V : (
n∧
h=0

Rh
jh
∧ Ah

jh
)→ Rfiji = 0)∨

∃V, V ′ : (
n∧
h=0

Rh
jh
∧ Ah

jh
∧ T h ∧Rh

jh

′ ∧ Ah
jh

′
)∧

Rfiji
′
< Rfiji ∧ (

n∧
k=0,k 6=h

Rfiji
′
= Rfiji) ∧ compatible{Hi}ni=0

.

In addition, since there exists a transition in the restricted regions

such that Rfcj decreases, there must be some 0 ≤ ir ≤ n such that

∃V : (
∧n
h=0R

h
jh

(V )∧Ah
jh

(V 6=h))∧0 < Rfirjir (V ). Then, there exist com-

patible transitions in which its ranking function decreases Rfirjr(V
′) <

Rfirjr(V ), while all other ranking function remain constant, written∧n
i=0,i6=ir Rfiji(V

′) = Rfiji(V ). Hyp. EC.2 holds for H ir :

∀jr ∈ {k}m
ir−1

k=0 : ∃V, V ′ : (Rir
jr
∧ Air

jr
∧ T ir ∧Rfirjr

′
< Rfirjr ∧R

ir
jr

′ ∧ Air
jr

′
) |=

∀V ∃V ir ′∀V 6=ir ′ : Rir
jr
∧ Air

jr
∧ 0 < Rfirjr ∧ A

ir
jr

′ → Rir
jr

′ ∧ T ir ∧Rfirjr
′
< Rfirjr .

and Hyp. EC.3 holds for all {H i}ni=0,i 6=ir :

∀ji ∈ {k}m
i−1

k=0 : ∃V, V ′ : (Ri
ji
∧ Ai

ji
∧ T i ∧Rfiji

′
= Rfiji ∧R

i
ji

′ ∧ Ai
ji

′
) |=

∀V ∃V i′∀V 6=i′ : Ri
ji
∧ Ai

ji
∧ Ai

ji

′ → Ri
ji

′ ∧ T i ∧Rfiji
′
= Rfiji.
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If there is no transition in the intersection of the restricted regions

such that Rfcj decreases or they are not compatible, the objective

formula trivially holds because the left-hand-side of the entailment is

false. Then, the conjunction of the hypotheses for the {H i}ni=0 implies:

∀{ji}ni=0 : (
n∧
i=0

0 ≤ ji < mi)→

∃V, V ′ : (
n∧
i=0

(Ri
ji
∧ Ai

ji
∧ T i ∧Ri

ji

′ ∧ Ai
ji

′
)∧

Rfirjr
′
< Rfirjr ∧

n∧
i=0,i6=r

Rfiji
′
= Rfiji) |=

∀V ∃V ir ′∀V 6=ir ′ :

Rir
jr
∧ Air

jr
∧ 0 < Rfirjr ∧ A

ir
jr

′ → Rir
jr

′ ∧ T ir ∧Rfirjr
′
< Rfirjr∧

n∧
i=0,i6=r

∀V ∃V i′∀V 6=i′ : Ri
ji
∧ Ai

ji
∧ Ai

ji

′ → Ri
ji

′ ∧ T i ∧Rfiji
′
= Rfiji.

The left hand side of the entailment must hold, otherwise our objective

formula is trivially true.

∀V ∃V ir ′∀V 6=ir ′ :

Rir
jr
∧ Air

jr
∧ 0 < Rfirjr ∧ A

ir
jr

′ → Rir
jr

′ ∧ T ir ∧Rfirjr
′
< Rfirjr∧

n∧
i=0,i 6=r

∀V ∃V i′∀V 6=i′ : Ri
ji
∧ Ai

ji
∧ Ai

ji

′ → Ri
ji

′ ∧ T i ∧Rfiji
′
= Rfiji.

If a ∀V ∃V i′∀V 6=i′ quantified implication holds, then for every assign-

ment to the symbols V such that Ri
ji

(V ), Ai
ji

(V 6=i) and, if i = ir, also

0 < Rfirjr(V ) hold, there exists an assignment to V i′ satisfying the as-

sumptions of all other E -comps
∧n
s=0,s6=iA

s,i
js

(V i′), for all assignments
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to the V 6=i
′
. Therefore, we can write the following:

∀V ∃{V i′}ni=0∀V 6=c
′
:

(Rir
jr
∧ Air

jr
∧ 0 < Rfirjr ∧ A

ir,6=c
jr

′
→ Rir

jr

′ ∧ T ir ∧Rfirjr
′
< Rfirjr)∧

n∧
i=0,i 6=r

Ri
ji
∧ Ai

ji
∧ Ai, 6=c

ji

′
→ Ri

ji

′ ∧ T i ∧Rfiji
′
= Rfiji.

0 < Rfirjr(V ) implies 0 < Rfcj(V ) and, since (a→ b)∧ (c→ d) implies

(a ∧ c)→ (b ∧ d), the formula above implies:

∀V ∃{V i′}ni=0∀V 6=c
′
: (0 < Rfcj ∧ (

n∧
i=0

Ri
ji
∧ Ai

ji
∧ Ai,6=c

ji

′
))→

Rfirjr
′
< Rfirjr ∧ (

n∧
i=0,i 6=ir

Rfiji
′
= Rfiji) ∧

n∧
i=0

Ri
ji

′ ∧ T i.

The formula Rfirjr(V
′) < Rfirjr(V )) ∧ (

∧n
i=0,i 6=ir Rfiji(V

′) = Rfiji(V ))

implies Rfcj(V
′) < Rfcj(V ) and

∧n
i=0A

i
ji

(V 6=c) is equivalent to Ac
j(V

6=c)

Therefore, we obtain the implied statement:

∀V ∃{V i′}ni=0∀V 6=c
′
:

((
n∧
i=0

Ri
ji
∧ Ai

ji
) ∧ Ac

j
′ ∧ 0 < Rfcj)→ ((

n∧
i=0

T i ∧Ri
ji

′
) ∧Rfcj

′ < Rfcj).

which is exactly the formula we wanted to prove.

• Hyp. EC.3 requires us to prove the following:

∀j : 0 ≤ j < mc →

∃V, V ′ : (Rc
j ∧ Ac

j ∧ T c ∧Rfcj
′ = Rfcj ∧Rc

j
′ ∧ Ac

j
′) |=

∀V ∃V c′∀V 6=c′ : Rc
j ∧ Ac

j ∧ Ac
j
′ → Rc

j
′ ∧ T c ∧Rfcj

′ = Rfcj.
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By definition of ⊗ and since Hc=̇
⊗n

i=0H
i we can rewrite it as:

∀{ji}ni=0 : (
n∧
i=0

0 ≤ ji < mi)→

∃V, V ′ : (
n∧
i=0

Ri
ji
∧ (

n∧
h=0,h6=i

Ai,h
ji

) ∧ Ai,6=c
ji
∧ T i) ∧ compatible{Hi}ni=0

∧

indepRank {Hi}ni=0
∧Rfcj

′ = Rfcj ∧ (
n∧
i=0

Ri
ji

′ ∧ (
n∧

h=0,h6=i

Ai,h
ji

′
) ∧ Ai,6=c

ji

′
) |=

∀V ∃{V i′}ni=0∀V 6=c
′
: ((

n∧
i=0

Ri
ji
∧ (

n∧
h=0,h6=i

Ai,h
ji

) ∧ Ai, 6=c
ji

) ∧ Ac
j
′)→

((
n∧
i=0

Ri
ji

′ ∧ (
∧

h=0,h6=i

Ai,h
ji

′
) ∧ T i) ∧ compatible{Hi}ni=0

∧

indepRank {Hi}ni=0
∧Rfcj

′ = Rfcj).

On both sides of the entailment Rfcj(V
′) = Rfcj(V ) holds, hence

indepRank {Hi}ni=0
is trivially true: the left-hand-side of the implica-

tion in its definition is false. In addition, for any 0 ≤ i ≤ n Ai
j(V

6=c)∧∧n
h=0,h6=iA

i,h
ji

(V h) is equivalent to Ai
j(V

6=i). Therefore, our objective

formula can be rewritten as:

∀{ji}ni=0 : (
n∧
i=0

0 ≤ ji < mi)→

∃V, V ′ : (
n∧
i=0

Ri
ji
∧ Ai

ji
∧ T i ∧Ri

ji

′ ∧ Ai
ji

′
) ∧Rfcj

′ = Rfcj∧

compatible{Hi}ni=0
|= ∀V ∃{V i′}ni=0∀V 6=c

′
:

((
n∧
i=0

Ri
ji
∧ Ai

ji
) ∧ Ac

j
′)→ ((

n∧
i=0

T i ∧Ri
ji

′ ∧
∧

h=0,h6=i

Ai,h
ji

′
)∧

Rfcj
′ = Rfcj ∧ compatible{Hi}ni=0

).

If compatible{Hi}ni=0
(V, V ′) does not hold, then the left-hand-side of the

entailment is false, hence the entailment is true.
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Otherwise, compatible{Hi}ni=0
holds and since it holds on the left-hand-

side of the entailment, it must also hold on the right-hand-side; when

both sides of the implication on the right-hand-side of the entail-

ment hold,
∧n
i=0

∧n
h=0,h6=iA

i,h
j′i

(V h′) must be true since compatible{Hi}ni=0

holds. We can further simplify our objective formula as follows:

∀{ji}ni=0 : (
n∧
i=0

0 ≤ ji < mi)→

∃V, V ′ : (
n∧
i=0

Ri
ji
∧ Ai

ji
∧ T i ∧Ri

ji

′ ∧ Ai
ji

′
) ∧Rfcj

′ = Rfcj∧

compatible{Hi}ni=0
|= ∀V ∃{V i′}ni=0∀V 6=c

′
:

((
n∧
i=0

Ri
ji
∧ Ai

ji
) ∧ Ac

j
′))→ ((

n∧
i=0

T i ∧Ri
ji

′
) ∧Rfcj

′ = Rfcj).

If the left-hand-side of the entailment is false, then the formula is triv-

ially true. Therefore, assume that there exists a transition performing

a self-loop on the restricted region Rc
j ∧Ac

j in which the ranking func-

tion remains constant. Under this assumption, we need to prove the

following for any j=̇〈j0, . . . , jn〉 satisfying the above:

∀V ∃{V i′}ni=0∀V 6=c
′
: ((

n∧
i=0

Ri
ji
∧ Ai

ji
) ∧ Ac

j
′)→ (Rfcj

′ = Rfcj ∧
n∧
i=0

T i ∧Ri
ji

′
).

Hyp. EC.3 holds for all E -comps {H i}ni=0:

∀ji : 0 ≤ ji < mi →

∃V, V ′ : (Ri
ji
∧ Ai

ji
∧ T i ∧Rfiji

′
= Rfiji ∧R

i
ji

′ ∧ Ai
ji

′
) |=

∀V ∃V i′∀V 6=i′ : Ri
ji
∧ Ai

ji
∧ Ai

ji

′ → Ri
ji

′ ∧ T i ∧Rfiji
′
= Rfiji.

By assumption there exists a transition in the intersection of their

restricted regions such that Rfcj(V
′) = Rfcj(V ), and hence Rfiji(V

′) =
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6.3. DECOMPOSITION

Rfiji(V ) for all i. Therefore, their conjunction implies:

n∧
i=0

∀V ∃V i′∀V 6=i′ : Ri
ji
∧ Ai

ji
∧ Ai

ji

′ → Ri
ji

′ ∧ T i ∧Rfiji
′
= Rfiji.

If a ∀V ∃V i′∀V 6=i′ quantified implication holds then for every assign-

ment to the symbols V such that Ri
ji

(V )∧Ai
ji

(V 6=i)∧Ai
ji

(V 6=i
′
) holds,

there exists an assignment to the V i′ satisfying the assumptions of

all other E -comps
∧n
s=0,s6=iA

s,i
js

(V i′), for all assignments to the V 6=i
′
.

Therefore, we can write the following:

∀V ∃{V i′}ni=0∀V 6=c
′
:
n∧
i=0

((Ri
ji
∧ Ai

ji
∧ Ai, 6=c

ji

′
)→ (Ri

ji

′ ∧ T i ∧Rfiji
′
= Rfiji)).

Since (a→ b)∧ (c→ d) implies (a∧ c)→ (b∧ d) and
∧n
i=0 Rfiji(V

′) =

Rfiji(V ) implies Rfcj(V
′) = Rfcj(V ), the formula above implies:

∀V ∃{V i′}ni=0∀V 6=c
′
: (

n∧
i=0

Ri
ji
∧ Ai

ji
) ∧ Ac

j
′ → (Rfcj

′ = Rfcj ∧
n∧
i=0

T i ∧Ri
ji

′
).

which is exactly the formula we wanted to prove.

• Hyp. EC.4 requires us to prove the following:

∀j, j′ : 0 ≤ j < mc ∧ 0 ≤ j′ < mc →

∃V, V ′ : (Rc
j ∧ Ac

j ∧ T c ∧Rfcj = 0 ∧Rc
j′
′ ∧ Ac

j′
′) |=

∀V ∃V c′∀V 6=c′ : Rc
j ∧ Ac

j ∧Rfcj = 0 ∧ Ac
j′
′ → Rc

j′
′ ∧ T c.
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By definition of ⊗ and since Hc=̇
⊗n

i=0H
i we can rewrite it as:

∀{ji}ni=0, {j′i}ni=0 : (
n∧
i=0

0 ≤ ji < mi ∧ 0 ≤ j′i < mi)→

∃V, V ′ : (
n∧
i=0

Ri
ji
∧ (

n∧
h=0,h6=i

Ai,h
ji

) ∧ Ai, 6=c
ji
∧ T i) ∧ compatible{Hi}ni=0

∧

indepRank {Hi}ni=0
∧Rfcj = 0 ∧ (

n∧
i=0

Ri
j′i

′ ∧ (
n∧

h=0,h6=i

Ai,h
j′i

′
) ∧ Ai, 6=c

j′i

′
) |=

∀V ∃{V i′}ni=0∀V 6=c
′
:

((
n∧
i=0

Ri
ji
∧ (

n∧
h=0,h6=i

Ai,h
ji

) ∧ Ai, 6=c
ji

) ∧Rfcj = 0 ∧ Ac
j′
′)→

((
n∧
i=0

Ri
j′i

′ ∧ T i ∧
n∧

h=0,h6=i

Ai,h
j′i

′
) ∧ compatible{Hi}ni=0

∧ indepRank {Hi}ni=0
).

If j 6= j′, indepRank {Hi}ni=0
trivially holds, since the left-hand-side of

the implication in its definition is false. Otherwise, if j = j′, Rfcj(V ) =

0 contradicts Rfcj(V
′) < Rfcj(V ) and again indepRank {Hi}ni=0

trivially

holds because the left-hand-side of the implication in its definition is

false. In addition, for any 0 ≤ i ≤ n Ai
j(V

6=c) ∧
∧n
h=0,h6=iA

i,h
ji

(V h)

is equivalent to Ai
j(V

6=i). Therefore, our objective formula can be

rewritten as:

∀{ji}ni=0, {j′i}ni=0 : (
n∧
i=0

0 ≤ ji < mi ∧ 0 ≤ j′i < mi)→

∃V, V ′ : (
n∧
i=0

Ri
ji
∧ Ai

ji
∧ T i ∧Ri

j′i

′ ∧ Ai
j′i

′
) ∧ compatible{Hi}ni=0

∧Rfcj = 0 |=

∀V ∃{V i′}ni=0∀V 6=c
′
: ((

n∧
i=0

Ri
ji
∧ Ai

ji
) ∧Rfcj = 0 ∧ Ac

j′
′)→

((
n∧
i=0

T i ∧Ri
j′i

′ ∧
n∧

h=0,h6=i

Ai,h
j′i

′
) ∧ compatible{Hi}ni=0

).
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If compatible{Hi}ni=0
(V, V ′) does not hold, then the left-hand-side of the

entailment is false, hence the entailment is true.

Otherwise compatible{Hi}ni=0
holds and since it holds on the left-hand-

side of the entailment, it must also hold on the right-hand-side; when

both sides of the implication on the right-hand-side of the entail-

ment hold,
∧n
i=0

∧n
h=0,h6=iA

i,h
j′i

(V h′) must be true since compatible{Hi}ni=0

holds. We can further simplify our objective formula as follows:

∀{ji}ni=0, {j′i}ni=0 : (
n∧
i=0

0 ≤ ji < mi ∧ 0 ≤ j′i < mi)→

∃V, V ′ : (
n∧
i=0

Ri
ji
∧ Ai

ji
∧ T i ∧Ri

j′i

′ ∧ Ai
j′i

′
) ∧ compatible{Hi}ni=0

∧Rfcj = 0 |=

∀V ∃{V i′}ni=0∀V 6=c
′
: (Rfcj = 0 ∧

n∧
i=0

Ri
ji
∧ Ai

ji
∧ Ai, 6=c

j′i

′
)→ (

n∧
i=0

T i ∧Ri
j′i

′
).

If the left-hand-side of the entailment is false, then the formula is

trivially true. Therefore, assume that there exists a transition from a

state in Rc
j∧Ac

j∧Rfcj = 0 to Rc
j′∧Ac

j′ Under this assumption, we need

to prove the following for any j=̇〈j0, . . . , jn〉 satisfying the above:

∀V ∃{V i′}ni=0∀V 6=c
′
: (Rfcj = 0 ∧

n∧
i=0

Ri
ji
∧ Ai

ji
∧ Ai, 6=c

j′i

′
)→ (

n∧
i=0

T i ∧Ri
j′i

′
).

Each E -comp H i allows for a transition from its restricted region with

index ji to the one with index j′i. In this transition since Rfcj(V ) = 0,

then Rfiji(V ) = 0 holds in the source state. The following holds since

Hyp. EC.4 holds for all {H i}ni=0.

∃V, V ′ : (Ri
ji
∧ Ai

ji
∧ T i ∧Rfiji = 0 ∧Ri

j′i

′ ∧ Ai
j′i

′
) |=

∀V ∃V i′∀V 6=i′ : (Ri
ji
∧ Ai

ji
∧Rfiji = 0 ∧ Ai

j′i

′
)→ Ri

j′i

′ ∧ T i.

If a ∀V ∃V i′∀V 6=i′ quantified implication holds then for every assign-

ment to the symbols V such that Ri
ji

(V )∧Ai
ji

(V 6=i)∧Ai
j′i

(V 6=i
′
) holds,
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there exists an assignment to the V i′ satisfying the assumptions of

all other E -comps
∧n
s=0,s6=iA

s,i
j′s

(V i′), for all assignments to the V 6=i
′
.

Therefore, we can write the following:

∀V ∃{V i′}ni=0∀V 6=c
′
:

n∧
i=0

((Ri
ji
∧ Ai

ji
∧Rfiji = 0 ∧ Ai,6=c

j′i

′
)→ (Ri

j′i

′ ∧ T i)).

Since (a→ b)∧(c→ d) implies (a∧c)→ (b∧d) and
∧n
i=0 Rfiji(V ) = 0

implies Rfcj(V ) = 0, we can write the following implied statement:

∀V ∃{V i′}ni=0∀V 6=c
′
: (Rfcj = 0 ∧

n∧
i=0

Ri
ji
∧ Ai

ji
∧ Ai, 6=c

j′i

′
)→ (

n∧
i=0

T i ∧Ri
j′i

′
).

which is exactly the formula we wanted to prove.

We consider only simple interactions between the ranking functions of

different E -comps. It is possible to extend the operator to allow for more

complex combinations such as nesting of ranking functions or allowing the

ranking function of an E -comp to decrease once every time all the other

E -comps perform a loop over their regions. However, including these kinds

of compositions would make the definitions and proofs much more complex

and with many more cases to be considered.

6.3.5 Example Decomposition: Composing E -comps

We exemplify how these operators can be used to combine E -comps via two

different examples. First, in 6.3.5, we consider a hybrid system describing

a bouncing ball and show how it can be described as a composition of E -

comps. Then, in 6.3.5, we consider the fair transition system Ex , defined

in Sec. 6.1, and obtain an E -comp proving the existence of at least one fair

path by composing the E -comps we defined in §6.3.2.
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Bouncing ball example

We now show how the E -comp in Fig. 6.8 can be represented as composition

of smaller E -comps. The E -comp describes the evolution of a bouncing

ball subjected to the constant acceleration g. Its behaviour is defined in

terms of the height h, velocity v and the elapse of time is given by the

sum of the δ; while c counts the number of bounces. The transition from

R1 to R0 corresponds to a bounce of the ball, while the transition from R0

to R1 corresponds to the motion of the ball between consecutive bounces.

We define three E -comps where all ranking functions are always equal to

R0
c ≥ 1

δ = 1
c

v = g
2c

h = 0

R1
c ≥ 1

δ = 0

v = − g
2c

h = 0
v′ = v − gδ
δ′ = 0

v′ = −v c
c+1

δ′ = 1
c+1

c′ = c+ 1

Figure 6.8: E -comp with no assumptions.

their minimal element, hence we will avoid to explicitly define the set of

ranking functions for each of them. We consider the partitioning of V given

by V C=̇{c}, V H=̇{h} and V DV =̇{δ, v}. We define three corresponding E -

comps C, H and DV as follows.

C=̇〈V, c ≥ 1, c′ = c+ 1 ∨ c′ = c〉
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responsible for V C , with no assumptions and a single region c ≥ 1.

H=̇〈V, (RH
0 ∧ AH

0 ) ∨ (RH
1 ∧ AH

1 ),

(RH
0 ∧ AH

0 ∧ TH0,0 ∧RH
0
′ ∧ AH

0
′
)∨

(RH
0 ∧ AH

0 ∧ TH0,1 ∧RH
1
′ ∧ AH

1
′
)∨

(RH
1 ∧ AH

1 ∧ (TH1,0,0 ∨ TH1,0,1) ∧RH
0
′ ∧ AH

0
′
)〉,

responsible for V H and such that: (i) RH
0 ≡ RH

1 =̇h = 0, (ii) AH
0 =̇δ = 0, (iii)

AH
1 =̇δ = 2v

g , (iv) TH0,0 ≡ TH0,1 ≡ TH1,0,0=̇h
′ = h and TH1,0,1=̇h

′ = h + vδ − g
2δ

2.

Finally, we define

DV =̇〈V, (RDV
0 ∧ ADV

0 ) ∨ (RDV
1 ∧ ADV

1 ),

(RDV
0 ∧ ADV

0 ∧ TDV0,1 ∧RDV
1
′ ∧ ADV

1
′
)∨

(RDV
1 ∧ ADV

1 ∧ TDV1,0 ∧RDV
0
′ ∧ ADV

0
′
)〉,

responsible for V DV , where RDV
0 =̇δ = 0∧v = − g

2c and RDV
1 =̇δ = 1

c∧v = g
2c ,

the two assumptions are ADV
0 ≡ ADV

1 = c ≥ 1 ∧ h = 0 and the two

components of the transition relation are defined as TDV0,1 =̇δ′ = 1
c+1 ∧ v

′ =

−v c
c+1 and TDV1,0 =̇δ′ = 0 ∧ v′ = v − gδ.
The three E -comps satisfy all hypotheses required by Def. 20. Applying

the composition operator and removing empty regions and transitions we

obtain

B=̇C ⊗DV ⊗H = 〈V,RB
0 ∨RB

1 , (R
B
0 ∧ TB0,1 ∧RB

1
′
) ∨ (RB

1 ∧ TB1,0 ∧RB
0
′
)〉,

with two regions {RB
0 , R

B
1 } and no assumptions, where:

RB
0 =̇ c ≥ 1 ∧ δ =

1

c
∧ v =

g

2c
∧ h = 0;

RB
1 =̇ c ≥ 1 ∧ δ = 0 ∧ v = − g

2c
∧ h = 0;

TB0,1 =̇ c′ = c ∧ δ′ = 0 ∧ v′ = v − gδ ∧ h′ = h;

TB1,0 =̇ c′ = c+ 1 ∧ δ′ = 1

c+ 1
∧ v′ = −v c

c+ 1
∧ h′ = h.
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Region RB
0 implies the fairness condition h = 0 ∧ v > 0 and we obtain the

E -comp 〈V, {RB
0 , R

B
1 }, TB〉, where TB=̇

∨
i∈{0,1}(R

B
i ∧ TBi,1−i ∧RB

1−i
′
) which

is exactly the definition of H shown in Fig. 6.8.

Running example

We now show how the E -comps we defined in §6.3.2 can be combined to

conclude the existence of a fair path in the fair transition system Ex defined

in Sec. 6.1.

Rf0,f1
0

¬f0 ∧ ¬f1

Rf0,f1
1

f0 ∧ ¬f1

Rf0,f1
3

¬f0 ∧ f1

Rf0,f1
2

f0 ∧ f1

Figure 6.9: E -comp responsible for {f0, f1}.

We first compute the E -comp

Hf0,f1=̇Hf0 ⊗ Hf1, depicted in

Fig. 6.9. Hf0 and Hf1 have no as-

sumptions and all ranking functions

are always equal to their minimal

element. Therefore, all transitions

are compatible and the result of the

composition is the synchronous product of the two E -comps. Hf0,f1 has

four regions, one for each of the possible truth assignments of the two

Boolean symbols f0 and f1 and it allows all 16 possible transitions and

self-loops over them.

x′ = x+ 1
y′ = y

x′ = x

y′ = y

Rx,y
0

x ≥ 1
y = −1

x′ = x+ 1
y′ = y

x′ = x

y′ = y

Rx,y
1

x ≥ 1
y = 1

x′ = x+ 1 ∧ y′ = −y

x′ = x ∧ y′ = −y

x′ = x ∧ y′ = −y

x′ = x+ 1 ∧ y′ = −y

Figure 6.10: E -comp responsible for {x, y}.

We now compute Hx,y=̇Hx⊗Hy, depicted in Fig. 6.10. The assumption

of Hx requires y ≤ 1 and both assumptions of Hy require x ≥ 1. Therefore,
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Hx will always meet the assumptions of Hy and vice-versa also Hy meets

the assumption of Hx. The two E -comps do not have any assumptions

on the other symbols and the resulting E -comp Hx,y has no assumptions.

Hx,y has two regions, obtained by the conjunction of the two regions of Hy

with the only region of Hx and its transition relation is the conjunction

of the transition relations of Hx and Hy. Both regions of Hx,y admit

stutter transitions of two kinds: one in which both variables x and y remain

constant, and one in which y is constant and x increases by one. Finally,

Hx,y also admits progress transitions from one region to the other of two

kinds: in both cases the value of y changes its sign, while in one case x

remains constant and in the other it increments by one.

R0

pc = 3
f0 ∧ f1

x ≥ 1
y = 1

x′ = x

y′ = y

R1

pc = 4
¬f0 ∧ ¬f1

x ≥ 1
y = 1

x′ = x

y′ = −y

R2

pc = 5
f0 ∧ ¬f1

x ≥ 1
y = −1

x′ = x+ 1
y′ = y

R3

pc = 3
f0 ∧ f1

x ≥ 1
y = −1

x′ = x

y′ = y

R4

pc = 4
¬f0 ∧ ¬f1

x ≥ 1
y = −1

x′ = x

y′ = −y

R5

pc = 5
¬f0 ∧ f1

x ≥ 1
y = 1

x′ = x+ 1
y′ = y

Figure 6.11: E -comp responsible for all symbols {pc, f0, f1, x, y}.

Finally, we compute H=̇Hpc ⊗ Hx,y ⊗ Hf0,f1. None of the E -comps

has assumptions and all their ranking functions are always equal to the

minimal element. For this reason, all transitions are compatible and have

independent ranks. Therefore, the transition relation of H is the conjunc-

tion of the transition relations of the three E -comps. H has 24 regions,

given by the product of the 3 regions of Hpc, 2 of Hx,y and 4 of Hf0,f1. The

regions represent all the configurations that can be reached by employing
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compatible transitions of our E -comps Hpc, Hf0, Hf1, Hx and Hy. Recall

that our objective is to identify fair paths for the fair transition system Ex

defined in Sec. 6.1. Not all transitions of H are also transition of Ex . For

example, H admits a transition that increases the value of x from states

where pc = 3, while this is not possible in Ex . However, using the projec-

tion operator we can restrict H by considering a subset of its regions. In

particular, we are interested in the sequence of regions that would allow us

to obtain a representation of at least one fair path for Ex . We select six

regions and depict the projection H↓ of H over such regions in Fig. 6.11.

In particular, we consider the following regions:

R0 =̇ ¬f0 ∧ ¬f1 ∧ y = +1 ∧ x ≥ 1 ∧ pc = 3;

R1 =̇ ¬f0 ∧ ¬f1 ∧ y = +1 ∧ x ≥ 1 ∧ pc = 4;

R2 =̇ ¬f0 ∧ ¬f1 ∧ y = −1 ∧ x ≥ 1 ∧ pc = 5;

R3 =̇ ¬f0 ∧ ¬f1 ∧ y = −1 ∧ x ≥ 1 ∧ pc = 3;

R4 =̇ ¬f0 ∧ ¬f1 ∧ y = −1 ∧ x ≥ 1 ∧ pc = 4;

R5 =̇ ¬f0 ∧ ¬f1 ∧ y = +1 ∧ x ≥ 1 ∧ pc = 5.

Notice that the 6 regions underapproximate those that we have already

considered in the funnel-loop described in §6.2.1. In particular, for every

i ∈ {0, . . . , 5} Ri underapproximates Si. Moreover, H↓ satisfies all hy-

potheses of Th. 12, hence by Th. 6, it proves the existence of a fair path in

the language of the fair transition system Ex and we reached our goal.

174



Chapter 7

Search Procedure

This chapter describes two different approaches that given a fair transition

system try to synthesise a corresponding funnel-loop.

Sec. 7.1 presents a sound and complete reduction of the synthesis prob-

lem into E-CHC (defined in §2.4.1). Therefore, the completeness of such

encoding and the language used to represent the funnel depend on the ones

of the underlying procedure used to solve the E-CHC problem. Unfortu-

nately, we were not able to obtain any such tool and could not evaluate the

approach. However, we believe that the encoding provides a formalisation

of the synthesis problem in a solver-independent language that could ease

the understanding of the problem at hand and also support reasoning.

Sec. 7.2 provides a high-level description of an ad-hoc procedure. The

procedure performs the search via a sequence of SMT-queries and adopts

a template-based approach to identify the funnel-loop.

7.1 Encoding of Funnel-loop Search in E-CHC

We now present an encoding of the search for a funnel-loop for a fair

transition system in E-CHCs. E-CHCs allow us to clearly define the search

problem using an established formalism and notation.

We present a sound and complete encoding for the search problem of a

175



7.1. ENCODING OF FUNNEL-LOOP SEARCH IN E-CHC

funnel-loop of length one in E-CHCs. While it is possible to represent the

search of a funnel-loop of arbitrary length n, Th. 7 ensures that looking for

funnel-loops of length one is sufficient. In addition, it is possible to define a

similar E-CHC encoding that also considers a set of user-defined E -comps

as hints, similarly to the procedure we describe in Sec. 7.2. However, such

encoding is rather complex and does not provide any additional contribu-

tion to our discussion since we were not able to obtain any tool capable of

identifying solutions for E-CHCs.

Let M=̇〈V, IM , TM , FM〉 be a fair transition system and let R(c, V ),

T (V, V ′) and Rank(V, V ′) be query symbols, where c is a fresh Boolean

symbol (c 6∈ V ). A solution to the E-CHC problem below is an intepreta-

tion for R, T and Rank satisfying all its formulae. R represents the source

region, and c ∧ R(c, V ) underapproximates the fair states. Th. 15 shows

that any solution to the E-CHC below corresponds to a funnel-loop and

Th. 16 shows that if M admits a funnel-loop then there exists an interpre-

tation for the query symbols satisfying the following E-CHC. Therefore,

the encoding is sound (Th. 15) and relatively complete (Th. 16).

> → ∃c, V : R(c, V ) ∧ IM(V ) (7.1)

T (V, V ′) → ∃c : R(c, V ′) (7.2)

R(c, V ) ∧ T (V, V ′) → TM(V, V ′) (7.3)

R(c, V ) → ∃V ′ : T (V, V ′) (7.4)

c ∧R(c, V ) → FM(V ) (7.5)

¬c ∧R(c, V ) ∧ T (V, V ′) → Rank(V, V ′) (7.6)

wf(Rank) (7.7)

Let Cex =̇〈V, ∃c : R(c, V ), T (V, V ′),>〉 be the transition system asso-

ciated with an interpretation of the query symbols of the E-CHC above.

Eq. (7.1) requires the existence of some initial state of M in R, hence that
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the set of initial states of Cex is not empty. Every path of Cex is also a

path in M or, in other words, Cex is simulated by M . In fact, Eq. (7.2)

ensures that T can only reach states in R, and Eq. (7.3) guarantees that

in such region T is an underapproximation of TM . We require all paths of

Cex to be infinite (i.e. Cex never reaches a deadlock). This is guaranteed

by Eq. (7.4) that requires T to be left-total with respect to R. Finally,

all such paths must be fair. Eq. (7.5) guarantees that R(⊥, V ) is a subset

of the fair states of M . Eq. (7.6) requires the relation T (V, V ′) describing

pairs of current and next states such that the first one is in R(⊥, V ) to un-

derapproximate some well-founded relation Rank. The well-foundedness

of Rank ensures that there is no infinite chain of states in R(⊥, V ), hence

Cex must eventually reach a state in R(>, V ) and, by Eq. (7.5), it must

eventually reach a fair state.

Theorem 15 - E-CHC Encoding is Sound

Given a fair transition system M=̇〈V, IM , TM , FM〉; if there exists an in-

terpretation for the queries R, T and Rank that satisfies all Eqs. (7.1)–

(7.7), then there exists a funnel-loop for M .

Proof. We first show that R(c, V ) and T (V, V ′) describe a funnel and then

show that such funnel corresponds to a funnel-loop of length one. We define

a funnel fnl=̇〈V, S(V ), Tfnl(V, V
′), D(V ),Rf(V )〉, where (i) S(V )=̇∃c : R(c, V ),

(ii) Tfnl(V, V
′)=̇T (V, V ′) ∧ (D(V ′) ↔ Rf(V ) = 0), (iii) D(V )=̇∃c : c ∧

R(c, V ) and (iv) Rf(V ) is a ranking function witnessing the well-foundedness

of relation Rank(V, V ′) such that Rf(V ) = 0 for all V for which there exists

no V ′ making ¬c ∧R(c, V ) ∧ T (V, V ′) ∧ ∧c′R(c′, V ′) true.

∀c, V, c′ : ¬(∃V ′ : ¬c ∧R(c, V ) ∧ T (V, V ′) ∧ c′ ∧R(c′, V ′))→ Rfi(V ) = 0.

In all other cases (i.e. when R(c, V ) ∧ T (V, V ′) ∧ R(c, V ′) holds for all V ,

V ′) the following must hold:

∀V, V ′ : (¬c ∧R(c, V ) ∧ T (V, V ′) ∧R(c, V ′))→ Rf(V ) ≥ Rf(V ′) + 1.
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These two constraints allow for many different interpretations of Rf. Every

such interpretation satisfies our requirements and it is sufficient for such set

to be nonempty. The well-foundedness of Rank implies, by Eq. (7.6), that

¬c ∧ R(c, V ) ∧ T (V, V ′) ∧ R(c, V ′) is well-founded. Therefore, there must

exist some V such that Rf(V ) = 0. The formula holds for all the states in

¬c∧¬R(c, V ) and all the states in ¬c∧R(c, V ) for which T does not admit

any successor in the same region. Since ¬c∧R(c, V )∧T (V, V ′)∧R(c, V ′) is

well-founded it cannot allow for any infinite chain of states, hence it cannot

allow any loop of states. Therefore, the constraints above do not contain

any circular dependency in the definition of the assignments to the Rf(V )

and there exists at least one interpretation for Rf.

We now show that fnl satisfies all hypotheses required by Def. 18.

• Hyp. F.1 follows directly from Eq. (7.4) and the fact that Rf = 0

implies that T does not admit any successor in ¬c∧R(c, V ), hence it

must admit some successor in c∧R(c, V ), which by definition is in D.

• Consider now Hyp. F.2.

By construction S contains all states of ∃c : R(c, V ). Eq. (7.2) ensures

that this is an invariant, hence Hyp. F.2 holds.

• Consider Hyp. F.3.

By construction, Rf assigns decreasing integers to the chains de-

scribed by the relation ¬c ∧R(c, V ) ∧ T (V, V ′) ∧R(c, V ′). Therefore,

at every such step Rf must decrease and Hyp. F.3 holds.

• Finally, consider Hyp. F.4.

Eq. (7.2) and the well-foundedness of ¬c∧R(c, V )∧T (V, V ′), ensures

that from a state in ¬c ∧ R(c, V ), in a finite number of T steps, we

must reach a state in c∧R(c, V ). We defined Rf such that Rf = 0 in

the states whose T successors are in c∧R(c, V ), hence in D. Therefore,

Hyp. F.4 holds.
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We now show that fnl is a funnel-loop, i.e. it meets Hyp. FL.1 required

by Def. 19. fnl is the only funnel, hence we simply need to show that the

destination region D underapproximates the source region S. We defined S

as the union of c∧R(c, V ) and ¬c∧R(c, v) and D as c∧R(c, V ). Therefore

D → S and Hyp. FL.1 holds.

Finally, we show that this funnel-loop represents at least one fair path

of M by showing that it meets all hypotheses of Th. 6.

• Hyp. FF.1 holds since Eq. (7.1) ensures that R(c, V ) has a nonempty

intersection with the initial states IM .

• Hyp. FF.2 holds since Eq. 7.5 ensures that every state in c ∧ R(c, V )

satisfies FM(V ). We definedD=̇R(>, V ), henceD → FM and Hyp. FF.2

must hold.

• Finally, Hyp. FF.3 follows directly from Eq. (7.3).

Theorem 16 - E-CHC Encoding is Relatively Complete

Let floop be a funnel-loop of length one for a fair transition system

M=̇〈V, IM , TM , FM〉. Then, there exists an intepretation for the query

symbols R, T and Rank satisfying all Eqs. (7.1)–(7.7).

Proof. Given a floop of length one, we define an interpretation for the query

symbols R, T and Rank for the E-CHC. Let fnl=̇〈V, S, Tfnl , D,Rf〉 be the

only funnel in floop. Th. 6 ensures the existence of a finite sequence of

states σ such that: (i) it starts from an initial state of M , (ii) follows the

transition relation of M and (iii) ends in a state in the source region S.

Without loss of generality we assume that σ does not contain any state in

S other than the last one. In the following we write σ(V ) for the predicate

that holds iff V is in σ and σ(V, V ′) for the predicate that holds iff V and V ′

are two consecutive states in σ. Define the interpretation of the queries as

follows: (i) R(c, V )=̇(σ(V )∨S(V ))∧ (c↔ D(V )), (ii) T (V, V ′)=̇σ(V, V ′)∨
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(S(V ) ∧ Tfnl(V, V ′)) and (iii) Rank(V, V ′)=̇σ(V, V ′) ∨ Rf(V ′) < Rf(V ).

We show that the interpretation satisfies Eqs. (7.1)–(7.7).

• Consider first Eq. (7.1).

By construction ¬c ∧R(c, V ) contains all states in σ. By hypothesis,

the first state of σ is an initial state of M . Therefore, Eq. (7.1) holds.

• We now show that Eq. (7.2) holds.

R(c, V ) contains all states of σ and of S. T either follows the transi-

tions of σ or, once it reaches S, it follows the transition relation of fnl .

By hypotheses F.2, F.4 and FL.1 such transitions must remain in S.

Therefore, from every state not in S and not in σ, T is false and the

left-hand-side of Eq. (7.2) is false; otherwise, every T transition must

remain within R(c, V ) and Eq. (7.2) is true.

• Consider now Eq. (7.3).

Every step in σ is also a step in M and by Hyp. FF.3 every step

of floop underapproximates the transition relation of M . Therefore,

T (V, V ′) underapproximates TM and Eq. (7.3) holds.

• Consider Eq. (7.4).

Hyp. F.1 must hold for fnl and every state in σ must admit a successor

until a state in S is reached. Thus, by construction, T (V, V ′) always

allows from some successor state in region R(V, c) and Eq. (7.4) holds.

• We now prove that Eq. (7.5) holds.

By Hyp. FF.2, D underapproximates the fair states and, by construc-

tion, c∧R(c, V ) is equivalent to such region. Therefore, Eq. 7.5 holds.

• Eq. (7.6) holds by construction of the interpretation for Rank.

• Finally, Eq. (7.7) holds since σ is a finite sequence of states and Rf is

a ranking function with respect to Tfnl and S.
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7.2 Direct Procedure

In this section we propose a fully-automated procedure that, given a fair

transition system and a possibly empty set of E -comps, searches for a

funnel-loop containing at least one and only fair paths. The main pro-

cedure is described by Alg. 1. Alg. 1 searches for a funnel-loop by enu-

merating candidate fair loops of the transition system. Alg. 2 details how

these candidates can be generated. It considers finite paths such that their

first and last states are in the same abstract state with respect to a set of

abstraction predicates. Given a candidate loop, Alg. 1 proceeds by com-

puting a sequence of regions and transitions containing it, via Alg. 3. The

procedure then searches for a funnel-loop corresponding to a strengthening

of the sequence of regions and transitions such that all required hypotheses

are met (Sec. 7.2.4). If this succeeds, then the procedure returns the ob-

tained funnel-loop, otherwise it continues by analysing the next candidate

fair loop.

The procedure, is fully-automated and looks for a funnel-loop repre-

sentable using quantifier-free FOL formulae over the theory of linear and

non-linear mixed integer real arithmetic. This problem is undecidable,

hence there will always exist some inputs for which it fails to provide an

answer and, from a more practical perspective, inputs for which it takes

a very long time to provide an answer. For this reason, the procedure is

capable of exploiting some additional information in the form of a set of E -

comps. If some E -comps are provided, the procedure identifies candidate

fair loops that are also a path for some composition and projection of a

subset of the E -comps. It then tries to identify the funnel-loop that corre-

sponds to an E -comp describing the behaviour for the missing symbols. It

completes the E -comp with a transition relation over the remaining sym-

bols such that all assumptions are met. This feature allows the procedure
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return a witness by exploiting the human ingenuity to define some useful

E -comps. This is particularly relevant in cases where the fully-automated

version without hints and its heuristics fail.

Given a fair transition system M and a set of E -compsH, the procedure

tries to find, in a fully automated manner, a funnel-loop fnl loop for M

and a finite path of M ending in a region of fnl loop. H is a possibly

empty set of E -comps provided as input to guide the search, for this reason

we will refer to them as hints. The procedure selects a possibly empty

subset of hints and uses them as building blocks to define the funnel-

loop while synthesising the missing components. When the set of hints is

empty the procedure identifies a funnel-loop for a fair transition system

without relying on any additional information. In the following, we call

trivial hint the E -comp H=̇〈V,>,>〉 responsible for no symbols (V H=̇∅)
such that all its regions and assumptions are the constant > and all its

ranking functions are always equal to 0. Alg. 1 describes the main steps

Algorithm 1 search-funnel-loop(M , H)

. Iterate over candidate loops of increasing length.

1: for all 〈prefix , loop r , loop t , H〉 ∈ generate-candidate-loops(M,H) do

2: v0 ← prefix [len(prefix )− 1] . Witness for reachability, Hyp. FF.1.

. Iterate over funnel-loop templates for current candidate loop.

3: for all template ∈ generate-templates(v0, loop r , loop t , H) do

4: ef constrs ← template.ef constraints() . Get ∃∀ problem.

5: 〈found ,model〉 ← seach-parameter-assignment(ef constrs)

6: if found == > then . Replace parameters with assignment.

7: fnl loop ← template.instantiate(model)

8: return 〈prefix , fnl loop〉 . Reachability witness and funnel-loop.

9: end if

10: end for

11: end for

12: return unknown

of the procedure. We reduce the synthesis problem to a sequence of SMT
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queries. In order to reduce the search space, given an E -comp H we only

look for funnel-loops obtained by deterministic completions of H. For this

reason, we strengthen the transition relation of H by adding deterministic

assignments to the symbols for which H is not responsible. More in detail,

Alg. 1 enumerates candidate conjunctive fair loops of the fair transition

system and compositions of E -comps that admit such loop (line 1). If

generate-candidate-loops selects no hints or H is empty the returned

H is the trivial hint. For each candidate loop, the procedure generates a

sequence of parameterised funnel-loops, called funnel-loop templates, as

a strengthening of the corresponding E -comp (line 3). This is achieved

via the function generate-templates detailed in Alg 3. The predicates

of a funnel-loop template are over the symbols of the system M and a

set of parameters P . P is a set of fresh integer or real variables and the

procedure searches for an assignment (or interpretation) to the parameters

such that all the hypotheses of Defs. 18 and 19 and of Th. 6 hold. At

line 4 the procedure obtains the ∃∀-quantified problem associated with the

funnel-loop template and then, at line 5 tries to solve it. Finally, at line 7,

it replaces the parameters with the assignment identified at the previous

step, obtaining the desired funnel-loop.

The procedure relies on ranking functions to perform two different tasks.

Alg. 2 tries to synthesise ranking functions to avoid considering candidate

loops for which we know a ranking function exists. The existence of the

ranking function proves that the loop must eventually terminate, hence it

cannot correspond to an infinite path. Then, ranking function templates

are also used as components for the funnels of the funnel-loop template

generated by Alg. 3.

Before providing further details about the procedure, we illustrate it in

§7.2.1 by showing its application to the fair transition system Ex defined

in Sec. 6.1. Then, we describe how we represent and enumerate candidate
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loops and compositions of E -comps for the transition system M in §7.2.2.

After that, in §7.2.3, we detail how a funnel-loop template is generated

from a candidate loop and E -comp. Finally, §7.2.4 reports the synthesis

problem associated with a funnel-loop template.

7.2.1 Example Funnel-loop Search

We first recall the definition of the fair transition system Ex , introduced in

Sec. 6.1. Let V =̇{x, y, pc, f0, f1} be a set of symbols such that pc and x are

integer variables, y has real type and f0 and f1 are two Boolean symbols.

Then, the fair transition system is Ex =̇〈V, I, T, F 〉, where:

I =̇ pc = 3;

F =̇ f0 ∧ f1;

T =̇ (pc = 3→ (x2 ≥ xy ∧ pc′ = 4 ∧ x′ = x ∧ y′ = y)) ∧

(pc = 4→ (pc′ = 5 ∧ x′ = x)) ∧

(pc = 5→ (pc′ = 3 ∧ x′ = x+ 1 ∧ y′ = y)) ∧

((f0 ∧ f1)→ (¬f ′0 ∧ ¬f ′1)) ∧

(f ′0 → (f0 ∨ y > 0)) ∧ (f ′1 → (f1 ∨ y < 0)).

In addition, we assume no hints were provided, i.e. H=̇∅. Let Ex and H
be the inputs of our procedure. Alg. 1, at line 1, iterates over the candi-

date loops generated from Ex and H. Each candidate loop is described

by a 4-tuple 〈v0, loop r , loop t , H〉. loop r and loop t are sequences of

predicates over V and V ∪ V ′ respectively. The two sequences, together

with H, describe the abstract loop. Instead, v0 is a state in the first re-

gion of loop r reachable in Ex . Therefore, it is the last state of a finite

path prefix of Ex that starts its initial states and ends in v0. We compute

〈v0, loop r , loop t , H〉 by employing a liveness-to-safety [29] transformation

of Ex where the loop-back is identified in an abstract state. We then em-
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ploy an unrolling of the transition relation in the style of Bounded Model

Checking (BMC) [31] to enumerate concrete paths of Ex with such ab-

stract loop-back. The stem of this concrete path corresponds to our prefix .

loop r and loop t are obtained from the loop of the concrete path by com-

puting an implicant for the unrolling of the transition relation of Ex . We

then partition the predicates in the implicant depending on their index in

the unrolling and whether they contain only current (loop r) or both cur-

rent and next-state variables (loop t). Assume we are considering a BMC

unrolling of 6 transitions of Ex and obtain the following path:

0 : ¬f0 ∧ ¬f1 ∧ pc = 3 ∧ x = 1 ∧ y = +1;

1 : ¬f0 ∧ ¬f1 ∧ pc = 4 ∧ x = 1 ∧ y = +1;

2 : ¬f0 ∧ ¬f1 ∧ pc = 5 ∧ x = 1 ∧ y = −1;

3 : ¬f0 ∧ ¬f1 ∧ pc = 3 ∧ x = 2 ∧ y = −1;

4 : ¬f0 ∧ ¬f1 ∧ pc = 4 ∧ x = 2 ∧ y = −1;

5 : ¬f0 ∧ ¬f1 ∧ pc = 5 ∧ x = 2 ∧ y = +2;

6 : ¬f0 ∧ ¬f1 ∧ pc = 3 ∧ x = 3 ∧ y = +2;

where the states with indexes 0 and 6 correspond to the same state in

the abstract space defined by the predicates appearing in Ex . We use this

path to compute an implicant for the formula F (V0)∧
∧5
i=0 T (Vi, Vi+1). The

implicant is a conjunction of a subset of the atoms appearing in the formula

such that it implies the formula itself. In addition, the path is a satisfying

assignment also for the implicant. Each predicate in the unrolling depends

either on a single Vi or on Vi∪Vi+1 for some i, hence the same holds for the

predicates in the implicant. We partition the atoms of the implicant such

that the predicates that depend only on Vi are in loop r [i%6] and those

that depend on Vi ∪ Vi+1 are placed in loop t [i]. The first and last state

correspond to the same abstract region, hence their predicates are placed

together into loop r [0].
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The computation above allows us to obtain the following. Since H is

empty H is the trivial hint. The prefix contains a single state: prefix =̇ [f0∧
f1 ∧ pc = 3 ∧ x = 1 ∧ y = 1], loop r and loop t have length 6 and each

loop r [i] ∧ loop t [i] underapproximates the transition relation T .

0 :

1 :

2 :

3 :

4 :

5 :

loop r =̇ [

f0 ∧ f1 ∧ pc = 3 ∧ x2 ≥ xy,

¬f0 ∧ ¬f1 ∧ pc = 4 ∧ y > 0,

f0 ∧ ¬f1 ∧ pc = 5 ∧ y < 0,

f0 ∧ f1 ∧ pc = 3 ∧ x2 ≥ xy,

¬f0 ∧ ¬f1 ∧ pc = 4 ∧ y < 0,

¬f0 ∧ f1 ∧ pc = 5 ∧ y > 0];

loop t =̇ [

¬f ′0 ∧ ¬f ′1 ∧ pc′ = 4 ∧ x′ = x ∧ y′ = y,

f ′0 ∧ ¬f ′1 ∧ pc′ = 5 ∧ x′ = x,

f ′0 ∧ f ′1 ∧ pc′ = 3 ∧ x′ = x+ 1 ∧ y′ = y,

¬f ′0 ∧ ¬f ′1 ∧ pc′ = 4 ∧ x′ = x ∧ y′ = y,

¬f ′0 ∧ f ′1 ∧ pc′ = 5 ∧ x′ = x,

f ′0 ∧ f ′1 ∧ pc′ = 3 ∧ x′ = x+ 1 ∧ y′ = y].

We now search for a funnel-loop as a strengthening of this candidate loop.

Notice that the candidate loop by itself is not sufficient. In fact, loop t [1]

does not constrain the next assignment of y′, hence it does not guarantee

that y < 0 holds in the next state as required by loop r [2]. Before building

the funnel-loop template, we can perform some simplifications on the can-

didate loop to reduce the number of parameters introduced by the template

and ease the presentation. First of all, notice that every step i in loop t

assigns to the variables f0, f1 and pc a constant value that corresponds to

the one required by loop r [i+6 1]. Therefore, for brevity, we will omit such

constraints from the formulae in loop t and focus our presentation on x and

y. Moreover, many steps in loop t require x or y to remain constant. Con-

sider a step t=̇loop t [i] that requires y to be constant. We need t to map

states in rs=̇loop r [i] into rd=̇loop r [i +6 1]. Therefore, if rd requires y to

be positive (y > 0), then the same must hold in rs and vice-versa. We can

exploit identity relations in loop t to symbolically propagate constraints in
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loop r . By employing these transformations we obtain the following:

0 :

1 :

2 :

3 :

4 :

5 :

loop r =̇ [

¬f0 ∧ ¬f1 ∧ pc = 3 ∧ y > 0 ∧ x2 ≥ xy,

¬f0 ∧ ¬f1 ∧ pc = 4 ∧ y > 0,

¬f0 ∧ ¬f1 ∧ pc = 5 ∧ y < 0,

¬f0 ∧ ¬f1 ∧ pc = 3 ∧ y < 0 ∧ x2 ≥ xy,

¬f0 ∧ ¬f1 ∧ pc = 4 ∧ y < 0,

¬f0 ∧ ¬f1 ∧ pc = 5 ∧ y > 0];

loop t =̇ [

x′ = x ∧ y′ = y,

x′ = x,

x′ = x+ 1 ∧ y′ = y,

x′ = x ∧ y′ = y,

x′ = x,

x′ = x+ 1 ∧ y′ = y].

We now define a funnel-loop template of length 6 that can be generated

by Alg. 1 at line 3. For i ∈ {0, . . . , 5}, we define the ith funnel of the

template as a strengthening of loop r [i] and loop t [i]. In the template we

use symbols from the set P =̇{pi|i ∈ N}, disjoint from V , as parameters.

The parameters are variables for which we need to find an assignment such

that the template corresponds to an actual funnel-loop. Notice that the

steps in loop t already prescribe functional assignments for all variables

but for y at steps 1 and 4. For this reason, we introduce 2 parametric

affine expressions to underapproximate the assignment to y′. In addition,

we introduce parametric affine inequalities over x and y to strengthen the

elements of loop r. Also in this case we reduce the number of parameters

we need to introduce by exploiting the functional assignments of loop t.

For i ∈ {0, 1 . . . , 5}, let fnli=̇〈V, srci, ti,0, dsti〉 be the ith funnel of the

template. We define each destination region dsti as the set of states reach-

able from the previous source region when the ranking function is equal to

the minimal element. Since we defined every ranking function to be always

equal to the minimal element, we define each destination region as:

dsti=̇∃V : srci(V, P ) ∧ ti(V, V ′, P ).

187



7.2. DIRECT PROCEDURE

We define the source regions and transition relations as follows.

src0 =̇ loop r [0] ∧ p6x+ p7y + p8 ≥ 0;

t0 =̇ loop t [0];

src1 =̇ loop r [1] ∧ p6x+ p7y + p8 ≥ 0;

t1 =̇ loop t [1] ∧ y′ = p0x+ p1y + p2;

src2 =̇ loop r [2] ∧ p9x+ p10y + p11 + p9 ≥ 0;

t2 =̇ loop t [2];

src3 =̇ loop r [3] ∧ p9x+ p10y + p11 ≥ 0;

t3 =̇ loop t [3];

src4 =̇ loop r [4] ∧ p9x+ p10y + p11 ≥ 0;

t4 =̇ loop t [4] ∧ y′ = p3x+ p4y + p5;

src5 =̇ loop r [5] ∧ p6x+ p7y + p8 + p6 ≥ 0;

t5 =̇ loop t [5].

We introduced two parametric inequalities: p6x + p7y + p8 ≥ 0 at index 1

and p9x+ p10y + p11 ≥ 0 at index 4. Then, we propagated the inequalities

backward exploiting the assignments to x and y of loop t . In particular,

in loop t [0] and loop t [3] both x and y must remain constant. In loop t [2]

and loop t [5], instead, y remains constant and x increases by 1. Therefore,

p9x+p10y+p11 ≥ 0 in src3 implies that p9x+p10y+p11 +p9 ≥ 0 must hold

in src2 and similarly p6x+p7y+p8 ≥ 0 in src0 implies p6x+p7y+p8+p6 ≥ 0

at src5. We remark that exploiting the equalities in the transition relations

is an optimisation we employ to reduce the number of parameters and has

no effect on the correctness of the approach.

Now, we need to identify an assignment to the parameters p0, . . . , p11

such that the funnel-loop template satisfies all hypotheses of Def. 18,

Def. 19 and Th. 6. The procedure generates this synthesis problem at

line 4 and it searches for a solution (assignment to the parameters) at
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line 5. The synthesis problem requires the funnel-loop to be reachable in

Ex (FF.1), hence also not empty. We ensure this by requiring the first

region of the funnel-loop to contain the last state of the prefix, hence the

state f0, f1, pc = 3, x = 1, y = 1 must be in src0. Then, the funnel-loop

must never encounter a deadlock (F.1). This holds by construction of the

transition relations of the funnels; in fact, every ti is left-total for every as-

signment to the parameters. We need the funnels to be correctly chained

(FL.1) and to underapproximate the transition relation T of Ex (FF.3).

We defined the destination regions as the set of states reachable from the

source region in one step. Therefore, we require the following to hold:

∃P∀V : srci(V, P ) ∧ ti(V, V ′, P )→ srci+61(V
′, P ) ∧ T (V, V ′).

Finally, every state in src0 is a fair state, hence every path through the

funnel-loop template is a fair path of Ex (FF.2).

The following assignment to the parameters satisfies all these require-

ments: p0 = 0, p1 = −1, p2 = 0, p3 = 0, p4 = −1, p5 = 0, p6 = 1, p7 =

−1, p8 = 0, p9 = 1, p10 = 1, p11 = 0. We can substitute these values in the

funnel-loop template and obtain the following funnel-loop.

src0 =̇ loop r [0] ∧ x ≥ y;

src1 =̇ loop r [1] ∧ x ≥ y;

src2 =̇ loop r [2] ∧ x ≥ −y;

src3 =̇ loop r [3] ∧ x ≥ −y;

src4 =̇ loop r [4] ∧ x ≥ −y;

src5 =̇ loop r [5] ∧ x ≥ y;

t0 =̇ loop t [0];

t1 =̇ loop t [1] ∧ y′ = −y;

t2 =̇ loop t [2];

t3 =̇ loop t [3];

t4 =̇ loop t [4] ∧ y′ = −y;

t5 =̇ loop t [5].

Notice that in this process the parametric expressions allowed us to iden-

tify an underapproximation of the transition relation of Ex that toggles

the sign of y instead of allowing any possible assignment. In addition, the

parametric inequalities restricted the regions we obtained from the candi-
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date loop to only the states in which x ≥ |y|, hence ensuring that the loop

condition x2 ≥ xy of our example holds. In fact, x2 ≥ xy is redundant in

src0 and src3; it is implied by x ≥ y ∧ y > 0 in the first region and by

x ≥ −y∧y < 0 in the second one. Therefore, this funnel-loop is equivalent

to the one we defined in §6.2.1.

7.2.2 Candidate Fair Loops Enumeration

We enumerate candidate fair loops by identifying lasso-shaped paths in the

abstract space built by the assignments to a finite set of predicates. Two

states that agree on the truth assignment of all such predicates belong to

the same abstract state. We then represent the fair loop as a sequence of

transitions and regions (sets of states) that underapproximate the transi-

tion relation of M .

Given a fair transition system M=̇〈V, IM , TM , FM〉 we describe a

candidate fair loop of length n for M , associated with an E -comp

H=̇〈V, IH , TH〉 over regions R=̇[Ri]
n−1
i=0 , assumptions A=̇[Ai]

n−1
i=0 , ranking

functions Rf=̇[Rfi]
n−1
i=0 and responsible for symbols V H ⊆ V , as a sequence

of regions loop r=̇[loop r i(V )]n−1
i=0 , transitions loop t=̇[loop t i(V, V

6=H ′)]n−2
i=0

and an initial state v0, where V 6=H=̇V \ V H . Such that: (i) the state v0 is

reachable in M ; (ii) the conjunction of the first region and the initial states

of H contains the initial state v0 (i.e. is not empty); (iii) the conjunction

of a loop r i and the corresponding restricted region Ri ∧Ai underapproxi-

mates the fair states; (iv) for each step, the conjunction of loop t i and the

transition relation TH of H is an implicant for a transition in M . These
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condition can be formally written as follows:

M  v0;

v0 |= loop r 0 ∧ IH ;

∃i∀V : loop r i ∧Ri ∧ Ai → FM ;

∀i, V, V ′ : loop r i ∧Ri ∧ Ai ∧ loop t i ∧ TH∧

((0 < Rfi ∧R′i) ∨ (Rfi = 0 ∧R′i+ni
))→ TM .

Without loss of generality, and to simplify the presentation, we assume

the fair region to be the first one: ∀V : loop r 0 ∧ R0 ∧ A0 → FM . The

structure of a candidate loop resembles a funnel-loop. However, candidate

loops are not guaranteed to satisfy all required hypotheses. In particular,

the transitions loop t i ∧ TH could admit deadlocks (Hyp. F.1) and they

are not guaranteed to map every state in the previous region into some

state in the following one (Hyp. FL.1). In addition, H may not provide

all the required ranking functions. For this reason, in order to identify a

funnel-loop, we look for a strengthening of the candidate loop that also

satisfies these conditions.

The enumeration of candidate loops and compositions is performed by

Alg. 2. The procedure is based on Bounded Model Checking (BMC) [31]

for the enumeration of candidate paths, and on the computation of an un-

derapproximation of M for each path.

The function encode-l2s-fair-abstract-loop (line 1) encodes the search

for a fair lasso-shaped path in the intersection of M and the composition of

a subset ofH into a reachability problem given by the 4-tuple 〈V, I, T, bad〉.
The problem requires us to identify paths over the variables V , starting in

I(V ) and following the steps given by T (V, V ′) that end in some state in

bad(V ). We obtain this encoding via a liveness-to-safety [29] construction

that transforms the problem of identifying an abstract lasso into a reach-

ability problem. The loop-back state is identified in the abstract space
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Algorithm 2 generate-candidate-loops(M , H)

. L2S encoding into reachability problem and E -comp selection.

1: 〈V, I, T, bad〉 ← encode-l2s-fair-abstract-loop(M,H)

2: for k ∈ [0, 1, 2, . . .] do . BMC unrolling: k steps.

3: query ← I(V0) ∧
∧k−1

i=0 T (Vi, Vi+1) ∧ bad(Vk) . BMC reachability.

4: 〈sat ,model〉 ← smt-solve(query) . Find first path of length k.

5: refs ← [] . Keep track of visited paths of length k.

6: while sat do . Generate all candidates from paths of same length.

7: H ← get-candidate-composition(model) . Path selects hints.

8: 〈conflict〉 ← get-comp-error(H)

9: if conflict 6= ⊥ then . Learn incompatible transitions.

10: 〈V, I, T, bad〉 ← remove-conflict(V, I, T, bad , conflict)

11: else . H is valid E -comp.

12: 〈loop r , loop t〉 ← underapproximate(model , query , H)

13: 〈is ranked , rf 〉 ← rank-loop(loop r , loop t , H)

14: if is ranked then . Learn ranking function.

15: 〈V, I, T, bad〉 ← remove-ranked-loops(V, I, T, bad , rf )

16: else . Unable to find ranking function, could be nonterminating.

17: prefix ← get-prefix(model) . Get stem of abstract lasso.

18: yield 〈prefix , loop r , loop t , H〉 . Coroutine returns triples.

19: refs .append(¬(
∧

r∈loop r r ∧
∧

t∈loop t t)) . Mark visited.

20: end if

21: end if

22: query ← I(V0) ∧
∧k−1

i=0 T (Vi, Vi+1) ∧ bad(Vk) ∧
∧

ref ∈refs ref

23: 〈sat ,model〉 ← smt-solve(query) . Find next path of length k.

24: end while

25: end for

defined by the predicates appearing in the transition relation and fairness

condition of M , together with the ones in the E -comps. The last state and

the loop-back state must agree on the truth assignment of all such pred-

icates, hence they may not be the very same assignment. A set of fresh

Boolean variables selects the E -comps to be considered, and the path must

be such that at most one ranking function decreases at a time. We then rely
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on a SMT-solver to identify fair lasso paths of increasing length k (line 2),

as done for the abstract liveness-to-safety algorithm of [73]. The models of

this BMC unrolling describe a path in the language of both M and the com-

position of a subset of the E -comps inH. IfH is empty or none of the hints

is selected, get-candidate-composition (line 7) returns the trivial hint

H of length equal to the number of states in the abstract lasso. Instead,

if some hints are selected, H is given by their composition projected over

the ordered sequence of regions visited by the path. The selected E -comps

might not be compatible, for this reason, after extracting the candidate

composition from the BMC model (line 7), get-comp-error (line 8)

checks if each transition in the composition is compatible (the trivial hint

is trivally compatible). If this is not the case, a conflict predicate represent-

ing the transitions that are not compatible is used by remove-conflict

to refine the reachability problem 〈V, I, T, bad〉 such that we avoid gen-

erating the same conflict again. If H is a valid E -comp the function

underapproximate (line 12) computes two sequences of n − 1 formu-

lae loop r=̇[loop r i(V )]n−2
i=0 and loop t=̇[loop t i(V, V

′)]n−2
i=0 such that each

loop r i ∧ loop t i, together with H, underapproximates the transition re-

lation of M . The function computes an implicant for the formula query

such that the assignments of the lasso described by model satisfy both for-

mulae. Then, for each step i, the function partitions the predicates in the

implicant into two sets. All predicates containing only symbols in V at

step i are in loop r i, while the predicates containing symbols in V ∪ V ′ at

step i are in loop t i. Therefore, we split the predicates used to describe the

regions from the ones that constrain the transitions. We use loop r i and

loop t i as formulae meaning the conjunction of all the predicates in the set

and they, together with H, describe the candidate fair loop.

Then, function rank-loop (line 13) tries to synthesise a ranking func-

tion for such candidate loop. In the literature there are many approaches
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for the synthesis of ranking functions [133, 14, 41], here we simply as-

sume we are given a method that returns the representation of a ranking

function rf proving the termination of a candidate loop. If the procedure

succeeds in identifying a ranking function, then the reachability problem

〈V, I, T, bad〉 is refined such that we avoid enumerating other loops ranked

by the same function, as described in [73]. This is achieved by calling

remove-ranked-loops at line 15. Otherwise, at line 17, get-prefix

extracts from model the prefix of the loop; i.e. the path of M ending in the

the loop-back state. The prefix represents a witness for the reachability of

the first region of the candidate loop in M and the procedure returns it

together with the current candidate loop, at line 18. If no other candidate

loop of length k exists, we clear the list of refinements refs and enumerate

the candidate loops of length k + 1.

Example. We now provide a brief example of the computation of the un-

derapproximation of M described by loop r and loop t . Assume the tran-

sition relation of M is T =̇(a ≤ 1 → b′ > b) ∧ (a ≥ 2 → b′ < b), and

the loop described by model is given by the assignments a0 = 1, b0 = 0,

a1 = 2, b1 = 1 and a2 = 0, b2 = 0. A path of M with three states is

represented by the formula T (V0, V1) ∧ T (V1, V2). An implicant for such

formula satisfied by model is {a0 ≤ 1, b1 > b0, a1 ≥ 2, b2 < b1}. Such an

implicant can be obtained, for example, by applying the techniques pre-

sented in [77] and [147]. Finally, we partition this set into loop r and loop t

by defining their components as follows: loop r 0=̇a ≤ 1, loop t0=̇b
′ > b,

loop r 1=̇a1 ≥ 2 and loop t1=̇b
′ < b. Therefore, we have obtained a candi-

date loop where the first region requires a ≤ 1, then it follows the transition

relation b′ > b to reach the second region a1 ≥ 2, finally the transition b′ < b

concludes the abstract loop by going back to the first region. Notice that

such candidate loop does not immediately correspond to a funnel-loop. For
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example, it is not the case that loop r 0(V )∧ loop t0(V, V
′)→ loop r 1(V

′).

For this reason, we employ them to obtain funnel-loop templates that we

later try to instantiate into actual funnel-loops.

7.2.3 Funnel-loop Templates

We call funnel-loop template a candidate funnel-loop whose predicates con-

tain symbols of both V and a set of parameters P (P and V are disjoint).

We call parameter a fresh (not in V ) integer or real variable for which we

want to identify an interpretation that satisfies some constraints. In more

detail, for each candidate fair loop we generate a sequence of funnel-loop

templates and try to identify an assignment to the symbols P such that

by replacing them with the identified values we obtain a funnel-loop sat-

isfying all the required hypotheses. In the following, the function called

new-param-expr generates expressions over the symbols V and the pa-

rameters P , e.g. affine linear functions p0 +
∑|V |

i=1 pivi, where |V | is the

number of symbols in V and for all i, pi ∈ P and vi ∈ V . The function

introduces as many parameters as necessary to generate the required ex-

pressions. Alg. 3 shows the procedure we use to generate funnel-loop tem-

plates from a candidate loop. We generate templates of the same length of

the candidate loop. Function heuristic-pick-num-ineqs (line 1) selects

a list of natural numbers to be used to generate the funnel-loop templates.

Each number corresponds to the amount of parametric inequalities added

to each region of the candidate loop to define the corresponding source

region of a funnel template (line 7). The higher the number the more

freedom will the template have in shrinking the regions, but in the search

problem we will have more parameters, hence a larger space to explore.

Notice that, since the first region of the candidate loop is fair by construc-

tion, then the last destination region in the funnel-loop template will be

fair and Hyp. FF.2 holds. We create the ith funnel of the funnel-loop tem-
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Algorithm 3 generate-templates(v0, loop r , loop t , H)

1: ineqs ← heuristic-pick-num-ineqs(loop r , loop t , H)

2: 〈V H , IH , TH ,R,A,Rf〉 ← H . Get components defining H.

3: for ineq ∈ ineqs do . Use ineq parametric inequalities in regions.

4: n← len(loop r) . Length of template + 1: loop-back region.

5: funnels ← [] . List of funnels for funnel-loop template.

6: for i ∈ [0..n− 2] do . Create ith funnel: 〈V, src, t, rf , dst〉.
7: src ← loop r [i] ∧R[i] ∧ A[i] ∧

∧ineq−1
j=0 new-param-expr(V ) ≥ 0

8: if ∃V : 0 < Rf[i](V ) then

9: rf ← Rf[i] . H defines ranking function.

10: else

11: rf ← new-param-expr(V ) . Parametric ranking function.

12: end if

13: t← R[i] ∧ A[i] . Transition of H in ith region.

14: t← t ∧ TH ∧ ((0 < rf ∧R[i]′ ∧ rf ′ ≤ rf ) ∨ (rf = 0 ∧R[i+ 1]′))

15: for vi+1 ∈ Vi+1 \ V H
i+1 do . Add functional assign for vi+1 in t

16: if vi+1 = f(Vi) ∈ loop t [i] for some function f then

17: t← t ∧ vi+1 = f(Vi) . Functional assignment in candidate.

18: else

19: t← t ∧ vi+1 = new-param-expr(Vi) . Create new expr.

20: end if

21: end for

22: P ← collect-parameters(src, rf , t) . Params in current funnel.

23: dst(V ′, P )← ∃V : src(V, P ) ∧ rf (V, P ) = 0 ∧ t(V, V ′, P )

24: funnels .append(Funnel(src, t, rf , dst))

25: end for

26: yield Funnel-loop(funnels ,v0) . Coroutine returns templates.

27: end for

plate (lines 6–25) as a restriction of the conjunction of the ith region and

transition of the candidate loop. In addition, the only nondeterministic

component in t is given by the transition relation of H. All other compo-

nents of the transition relation t of the funnel are deterministic functional

assignments as follows. Let V H be the symbols for which H is responsible.
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For each symbol vi+1 ∈ Vi+1 \ V H
i+1, if loop t i already contains a functional

assignment for vi+1, then we use that (line 17). Otherwise, we generate a

functional assignment for vi+1 as a parametric expression over the symbols

in Vi (line 19). The resulting transition relation is total and Hyp. F.1 holds.

We define the destination region of a funnel implicitly as the set of states

reachable in one step from S ∧ Rf = 0 (line 23), hence Hyp. F.4 holds

by construction. Finally, at line 26, the procedure returns the funnel-loop

template associated with the list of parametric funnels and initial state

v0. We will ensure that v0 is in the first source region of the funnel-loop.

Therefore, since v0 is reachable in M , Hyp. FF.1 holds.

Example. We now provide an example to illustrate how a funnel is gen-

erated in the lines from 7 to 24. In this example we assume the following:

(i) V =̇{a, b, c} is a set of real-valued symbols; (ii) new-param-expr gen-

erates affine linear expressions over V and a set of parameters P =̇{pi}i∈N;

(iii) we are constructing a funnel-loop template adding a single predicate

to shrink the region (ineq = 1); (iv) loop r [i]=̇b < c; (v) loop t [i]=̇c′ =

c ∧ b′ > b + a ∧ b′ > c and (vi) the hint H responsible for {a} has the

following components: R[i]=̇a > 0, R[i+ 1]=̇a > 0, A[i]=̇>, Rf[i]=̇0 and

TH=̇a′ > a.

For simplicity, we defined P as an infinite set. However, in this example

we will use 12 parameters {pi}11
i=0; we will introduce 3 affine parametric

expressions each of which requires 4 parameters. The first expression rep-

resents an additional inequality for the region, the second one is used to

represent the ranking function, and the last one corresponds to the func-

tional assignment of b′ in the transition relation.

Line 7 defines the source region src of the funnel as the conjunction of

the loop r [i], the restricted region of H and, since ineq = 1 it introduces a
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single parametric predicate: p0 + p1a+ p2b+ p3c ≥ 0.

src(V, P ) =̇ b < c ∧ a > 0 ∧ p0 + p1a+ p2b+ p3c ≥ 0.

The condition at line 8 is false since the ranking function provided by H

is always equal to 0. The procedure then executes line 11 that introduces

a new parametric expression to represent the ranking function:

rf (V, P ) =̇ p4 + p5a+ p6b+ p7c.

We implicitly consider the function equal to 0 if rf (V, P ) ≤ 0. Then,

line 14 initialises t from the transition relation of H as:

t =̇ a > 0 ∧ a′ > a ∧ ((0 < rf (V, P ) ∧ a′ > 0 ∧ rf (V ′, P ) ≤ rf (V, P ))∨

(rf (V, P ) ≤ 0 ∧ a′ > 0)).

The loop starting at line 15 iterates over the symbols in {b, c}. Consider

first the symbol c, in loop t [i] we find the equality c′ = c, hence the condi-

tion at line 16 holds and the equality is added to t as a conjunct. Consider

now the symbol b, loop t [i] prescribes no equality for b′, hence a new para-

metric expression is introduced and added to t at line 19; let such equality

be b′ = p8 + p9a+ p10b+ p11c. Therefore, the final t is as follows:

t =̇ a > 0 ∧ a′ > a ∧ ((0 < rf (V, P ) ∧ a′ > 0 ∧ rf (V ′, P ) ≤ rf (V, P ))∨

(rf (V, P ) ≤ 0 ∧ a′ > 0)) ∧ c′ = c ∧ b′ = p8 + p9a+ p10b+ p11c.

Finally, dst is defined as the set of states that admit a predecessor through

t in src with rf = 0:

dst(a′, b′, c′, P ) =̇ ∃a, b, c : src(a, b, c, P ) ∧ rf (a, b, c, P ) ≤ 0 ∧ t(a, b, c, a′, b′, c′, P ).

7.2.4 Funnel-loop Synthesis Problem

We now describe the ∃∀ quantified formula that corresponds to the syn-

thesis problem of a funnel-loop template. Alg. 1 computes this formula
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for every funnel-loop template template via the method ef constraints at

line 4. We search for an assignment to the parameters P of the funnel-loop

template such that by replacing them with the identified values we obtain

a funnel-loop that satisfies all hypotheses of Defs. 18, 19 and of Th. 6. In

the hypotheses, for every funnel fnl i=̇〈V, Si, Ti, Di,Rfi〉, we replace each

destination region Di with the quantified formula:

Di(V
′)=̇∃V : Si(V ) ∧Rfi(V ) = 0 ∧ Ti(V, V ′). (7.8)

Every instance of the funnel-loop template must contain a fair region since

loop r 0 is a subset of the fair states and S0, by construction, underapprox-

imates loop r 0. We ensure that Hyp. FF.1 holds by requiring that v0 is in

the source region of the first funnel fnl0 with the constraint:

∃P : S0(v0, P ). (7.9)

Hyp. F.1 holds by construction, since the next region implies the assump-

tions required by the E -comp. Therefore, the transition relation of the

E -comp must always allow for a successor for all assignments to the V 6=H
′
.

In addition, the other components of the transition relation of the funnel

describe a functional assignment to the V 6=H
′

without any circular depen-

dency. Hyp. F.4 holds since we implicitly defined the destination region of

each funnel fnl i as the set of states reachable in one step from Si∧Rfi = 0.

Then, we ensure that every instantiation of every funnel template fnl i in

the funnel-loop template satisfies hypotheses F.2 and F.3 by requiring the

following to hold:

∃P ∀V, V ′ : (Si(V, P ) ∧ 0 < Rfi(V, P ) ∧ Ti(V, V ′, P ))→ (7.10)

Si(V
′, P ) ∧Rfi(V

′, P ) < Rfi(V, P ).

Consider now Hyp. FL.1; this formula requires the funnels to be cor-

rectly chained. Notice that Hyp. FL.1 consists of an implication whose left-

hand-side is Di. We replace Di with its definition (Eq. (7.8)) and rewrite
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it into an equivalent formula in which we bring the existential quantifier

out in front of the formula as a universal quantifier. Therefore, to ensure

that Hyp. FL.1 holds, we require every two consecutive funnel templates

fnl i and fnl i+n1 in the funnel-loop template to satisfy the following:

∃P ∀V, V ′ : (Si(V, P ) ∧Rfi(V, P ) = 0 ∧ Ti(V, V ′, P ))→ Si+n1(V
′, P ).

(7.11)

This ensures that every Di is a subset of Si+n1. We have observed above

that S0 contains only fair states, hence Dn−1 underapproximates the fair

states and Hyp. FF.2 holds. Finally, we ensure that each funnel-loop in-

stance underapproximates M (Hyp. FF.3) by requiring the following to

hold for every funnel fnl i:

∃P ∀V, V ′ : Si(V, P ) ∧ Ti(V, V ′, P )→ TM(V, V ′). (7.12)

The final synthesis problem is then given by the conjunction of all the

constraints (7.9)–(7.12). Notice that their conjunction is a formula of the

form
∧3
i=0 ∃P∀V, V ′ : φi, since Eq. (7.9) does not contain any symbol in

V ∪ V ′. We can rewrite the conjunction into an equivalent formula by

bringing the quantifiers in front and obtain a single equivalent synthesis

problem ∃P∀V, V ′ :
∧3
i=0 φi. A solution for this problem is a model that

assigns a value to each parameter in P such that the formula
∧3
i=0 φi holds

for all possible assignments to the symbols in V ∪V ′. From one such model

we can generate a concrete funnel-loop by substituting the parameters P

with their assignment.
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Chapter 8

Synthesis of E -comps

The procedure described in the previous chapter takes as input a set of

E -comps. This chapter describes two procedures that could automatise

or help in their definition. In the literature there are many techniques

that consider problems with a particular structure, some examples are

linear software programs, timed automata and dynamical systems. Some

of these techniques can be used to define E -comps for a system. From

this perspective, the compositional approach described in Sec. 6.3 allows

for the use of specialised techniques to analyse portions of the system with

different characteristics. The main objective of this chapter is to show that

E -comps are sufficiently expressive to represent infinite paths identified

using different techniques employed in different contexts.

Generally speaking, every such technique has some assumptions on the

systems it considers and adopts some structure to represent one or more of

its infinite executions. Given one such technique, we are faced with two key

challenges for its adoption in the synthesis of E -comps. First, we need to

explore the fair transition system to identify components or portions of it

that satisfy the assumptions required by the technique, e.g. by identifying

components representable as lasso programs or timed automata. We could

search for such components, for example, by analysing the model syntac-
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tically and looking for constraints over a subset of the symbols matching

some pattern. Another possibility is to enumerate candidate (abstract)

loops of the system, as in Alg. 2, and check whether the candidate loop

implies a structure satisfying the required constraints. The second chal-

lenge is to define a transformation from the structure the approach uses to

represent infinite paths to E -comps. These two steps strongly depend on

the considered approach and need to be defined for each case.

The chapter is organised as follows. Sec. 8.1 considers Lyapunov stabil-

ity, a widely used concept in the study of dynamical systems, and defines

an E -comp representing the stability condition of the system. Instead,

Sec. 8.2 describes a novel technique to identify traces with ultimately di-

verging symbols and defines a corresponding E -comp.

8.1 Lyapunov Stability

Lyapunov stability [152] is a central notion in the study of dynamical sys-

tems. Intuitively, the property states that if the systems begins in a con-

figuration sufficiently close to an equilibrium point, then every state in the

execution will lay within a neighbourhood of the equilibrium.

Definition 25 - Lyapunov stability

Given a set of symbols V , a continuous function f : V 7→ V and a distance

function d : V 7→ R+
0 such that 〈V, d〉 is a metric space. A state vε is

Lyapunov stable iff:

∀ε > 0∃δ > 0∀n ∈ N, V : d(vε, V ) < δ → d(fn(vε), f
n(V )) < ε.

A state vε is Lyapunov stable with respect to a transition relation

V ′ = f(V ), if the distance between the corresponding states of every path

starting from vε and every other path starting from some state distant

less that δ from vε, is always bounded by ε. The property guarantees the
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existence of a δ neighbourhood for the initial state vε such that all paths

starting from some state in that neighbourhood have distance at most ε

from the one starting from vε. In particular, we can constrain the paths to

be arbitrarily close to the one starting in vε by choosing small values for

ε. The property ensures that for any such ε there will be a δ neighbour-

hood of state vε such that the distance between any path starting in such

neighbourhood and the path starting in vε is bounded by ε.

We now define an E -comp H with a single region R that represents

such paths. In the hypothesis above, we Skolemize δ and obtain a function

δ : R+
0 7→ R+

0 that given the selected value for ε computes the corresponding

value for δ such that the hypothesis holds. This allows us to define H such

that we nondeterministically select ε in the initial state and, depending

on this choice, the region R provides tighter or coarser bounds. In more

detail, let H=̇〈V M∪Vε∪{ε}, I, T 〉 responsible for V , with ranking functions

W and assumptions A such that: (i) ε is a fresh real valued symbol and

Vε=̇{vε|v ∈ V }; (ii) I=̇ε > 0 ∧ d(V, Vε) < δ(ε); (iii) T =̇ε′ = ε ∧ V ′ =

f(V )∧ V ′ε = f(Vε); (iv) every ranking function Rf ∈ W is always equal to

the minimal Rf = 0; (v) finally, we define the region R as d(V, Vε) < δ(ε).

With respect to the assumptions A, if our whole system is represented by

the continuous function f , hence it has no discrete component, then all

assumptions are empty (>). Otherwise, we need to inspect the system and

characterise the conditions under which its behaviour with respect to a

subset of the symbols VL ⊆ V can be underapproximated by a continuous

function as above. If such conditions can be underapproximated by some

formula over V \VL, then such conditions define the assumptions of the E -

comp responsible for VL built from the Lyapunov stability of the continuous

function f : VL 7→ VL.

Notice that we have defined a single E -comp representing an unbounded

number of possible bounds on the distance between the configurations. In
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addition, if vε is a fixpoint for f (i.e. f(vε) = vε) then H can be greatly

simplified and the region simply bounds the distance from the fixpoint.

8.2 Ultimately Diverging Symbols

Note. The approach described in this section is based on the one we de-

scribed in [54]. The work [54] is a collaboration with Stefano Tonetta and

Marco Roveri and presents an ad-hoc technique to identify infinite traces

of timed transition systems where some clock variables can diverge. This

section extends its applicability by considering infinite-state systems and

by relying on the computation of absolute positiveness bounds. In addi-

tion, the approach is presented in the compositional framework of Sec. 6.3.

This section describes a novel approach to identify infinite executions in

which some symbols diverge.

A transition system allows or forbids some behaviour based on the

truth value of the atomic predicates used to describe its transition rela-

tion. Therefore, if we identify a region where the truth assignment of all

such predicates is constant and the region is closed with respect to the tran-

sition relation, then the system admits some infinite execution remaining

in such region. In this sense we are looking for a recurrent set or stable

region, where stability is interpreted with respect to the truth assignment

of the predicates describing the system. In more detail, we are interested

in regions where all assignments of some symbol above [resp. below] a cer-

tain threshold share the same truth assignment for the predicates in the

model. An example of such regions are the unbounded ones defined by the

region abstraction of timed automata. When a clock symbol is greater than

the maximum constant to which it is compared to, the distance between

the clock evaluation and such threshold is irrelevant and all such states
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correspond to the same abstract state.

We employ the same idea in the context of infinite-state transition sys-

tems. First, in §8.2.1, we define a set of sufficient conditions and, given

a structure satisfying the conditions, we build a corresponding E -comp.

Then, §8.2.2 describes a procedure to extract such structures from an

infinite-state transition system. Finally, §8.2.3 provides an example.

8.2.1 Sufficient Conditions and E -comp

Consider a set of symbols V partitioned into two sets VD and VB=̇V \ VD
such that every symbol in VD has an infinite domain, either reals or integers.

Let P be a set of atomic predicates over V ∪ V ′ such that every predicate

can be written in the forms f(V ) ./ 0 or x′ ./ f(V ), where ./∈ {<,≤,≥, >}
and x′ ∈ V ′D. We define a set of sufficient conditions for the symbols in VD

to remain in a region provided the ones in VB satisfy some assumptions.

We consider the case in which all VD are positive in the region. The case

with some negative variable v ∈ VD can be reduced to the case above by

replacing every occurrence of v with −v.

We partition P into disjoint subsets based on their syntactic structure.

The first set Curr contains all predicates that depend only on the current

state variables V ; then, we define for every x ∈ VD four different sets, two

for the expressions representing lower bounds of x′ (strict and non-strict)

and two for its upper bounds.

Curr =̇ {f(V ) ./ 0 | ./∈ {≤, <,≥, >} ∧ f(V ) ./ 0 ∈ P};

Usx =̇ {u(V ) | x′ < u(V ) ∈ P};

Uex =̇ {u(V ) | x′ ≤ u(V ) ∈ P};

Lsx =̇ {l(V ) | x′ > l(V ) ∈ P};

Lex =̇ {l(V ) | x′ ≥ l(V ) ∈ P}.
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We define the region for VD where the predicates in P are stable relative

to VB as R(V )=̇
∧
x∈VD x ≥ boundx(VB), where boundx(VB) is an expression

representing the lower bound for each x ∈ VD; we assume the domain of

boundx(VB) to be included in the domain of x. In addition, let boundVD(VB)

be the vector of {boundx}x∈VD and A(VB) be a formula representing the

required conditions on the symbols in VB. Therefore, we are considering a

restricted region R(V ) ∧ A(VB).

We now describe the conditions that must hold for the truth assignment

of the predicates P to be stable relative to VB in the restricted region. First

we require the assignment to the predicates depending only on the current

state variables to be constant relative to VB in the region:

∀V : (R ∧ A)→
∧

f./0∈Curr

(f(boundVD(VB), VB) ./ 0↔ f(VD, VB) ./ 0).

(8.1)

Eq. (8.1) implies that, in the restricted region, the truth assignment of the

predicates P depends only on the assignment to VB. Given an assignment

to VB, the value of boundVD(VB) is uniquely identified, hence also the truth

value of all f(boundVD(VB), VB) ./ 0. In order for Eq. (8.1) to hold, this

truth assignment must correspond to the one of all the f(VD, VB) ./ 0 ∈
Curr for all VD in R. Therefore, given an assignment to the VB, all

assignments to the symbols in VD, such that R ∧ A holds, must agree on

the truth value of all predicates in Curr. For example, no f can be of

the form αx − βy, for some α, β > 0 and x, y ∈ VD. In fact, both boundx

and boundy depend only on VB, hence their value is independent from the

assignments to x and y. The truth value of αx − βy ./ 0 depends on

whether x is less or greater than β
αy, which is not taken into account in the

formula above. However, f could be defined as the sum of symbols in VD,

since if every symbol is greater than 0, then f is always positive.

We now consider the predicates containing one next state symbol and let
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x′ ∈ V ′D be such symbol. We need to guarantee that the predicates always

allow for a successor. Therefore, the minimum upper bound of x (i.e.

minimum expression in Usx ∪ Uex) must be greater than the maximum

of its lower bounds (Lsx ∪ Lex). Furthermore, we need to ensure that

between these two expressions there always is at least one element that is

also in the domain of x. If x is a real variable, then every nonempty interval

contains such a value. Otherwise, x has integer domain and we need to

ensure that the interval contains at least one element of Z. Let Int(x) hold

iff x has integer domain, then we can formally write the requirement above

as follows.

∀V : (R ∧ A)→ (
∧

u∈Usx

(
∧

l∈Lsx∪Lex

u > l) ∧
∧

u∈Uex

(
∧
l∈Lsx

u > l ∧
∧
l∈Lex

u ≥ l)∧

Int(x)→ (
∧

u∈Uex∪Usx

∧
l∈Lex∪Lsx

buc ≥ dle)).

(8.2)

Finally, we require boundVD(VB) to be a minimum for every u ∈ Usx∪Uex

and x ∈ VD.

∀x ∈ VD, ux ∈ Ux, V : (R ∧ A)→ ux(V ) ≥ ux(boundVD(VB), VB). (8.3)

Therefore, as for the predicates in Curr, for two symbols x, y ∈ VD the

upper bound functions ux ∈ Ux cannot be of the form αx−βy with α, β > 0.

E -comp definition

Given VB, VD, the bound expressions {boundx(VB)}x∈VD and formula A(VB)

satisfying equations (8.1), (8.2) and (8.3) with respect to the set of predi-

cates P . We define an E -comp H=̇〈V, I, T 〉 of size |R|VD| ×R|VD| × 2Curr|
responsible for VD over regions R, assumptions A and ranking functions

W . We define all ranking functions as always equal to their minimal el-

ement. Then, each restricted region is the strengthening of R ∧ A such
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that in every region (i) boundVD is bounded from above by some con-

stant max b ∈ R|VD| for every symbol in VD, (ii) each u ∈ Usx ∪ Uex is

bounded from below by some constant minu[x] ∈ R and (iv) R prescribes

a truth assignment to all predicates in Curr. Every predicate in Curr is

the comparison of an expression with 0, hence its negation can be equiv-

alently written by inverting the comparison operator. For this reason,

every truth assignment to the predicates in Curr can be written as a con-

junction
∧|Curr|−1
i=0 fi(V ) ./ 0. In the following we write 2Curr for the set

of such formulae and we also assume a total order such that every 0 ≤
h < 2|Curr| uniquely identifies the formula 2Curr[h] in the set. We define

the set of regions as R=̇{Rmax b,minu,h}max b∈R|VD |,minu∈R|VD |,h∈{0,...,2|Curr|−1} and

assumptions as A=̇{Amax b,minu,h}max b∈R|VD |,minu∈R|VD |,h∈{0,...,2|Curr|−1}, where:

each Rmax b,minu,h is defined as

Rmax b,minu,h(V ) =̇ R ∧ 2Curr[h](VD, VB);

every Amax b,minu,h is given by

Amax b,minu,h(VB) =̇ A ∧ 2Curr[h](boundVD(VB), VB) ∧ boundVD(VB) ≤ max b∧∧
x∈VD

∧
u∈Usx

u(boundVD(VB), VB) > minu[x]∧∧
u∈Uex

u(boundVD(VB), VB) ≥ minu[x];

minu[x] is the component of minu relative to symbol x ∈ VD and, as above,

R=̇
∧
x∈VD x ≥ boundx(VB). Therefore, every restricted region prescribes

both an upper bound for the {boundx}x∈VD and a lower bound for every

expression in
⋃
x∈VD Usx∪Uex. In addition, every restricted region implies

a specific truth assignment for the predicates in Curr. The bounds and

the truth assignments are uniquely identified by the triple we use to index

both regions R and assumptions A.

208



CHAPTER 8. SYNTHESIS OF E -COMPS

We define the initial states as the disjunction of the restricted regions:

I=̇
∨

max b∈R|VD |

∨
minu∈R|VD |

2|Curr|−1∨
h=0

Rmax b,minu,h ∧ Amax b,minu,h.

Finally, the transition relation is given by the conjunction of the upper and

lower bounds of every symbol in VD and requires the minimum of every

upper bound to be greater than the corresponding bound in the next state.

Assuming the restricted regions to be disjoint we define it as follows.

T =̇
∧
x∈VD

∧
u∈Usx

x′ < u(V ) ∧
∧

u∈Uex

x′ ≤ u(V ) ∧
∧
l∈Lsx

x′ > l(V ) ∧
∧
l∈Lex

x′ ≥ l(V )∧

∧
max b∈R|VD |

∧
minu∈R|VD |

2|Curr|−1∧
h=0

Rmax b,minu,h ∧ Amax b,minu,h →

∧
max ′b∈R|VD |

∧
min ′u∈R|VD |

2|Curr|−1∧
h′=0

R′max ′b,min ′u,h
′ ∧ A′max ′b,min ′u,h

′ →

minu ≥ max ′b ∧
∧
x∈VD

Int(x)→ bminu[x]c ≥ dmax ′b[x]e.

The first line of the formula requires the next assignment of every symbol

in VD to lay between its corresponding upper and lower bounds. Then, the

last three lines allow only the transitions between the regions with indexes

〈max b,minu, h〉 and 〈max ′b,min ′u, h
′〉 such that the minimum upper bound

of the current region minu is greater than the maximum upper bound max ′b
for boundVD in the next region.

Notice that both I and T are infinite formulae. Moreover, also R and A
contain an unbounded number of elements. In fact, they are indexed via

triples of the form 〈max b,minu, h〉, where max b,minu ∈ R|VD| have infinite

domain. Therefore, H has an infinite number of regions and, since this

is not allowed by Def. 20, H is not an E -comp. However, we prove that

any projection of H on a finite number of its regions satisfies all required

hypotheses.
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Theorem 17 - Every finite projection of H is an E -comp

Every projection of H on a finite number of its regions satisfies all hypothe-

ses of Def. 20.

Proof. We need to show that H satisfies hypotheses EC.1, EC.2, EC.3

and EC.4. Then, every projection of H will also satisfy them by the same

argument of Th. 13, and if the projection is finite then it must be a E -

comp. Hyp. EC.1 holds for H by construction; in fact, the initial states

are defined as the disjunction of the restricted regions. Hypotheses EC.2

and EC.3 hold trivially since all ranking functions in W are always equal

to their minimal element. Therefore, we only need to show that Hyp. EC.4

holds for H.

Consider every pair of restricted regions. If no transition exists from

the first region to the second one, then we do not need to prove anything.

Otherwise, assume there exists a transition between the restricted region

with index 〈max b,minu, h〉 and the one with index 〈max ′b,min ′u, h
′〉. We

need to show that every state in the first one admits a successor in the

second one. By definition of T , every next assignment to the symbols in

VD must lay between its upper and lower bounds. Eq. (8.2) ensures that

there exists a valid assignment in the domain of x satisfying such constraint

for every x ∈ VD.

We now need to show that for every x ∈ VD among such values there

exists one that is in Rmax ′b,min ′u,h
′, assuming Amax ′b,min ′u,h

′ holds. Rmax ′b,min ′u,h
′

is composed of 2 conjuncts: one requires every x to be greater than its

bound, the other one prescribes the assignment to the predicates in Curr.

Consider the first conjunct, we need to show that for every x ∈ VD

among the possible next assignments that lay between its upper and lower

bounds, there exists at least one that is also greater than boundx computed

over the next state variables. By definition of T , minu ≥ max ′b. In addition,

the definition of Amax b,minu,h implies that every state in the first restricted
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region satisfies the following formula:∧
x∈VD

∧
u∈Usx

u(boundVD , VB) > minu[x] ∧
∧

u∈Uex

u(boundVD , VB) ≥ minu[x].

Finally, Eq. (8.3) ensures that u(V ) ≥ u(boundVD , VB). Therefore, ev-

ery state in the restricted region 〈max b,minu, h〉 is such that every upper

bound expression of every x ∈ VD is greater than minu, hence also than

max ′b:∧
x∈VD

∧
u∈Usx

u(boundVD , VB) > max ′b[x] ∧
∧

u∈Uex

u(boundVD , VB) ≥ max ′b[x].

In addition, for every symbol x ∈ VD with integer domain, bminu[x]c ≥
dmax ′b[x]e must hold. This implies the existence of at least one integer

value in the interval [max ′b[x],minu[x]].

Consider now the second conjunct of Rmax ′b,min ′u,h
′. We need to prove

that the states in the region share the same truth assignment to the predi-

cates in Curr. Amax ′b,min ′u,h
′ implies that 2Curr[h](boundVD(VB), VB) holds.

Eq. (8.1) ensures that all assignments such that
∧
x∈VD x ≥ boundx(VB)

agree on that truth assignment and, by construction,
∧
x∈VD x ≥ boundx(VB)

holds in the region.

8.2.2 Synthesis

We now describe a possible strategy to extract sets of predicates satisfying

equations (8.1), (8.2) and (8.3). We achieve this objective by relying on

the concept of absolute positiveness for a multivariate function. Absolute

positiveness allows us to define two overapproximated bounds for each

multivariate function. Given a function f(VD, VB) we define the two bounds

as the formula abscond f,VD(VB) and the expression absposf,VD(VB). Finally,

we employ them to define the {boundx}x∈VD and formula A for a set of

predicates P such that all equations (8.1), (8.2) and (8.3) hold.
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8.2. ULTIMATELY DIVERGING SYMBOLS

The absolute positiveness of a multivariate function f is an upper bound

for all the roots of the function. Therefore, after such bound the function

is always positive or always negative. For simplicity of presentation we will

consider only the positive case.

Definition 26 - Absolute Positiveness

A function f(V ) is absolutely positive from B ∈ R|V | iff f(B) > 0 and every

non-zero partial derivative of every order of f is positive in
∧
x∈V x ≥ B[x].

Notice that absolute positiveness of f fromB implies that ∀V : (
∧
x∈V x ≥

B[x])→ f(V ) > 0, since all its derivatives are non-negative.

An approach for the computation of absolute positiveness of univari-

ate polynomials is the Cauchy bound [46, 113]. Given a univariate poly-

nomial f(x)=̇xn +
∑n−1

i=0 aix
i with ai ∈ R for all i, its Cauchy bound

is 1 + max ({|ai|}n−1
i=0 ), hence the function is absolutely positive for all

x > 1 + max ({|ai|}n−1
i=0 ). In our setting we are interested in the case where

such bounds can depend on some symbols VB, hence the coefficients ai are

not simply constants but expressions over the symbols in VB. The bound

can introduce some assumptions on the coefficients, hence constraints over

VB. For example, given the univariate polynomial f(x)=̇
∑n

i=0 aix
i, where

x ∈ VD and each ai is an expression over VB we can compute the Cauchy

bound by identifying the non-zero coefficient of the x with largest exponent:

absposf,VD=̇



an(VB) 6= 0 then 1 + max ({| aian |}
n−1
i=0 );

...

am(VB) 6= 0 ∧
∧n
i=m+1 ai(VB) = 0 then 1 + max ({| aiam |}

m−1
i=0 );

...

a0(VB) 6= 0 ∧
∧n
i=1 ai(VB) = 0 then 1.

Notice that if every coefficient is equal to 0 the bound is undefined. For

this reason we introduce abscond f,VD , a formula over the symbols in VB
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representing the region in which the bound absposf,VD applies. In our

example, we can define abscond f,VD(VB) as
∨n
i=0 ai(VB) 6= 0.

In the literature, there are many procedures to overapproximate the ab-

solute positiveness of univariate and multivariate functions. They require

different assumptions on the coefficients, provide bounds with different pre-

cision and generate expressions with different complexities. A comparative

discussion of these techniques is out of the scope of this thesis and we sim-

ply assume that we are able to define the operators abspos and abscond .

The interested reader can refer to [113, 2, 145, 110, 146], for a more detailed

discussion on the computation of absolute positiveness bounds.

More formally, given the sets of symbols V , VD ⊆ V and VB=̇V \ VD
and an expression f(VD, VB), we define abscond f,VD(VB) as the formula

over VB describing the region in which absposf,VD(VB) overapproximates

the absolute positiveness bound for f with respect to VD. Notice that both

abscond f,VD and absposf,VD depend only on the symbols VB.

We will now define how the set of symbols VD and predicates P can be

extracted from a transition system and we employ abspos and abscond to

define the set of bounds {boundx} for each x ∈ VD and the formula A for

the assumptions over VB, where VB ⊆ V \ VD is the set of symbols not in

VD that appear in some predicate in P .

Given a transition system M=̇〈V, I, T 〉 we extract the set of predicates

P by identifying a subset of the symbols VD ⊆ V such that all atomic

predicates in T containing symbols in VD∪V ′D are of the form f(V ) ./ 0 or

x′ ./ g(V ), where x′ ∈ V ′D, ./∈ {<,≤, >,≥} and f and g are polynomials

over the symbols in V . Similarly, we could also enumerate candidate loops

of M , as in Alg. 2, and identify VD as above but relative to the predicates

in the candidate loop instead of the whole transition relation T .
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We partition P in the following sets:

Curr =̇ {f(V ) ./ 0 | ./∈ {>,≥} ∧ f(V ) ./ 0 ∈ P};

Ux =̇ {u(V ) | x′ < u(V ) ∈ P ∨ x′ ≤ u(V ) ∈ P};

Lx =̇ {l(V ) | x′ > l(V ) ∈ P ∨ x′ ≥ l(V ) ∈ P}.

Then, for every x ∈ VD we define boundx(VB) as the maximum of the

absolute positiveness of every f ∈ Curr and of every difference u − l for

u ∈ Usx ∪Uex and l ∈ Lsx ∪ Lex. More formally,

boundx(VB)=̇max (absposCurr ∪ absposU ∪ absposDiffs ∪ absposDiffsI);

where:

absposCurr =̇ {absposf,VD(VB) | f(VD, VB) ./ 0 ∈ Curr};

absposU =̇ {absposu,VD(VB) | u(V ) ∈ Ux};

absposDiffs =̇ {absposu−l,VD(VB) | x ∈ VD ∧ ¬Int(x) ∧ u(V ) ∈ Ux ∧ l(V ) ∈ Lx};

absposDiffsI =̇ {absposbuc−dle,VD(VB) | x ∈ VD ∧ Int(x) ∧ u(V ) ∈ Ux ∧ l(V ) ∈ Lx}.

Finally, A is defined as the conjunction of all assumptions required for all

expressions:

A(VB)=̇abscondCurr ∧ abscondU ∧ abscondDiffs ∧ abscondDiffsI ;

where:

abscondCurr =̇
∧

f./0∈Curr

abscond f,VD ;

abscondU =̇
∧
u∈Ux

abscondu,VD ;

abscondDiffs =̇
∧
u∈Ux

∧
l∈Lx

abscondu−l,VD ;

abscondDiffsI =̇
∧
u∈Ux

∧
l∈Lx

abscond buc−dle,VD .
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Theorem 18 - Synthesis approach is sound

Given the set of predicates P over symbols VD ∪ VB. A and {boundx}x∈VD
identified by the procedure above satisfy all equations (8.1), (8.2) and (8.3).

Proof. We prove the equations one at a time.

• Consider first Eq. (8.1).

R requires every x ∈ VD to be greater than its corresponding boundx

for every VB. boundx requires x to be in the absolute positive region

of each function f . By definition of absolute positiveness, for every

such x the sign of f is constant. Therefore, Eq. (8.1) holds.

• We now consider Eq. (8.2).

For every x ∈ VD, for every pair of expressions l and u representing

respectively a lower and upper bound for x, boundx requires x to be

in the absolute positive region of u− l, and also of buc − dle if x has

integer domain. This implies that their difference is positive, hence u

must be greater than l for every state in R, hence Eq. (8.2) holds.

• Finally consider Eq. (8.3).

For every x ∈ VD, for every upper bound u for x, boundx requires

x to be in the absolute positive region of u. Therefore, in R every

partial derivative of every order of u must be positive. Therefore, for

increasing values of any x ∈ VD also the value of u must increase.

Therefore, u(boundVD(VB), VB) is the minimum and Eq. (8.3) holds.

8.2.3 Example

Consider the fair transition system M=̇〈V, I, T, F 〉, defined over the vari-

ables V =̇{b, x} such that b is Boolean and x has domain Z. Let I=̇>, F =̇b

and T =̇x3 − 5x2 + 2 > 0 ∧ x′ > 20x2 ∧ x′ < x3

40 ∧ (b→ ¬b′) ∧ (b′ → x′ > x).

We define VD=̇{x} and P as the set of predicates in M containing x:
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P=̇{x3 − 5x2 + 2, x′ > 20x2, x′ < x3

40 , x
′ > x}. Then, P is partitioned into

the 3 sets as follows:

Curr =̇ {x3 − 5x2 + 2 > 0};

Ux =̇ {x
3

40
};

Lx =̇ {x, 20x2}.

We now employ the Cauchy bound to compute the absolute positiveness of

these univariate polynomials. The computation is straightforward in most

cases, we detail only the one involving the difference between the upper

bound x3

40 and the lower bound 20x2. In this case we need to compute the

absolute positiveness of bx340c − d20x2e. Since x has integer values, then

20x2 must be an integer and d20x2e = 20x2. Instead, x3

40 is not guaranteed

to be an integer. However, since we are only interested in the absolute

positiveness of the expression, we can approximate it by considering x3

40 −
20x2−1. Therefore, we removed the “floor” operator by subtracting 1 to the

expression. By construction the previous expression is always greater than

or equal to the new one, hence the absolute positiveness of the latter implies

absolute positiveness of the former. Finally, we can employ the Cauchy

bound and the absolute positiveness bound is 1 + max (20 · 40) = 801.

A similar reasoning allows the computation of all other bounds and we

obtain:

absposCurr =̇ {1 + max (5, 2)} = {6};

absposU =̇ {1};

absposDiffsI =̇ {41, 801}.

We can now compute boundx as the maximum of all these values, hence

boundx=̇801.
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Notice that we did not require any assumption on the other symbols, hence

A=̇>. Therefore, we now have all the elements required to define the E -

comp Hx.

Rx
0

x ≥ 801

20x2 < x′ < x3

40

Figure 8.1: E -comp Hx.

Hx is depicted in Fig. 8.1. It has a single region

Rx
0=̇x ≥ 801 and trivial ranking function Rf=̇0. In

order to define its assumptions, we first need to define

minu and max b that represent the two bounds on the

expressions in Usx=̇Ux and boundVD at x = boundx.

We can easily compute these values by substitution

and obtain max b=̇boundx=̇801 and minu=̇
8013

40 − 1.

Therefore, the assumptions of Hx are given by the formula Ax
0=̇>, since

all constraints are comparisons between constants and are always true.

Finally, the transition relation is

T x =̇ x′ <
x3

40
∧ x′ > x ∧ x′ > 20x2∧

(x ≥ 801→ (x′ ≥ 801→ b8013

40
c − 1 ≥ d801e)).

The formula b8013

40 c − 1 ≥ d801e always holds, hence we can simplify the

relation and obtain: T x =̇ x′ < x3

40 ∧ x
′ > x ∧ x′ > 20x2. Finally, in the

region x ≥ 801, which implies 20x2 > x. This allows us to further simplify

it as: T x =̇ 20x2 < x′ < x3

40 .

Rx,b
0

x ≥ 801

b

Rx,b
1

x ≥ 801

¬b

¬b′ ∧ 20x2 < x′ < x3

40

b′ ∧ 20x2 < x′ < x3

40

Figure 8.2: E -comp Hx,b.

Hx by itself is not sufficient to prove

the existence of a fair path in L(M).

For this reason, we define an E -comp

Hb responsible for b. Hb has two re-

gions, Rb
0=̇b and Rb

1=̇¬b, transition re-

lation T b=̇¬b′ and trivial assumptions

and ranking functions. The composi-

tion Hx,b of Hx and Hb proving the ex-

istence of a fair path for M is depicted in Fig. 8.2.
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Chapter 9

Related Work

This chapter describes current state-of-the-art approaches for the falsifica-

tion of temporal properties and its sub-problems. Most of the literature

in verification of temporal properties of infinite-state and timed transition

systems focuses on the universal case (i.e. proving that all traces satisfy

a property), while the existential one has received relatively little atten-

tion. In addition, most approaches focus on a specific context, for example

software nontermination, consider decidable subproblems or identify only

lasso-shaped witnesses.

We classify the techniques based on the kind of modelling and specifi-

cations languages they consider.

9.1 Term Rewriting Nontermination

Term rewriting systems (TRS) are formal models describing systems that

operate on terms, an example of TRS is the well-known λ-calculus. In

TRS a term (or expression) is a tree-structure over some symbols and each

subtree is called subterm or subexpression. A TRS defines a set of rewriting

rules. A rewriting rule l→ r can be applied to a term s if l matches some

subterm of s. The result of the application of the rule is a new term in

which a subterm matching l is replaced with r in s. We call execution
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of a TRS the application of a possibly infinite sequence of rewritings to

some initial term. An execution of a TRS terminates when there are no

applicable rules and a TRS is terminating if all its executions terminate.

Many techniques identify nonterminating executions by looking for ap-

plications of rules that describe a loop [92, 96, 143, 163]. The work [83],

instead, focuses on non-looping nontermination. The approach proposes

to manipulate the rules of the TRS by applying a set of operators and

generating pattern rules. The space of pattern rules is then explored to

identify a rule l→ r such that r admits some subterm that matches l.

However, TRS do not have a notion of initial states nor a built-in notion

of fairness ([137] describes a reduction from fair termination to termina-

tion). Finally, the profound differences in the model of computation be-

tween TRS and transition systems hinders the applicability of approaches

developed in one context into the other.

9.2 Software Nontermination

The halting problem is a well-known and studied undecidable problem.

Its complement is the problem of identifying whether a program admits at

least one infinite run. This decision problem is a particular instance of LTL

model checking in infinite-state systems. In fact, a software program can

be modelled as a infinite-state system. For example, it is possible to define

a transition system where all deadlock states correspond to states in which

the program terminates. Therefore, the halting problem can be encoded

as the search for an infinite path for the transition system i.e. deciding the

language emptiness for a fair transition system where all states are fair.

Some tools, such as AProVe [94], transform the software program

into a TRS and try to prove (non)termination of the program by proving

(non)termination of the corresponding TRS. TRS, with respect to tran-
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sition systems, allow for a more natural modelling of procedure calls and

recursive functions.

Other approaches try to prove that a program is nonterminating by

identifying a reachable open/closed recurrent set for the program. These

procedures search for a recurrent set by relying on quantifier elimination,

SMT-solvers or forward/backward analysis of the software program, some-

times combined with abstraction. Open recurrent sets have been intro-

duced in [100]. In this work the control flow graph of the software program

is exploited to enumerate candidate lassos and each candidate is analysed

to check whether it admits a recurrent set. The search for the recurrent

set is performed by generating a sequence of SMT problems each of which

corresponds to a recurrent set template, i.e. a formula with some param-

eters that need to be defined such that the resulting formula corresponds

to a recurrent set. However, in this work they assume the program to be

fully deterministic and without deadlocks.

Other approaches, such as [66, 49, 131, 17, 18, 87], search for a closed

recurrent set. In [131] and [66] the search for a recurrent set is reduced

to a sequence of MAX-SMT and SMT queries respectively. The first one

uses MAX-SMT to prune as many terminating branches as possible, while

the second adopts an approach similar to the one of [100], but the tem-

plate represents a closed recurrent set and it is also capable of dealing with

nonlinearities by approximating them. However, [66] considers only sim-

ple loop programs over the integers without deadlocks and [131] requires

the knowledge of the control flow graph in order to prune paths. The

work [49] takes a different approach and reduces the search for a closed

recurrent set to a sequence of safety queries. It progressively computes

an underapproximation of the program by identifying and removing ter-

minating executions, until either the program becomes empty or it proves

nontermination. Given a terminating execution it performs a backward
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analysis to identify a condition that caused the execution to terminate and

the program is refined by adding the negation of such condition.

In [17] and [18] the search for a recurrent set is performed in an abstract

space. The approach of [17] employs forward analysis. It starts from the

initial conditions of the software loop and it symbolically propagates them

forward following the control flow graph (performing the case splits on

branching conditions) and progressively removing the terminating paths

until a formula representing a closed recurrent set is obtained. Instead [18]

relies on (over)approximated backward analysis to identify candidates via

trace partitioning. Then the approach performs forward analysis on the

candidate trying to refine it into a closed recurrent set.

The works [87] and [48] employ transformations on the software program

before searching for a recurrent set. The technique described in [87] tries

to simplify the software representation to obtain a simple loop program

by learning invariants and chaining. Simple loops are then accelerated,

the approach computes a closed form representing k iterations of the loop.

Nontermination is then detected by checking whether the guard of the

loop is an invariant or if the loop has a fixpoint. Notice that a reach-

able fixpoint for the loop corresponds to a lasso-shaped nonterminating

execution. Instead, in [48], the program is reversed obtaining a transition

system that starts from the end states and moves backward. The termi-

nating executions of the original program correspond to paths that reach

the initial states in the reversed transition system. Therefore, all initial

states that correspond to a terminating run must satisfy the invariants

of the transition system, called backward invariants. The nondetermin-

ism in the program is resolved using symbolic polynomial assignments and

nontermination is then detected by identifying backward invariants whose

complement is reachable.

Finally, other approaches look for specific classes of programs or specific
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nontermination arguments. [88] and [115] prove the decidability of termi-

nation for linear loops over the integers, while in [134] nontermination is

seen as the sum of geometric series.

However, all of these works deal with nontermination and do not support

the verification/falsification of temporal properties; fairness constraints are

not considered and they rely on the existence of a control flow graph.

Instead, we work at the level of transition system and support full LTL.

9.3 LTL Falsification on ITS

In the context of model checking LTL specifications on infinite-state sys-

tems, as discussed in §2.7.3, a simple visit or fixpoint computation will not

be able to conclude that a property holds and a model might not admit any

lasso-shaped counterexample. However, it is still safe to conclude that the

property is violated if such a counterexample is found. BMC and L2S can

be employed in this context as sound procedures to identify lasso-shaped

counterexamples. However, if no such counterexample exists they cannot

provide an answer.

The work [69] reduces the verification of the universal fragment of CTL

on a infinite-state transition system to the problem of deciding whether a

program always returns true. The approach can be applied also on LTL

properties by relying on a reduction based on prophecy variables and it

relies on some off-the-shelf tool for the analysis of the program. Therefore,

its capability of proving or identifying a counterexample for some property

depends on the ones of the considered underlying tool.

The work [68] explicitly deals with fairness for infinite-state programs

supporting full CTL*. The technique presented in it is able to deal with ex-

istential properties and provides fair paths as witnesses. The approach fo-

cuses on programs manipulating integer variables, with an explicit control-
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flow graph, rather than more general symbolic transition systems expressed

over different theories. Another approach supporting full CTL* is pro-

posed in [121]. The work presents a model checking algorithm for the

verification of CTL* on finite-state systems and a deductive proof system

for CTL* on infinite-state systems. In the first case the authors reduce

the verification of CTL* properties to the verification of properties with-

out temporal operators and a single fair path quantifier in front of the

formula. To the best of our knowledge there is no generalisation of this

algorithm, first reported in [122] and then also in [123], to the infinite-state

setting. The rules presented in the second case have been exploited in [28]

to implement a procedure for the verification of CTL properties, while our

objective is the falsification of LTL properties.

9.4 LTL Verification on TA

LTL verification on timed automata is a decidable problem. Timed au-

tomata allow for finite abstractions that preserve both reachability and lan-

guage emptiness. Tools, such as CTAV [135], DiVinE [19], MITLBMC [125]

and LTSmin-Opaal [119] support LTL verification on timed automata

by relying on the generation of a finite zone abstraction that preserves not

only reachability but also language emptiness. k-extrapolation [157] and

LU-abstraction [22] are two examples of zone-based abstractions that pre-

serve both reachability and emptiness of timed automata. Most tools (e.g.

CTAV, DiVinE and LTSmin-Opaal) rely on an explicit state representa-

tion of the locations of the automaton while the timing dimension and clock

constraints are represented symbolically using specialised data-structures

called Difference Bound Matrices. Other tools (e.g. MITLBMC), rely on

a fully symbolic representation of the system. In [125] well-known algo-

rithms for symbolic model checking of finite-state systems are specialised
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for the verification of LTL and (a fragment of) MTL specifications on

timed automata. The specialisation consists of a symbolic encoding of the

region abstraction for timed automata.

Tools and approaches in this context differ in how they deal with Zeno

paths. Tools, such as CTAV, simply require the input model to not con-

tain Zeno paths. Other approaches check whether from all reachable states

it is possible to make a time elapse of at least 1 time unit [156]. An-

other possibility, adopted for example by Uppaal [21], DiVinE [19] and

LTSmin-Opaal [119], is to disregard all Zeno paths during the verification

procedure. They compose the input model with a monitor automaton that

changes location every c time units. The progress of time is ensured by

requiring that the monitor automaton visits each location infinitely often.

However, the verification problem on TA is decidable hence less relevant

for the purposes of this thesis.

9.5 LTL Verification on HS

Most of the work on hybrid systems is concerned with the reachability

problem. The aim is to prove that the system is safe by proving that some

events cannot happen. The reachability problem for hybrid automata is

undecidable [108]. For this reason many sub-classes have been introduced

in the attempt to clearly identify the boundary of decidability with respect

to mixed continuous and discrete systems. In [108] Henzinger et alia prove

that the invariant checking problem on initialised rectangular hybrid au-

tomata, timed automata included, is PSPACE-complete. In addition, they

show that relaxing the initialisation constraint or allowing comparisons

between continuous variables leads to undecidability. Other results on the

decidability of different problems in this context are presented in [24, 12].

We simply highlight that very small extensions to the language of ini-
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tialised rectangular hybrid automata are sufficient to make the verification

of invariant properties undecidable. For example, the class of linear hybrid

automata is semi-decidable [108].

Unfortunately, the decidable fragments are not expressive enough to

model many real-world systems [4]. In many cases the expressiveness of

rectangular hybrid automata does not allow for a sufficiently precise mod-

elling of the real-world system [106]. For this reason many model checkers

for hybrid systems allow for the specification of linear hybrid automata. In

linear hybrid automata it is possible to represent the continuous state sym-

bolically as a polyhedra and the reachable states can be computed using op-

erations on polyhedra. This technique was implemented in HyTech [107].

Since then, the research effort has moved towards a more expressive class

of hybrid systems allowing the specification of the continuous dynamics

using ODE. In this setting a single polyhedra is not sufficient to represent

the continuous dynamics (e.g. ẋ = x describes an exponential dynamic). It

is possible to over-approximate the flow using a piecewise linear envelope.

This approach, called flowpipe approximation, was first proposed in [50],

refined in [11] and still proves to be competitive as shown by more recent

tools such as PHAVerLite [20]. Other works experimented with differ-

ent representations for the sets of reachable states leading, for example,

to techniques based on zonotopes [97] and support functions [99]. Some

tools, for example CORA [3], allow the combination of different represen-

tations, such as zonotopes, zonotopes bundles, polytopes, taylor models

and set of vertices. In order to handle complex nonlinear dynamics, other

model checkers, such as FLOW*, exploit the flowpipe construction on the

taylor expansion of the continuous dynamics. Tools based on the over-

approximating flowpipe construction are unable to falsify specifications.

Ariadne [23] proposes to solve this problem by employing both over and

under approximations, allowing it to both verify and refute a specification.
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In more recent years, also SMT-based techniques have been applied

in this context. Some examples are HyCOMP [58], hydlogic [117],

HySat [85] and dReach [126].

However, there is a lack of support for the verification of more expressive

specification languages such as LTL and MTL on infinite traces.

HyCOMP [58] is a SMT-based tool for the verification of invariants

and LTL properties on hybrid systems. The hybrid system is translated

into a corresponding infinite-state transition system and the verification

task is solved using algorithms developed in this context. It supports full

LTL and removes Zeno paths from the model by computing the product

with a monitor automaton as other tools in the context of timed automata.

However, HyCOMP is capable of deciding that a LTL specification does

not hold only if it finds a lasso-shaped counterexamples.

Other techniques, search for a counterexample by posing the falsification

problem as an optimisation of a robustness function [141, 9, 150, 162].

These works consider an expressive temporal specification language (e.g.

MTL), however they are interested in bounded-time verification, hence do

not consider infinite traces of the system.
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Chapter 10

Tools: F3 and nuXmv

The techniques described in Part II of this thesis have been implemented

in the nuXmv model checker. In addition, we have extended the falsifica-

tion capability of nuXmv for timed transition systems. In this context, we

extended its BMC encoding and spuriousness checks of its IC3-based algo-

rithm by considering the composition of the E -comp defined as described

in Sec. 8.2 with one in which all variables perform a concrete lasso. The fal-

sification approaches described in Part III are available in an open-source

prototype we call Find-Fair-Funnel, abbreviated as F3. This chapter

first describes the main features and architecture of F3 in Sec. 10.1. Then,

Sec. 10.2 introduces nuXmv and describes how we extended it to support

the verification of MTL0,∞ and LTL-EF on timed systems and also how its

model checking algorithms have been enhanced to include the falsification

techniques described in this thesis.

10.1 Find-Fair-Funnel

We have implemented the falsification procedures, detailed in Sec. 7.2, in

a prototype called F31, written in Python. F3 takes as input a transition

system, a possibly empty set of E -comps and, if provided with a fairness

1the tool and the benchmarks can be downloaded from https://github.com/enmag/F3
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condition it tries to identify a fair path for the given model, otherwise if

an LTL specification is given as input it tries to identify a counterexample

for such property. In addition, it is possible to specify a list of symbols

whose assignments must correspond to a diverging sequence; this enables

us to use F3 to identify non-Zeno fair paths in timed systems.

10.1.1 Architecture

F3 consists of about 10000 lines of Python code and 1500 lines of C++

code. F3 uses MathSAT5 [59] and Z3 [76] as underlying SMT engines,

interacting with them through pysmt [89]. pysmt provides all the basic

functionalities to represent formulae, symbols with their types and sup-

ports various operations over the formulae. The C++ code, instead, has

been taken from [73] and implements the tableau construction necessary

to support LTL specifications.

F3 is divided into several modules; in the following we describe the main

components and highlight some relevant implementation details.

• Multisolver wraps the solver interface of pysmt and, in particular, the

SMT-solve method. SMT-solvers sometimes take a very long time

on a single query, for this reason the module associates a timeout

to each call. The module has a sequence of solvers, it submits each

query to each solver in order until one succeeds in providing an answer

within the given time. If no solver is able to provide such answer, F3

assumes unknown as result and continues. This procedure could be

optimised by submitting the query to different solvers in parallel, for

simplicity of implementation we do not exploit parallelism and only

one solver is called at a time.

• Runner is the entry module. It parses the command line arguments

and retrieves the inputs for F3. Each input is a Python source file
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implementing specific methods that return the transition system, di-

verging symbols, set of E -comps and a fairness condition or LTL

specification. The runner employs reflection to identify which meth-

ods are implemented by each input. It relies on the LTL and diverging

encoder modules to reduce each input problem to finding a fair path

of a transition system.

• LTL implements the tableau construction for LTL specifications and

also the structure used to represent LTL formulae. The implementa-

tion of this module is an adaptation of the one in the artefact of [73].

• Diverging encoder implements the product construction described in [57]

to remove all Zeno-paths of the model.

• BMC implements the Bounded Model Checking algorithm to identify

candidate fair loops of the transition system.

• Implicant implements three procedures to compute model-based im-

plicants of a formula. Given a formula and an assignment satisfying it,

they compute another formula satisfied by the given assignment and

that implies the input formula. The first procedure, returns a sub-

set of the predicates appearing in the formula, satisfied by the given

assignment, whose conjunction implies the formula. It relies only on

Boolean reasoning and all theory predicates are abstracted as Boolean

atoms. The second procedure computes the implicant by computing

the unsat-cores of the negation of the formula in conjunction with

the truth assignment of the predicates in the formula given by the

satisfying assignment. This approach also considers the theories of

the atoms and asks the SMT-solver to compute the unsat-cores until

a fixpoint is reached. The last procedure relies on the interpolants

computed by SMT-solvers instead of the unsat-cores. By default, F3

first computes an implicant using the Boolean reasoning of the first
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approach, then the second approach is used to remove other redundant

predicates based on theory reasoning.

• EF-solver and Motkin. F3 solves the parameter synthesis problem

described in Sec. 7.2 via a combination of the EF-SMT procedure

of [80] and the application of Motzkin’s transposition theorem [139].

By default, F3 first tries to apply EF-SMT and resorts to the elim-

ination of universal quantifiers only if this fails to provide a definite

answer. Motzkin’s transposition transforms the synthesis problem into

a purely existentially-quantified one which can be solved via standard

quantifier-free SMT reasoning. However, it requires the predicates to

be affine, hence F3 replaces non-linear terms with fresh symbols, in

order to obtain an affine system. This simple way of handling non-

linearities has the benefit of being very easy to implement; however, it

can produce coarse approximations, which can prevent F3 from find-

ing counterexamples in cases where non-linearities play a significant

role. A possible approach to handle non-linearities in a more precise

manner is described in [10].

• Hint module provides the data structure used to represent E -comps.

• Funnel and Floop modules implement the representation and opera-

tions of funnels and funnel-loops. The Floop module also defines the

methods that generate the funnel-loop templates given the candidate

loop. By default, F3 considers a minimum of 0 and a maximum of 2

inequalities in the implementation of heuristic-pick-num-ineqs of

Alg. 3. It considers only simple ranking functions corresponding to the

PR-ranking template described in [133], i.e. simple affine linear func-

tions. In addition, we only synthesise predicates in the form of affine

linear equalities or inequalities; the implementation of the function

new-parametric-expr in F3 generates affine linear expressions.
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F3 implements two template generators that differ in how they choose

when to create a ranking function for a funnel (line 11 of Alg. 3). One

generator matches the candidate loop sequence of regions and transi-

tion with a regular expression. The other generator simply looks for

a pair of abstract states that agree on the assignment to the Boolean

symbols of the transition system. If the generator decides not to in-

troduce a ranking function for a funnel, its rf is simply set to the

constant 0. This avoids the introduction of unnecessary parameters

for funnels that do not need an explicit ranking function.

10.2 nuXmv

nuXmv is a well-known symbolic model checker. It is the successor of

the open-source NuSMV and supports model checking of invariants and

LTL specification on infinite-state transition systems specified in the SMV

language. We extended nuXmv with a new software module implementing

the reduction techniques described in Chapter 4. This extension has been

released as version 2 of the model checker. nuXmv2 supports verification

of MTL0,∞ and LTL-EF on models with dense or super-dense time model.

In addition, it supports model simulation and also load and re-execution

of traces. These functionalities ease the inspection of the model to ensure

it correctly represents the system.

In the following we detail the architecture of nuXmv2, extending the

one of nuXmv for the verification of timed systems.

10.2.1 Architecture

Fig. 10.1 depicts the high level architecture of nuXmv extended with the

new module to handle timed transition systems (nuXmv2). The new ver-

sion of nuXmv preserves full backward compatibility, apart from some
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nuXmv
Finite State

SBMC AIGER

ITP IC3

L2S

Infinite State

SBMC K-IND IA IC3-IA

L2S CEGAR ITP

Lasso Traces

Timed

SBMC MTL L2S

TTS2ITS IC3 IA

Diverging Clock Traces

Common

Symbol Table Type Checker Flattener User Interface Utilities

Boolean Engines

CUDD MiniSAT + ITP

SMT Engines

MathSAT5 MSATIC3

Figure 10.1: The high level architecture of nuXmv.

new reserved keywords, with respect to its previous versions [47]. Indeed,

it shares with the previous version all the basic support functionalities,

such as the symbol table, the flattening of the design, the Boolean encod-

ing of scalar variables and the representation of the finite-state machines

at the different abstraction levels (e.g. scalar, BDD). This implies that it

supports all the basic model checking algorithms for finite domains using

both BDDs (via CUDD [153]) and SAT (e.g. via MiniSAT [81]). For

infinite domains it supports various SMT-based model checking proce-

dures. These procedures are implemented via a tight integration with the

MathSAT5 solver [59], some examples are SBMC [132], IC3 [40, 103, 160],

k-liveness [62] and liveness-to-safety [151].

In the following we detail how nuXmv2 extends its previous version

described in [47] to support the specification and model checking of in-

variant, LTL and MTL0,∞ properties for timed transitions systems, and

for the validity checking of properties over dense and super-dense time

semantics.
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1 @TIMEDOMAIN continuous −− annotat ion to s p e c i f y the time semantics , in t h i s case dense time .

2

3 MODULE main

4 FROZENVAR

5 p : real ; −− parameter .

6 VAR

7 i : real ; −− input o f the sensor .

8 s : Sensor ( i ) ;

9 m: Monitor ( s . o , p ) ;

10

11 INIT p > 0 ; −− parameter must be p o s i t i v e .

12

13 LTLSPEC G ( s . f a u l t −> F [ 0 , p ] m. alarm ) −− any f a u l t i s detected in p timed un i t s .

14

15 MODULE Sensor ( i )

16 VAR

17 o : real ;

18 f a u l t : boolean ;

19

20 TRANS ! f a u l t −> next ( o ) = i −− i f not fau l ty , the sensor prov ides in output d i r e c t l y the input .

21 TRANS f a u l t −> next ( o ) = o −− i f f au l ty , the sensor output i s stuck at the l a s t value .

22 TRANS f a u l t −> next ( f a u l t ) −− the f a u l t i s permanent .

23

24 MODULE Monitor ( i , p )

25 VAR

26 pr ev i ou s va lue : real ;

27 c : clock ;

28 alarm : boolean ;

29

30 INIT c = 0 & prev i ou s va lue = i & ! alarm ;

31 INVAR TRUE −> c <= p ;

32 TRANS ( c = p & next ( c ) = 0 & next ( p r ev i ou s va lue ) = i ) | −− monitor reads the sensor every p time un i t s .

33 ( c <= p & next ( c ) = c & next ( p r ev i ou s va lue ) = prev i ou s va lue ) ;

34 −− alarm ra i s ed when the same value read twice con s e cu t i v e l y .

35 TRANS next ( alarm ) <−> ( alarm | i = pr ev i ou s va lue ) ;

Figure 10.2: A simple nuXmv2 model.

• The parser has been extended and now the user can choose the time

semantics to use for the read model. Depending on the time model

some parse constructs and checks are enabled and/or disabled. For

instance, variables of type clock are allowed only if the time seman-

tics is not “discrete”. By default, the system uses the discrete time

semantics of the original nuXmv. Notice also that, depending on

the specified semantics, the commands available to the user change to

allow only the analyses supported for the chosen semantics.

• The parser now supports the specification of timed transition sys-

tems, via the definition of clock variables, the specification of urgent

transitions and location invariants. In addition, it allows for the spec-

ification of MTL0,∞ properties and the LTL bounded operators now
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can also contain complex expressions over clock variables. Fig. 10.2 re-

ports a simple example showing some of the new language constructs.

• The symbol table now supports variables of type clock and we ex-

tended the type checker to properly handle the newly defined vari-

ables, expression types and language constructs.

• A new TTS2ITS module encodes the model checking problems on

timed transition systems (TTS) into equivalent model checking prob-

lems on infinite-state transition systems with discrete time model

(ITS). These problems can then be addressed using the existing algo-

rithms of nuXmv. The module performs the translation of the model

as in [60] and the specifications are discretized as described in Sec. 4.3.

• The trace representation of nuXmv has been extended to support

timed traces where some clock variables may diverge.

• We modified the encoding for the loops in the bounded model checking

algorithms to take into account that traces may contain diverging vari-

ables to allow for the verification and validation of LTL and MTL0,∞

properties. This corresponds to a BMC encoding of the composition of

an E -comp with diverging symbols, defined in Sec. 8.2, and one whose

variables perform a lasso, hence the assignments to the variables keep

repeating in the same order.
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Experimental Evaluation

This chapter reports the experimental evaluation of the approaches de-

scribed in this thesis.

Sec. 11.1 describes the benchmarks we considered in the experiments.

The state-of-the-art tools used to compare the effectiveness of our ap-

proaches are presented in Sec. 11.2. The same section also details to which

benchmarks they have been applied based on the modelling and specifi-

cation languages they support. We then organise the results we obtained

along two directions. First, Sec. 11.3 discusses the results relative to the

evaluation of the reduction-based approach for the verification of TTS that

we detailed in Chapter 4. Then, in Sec. 11.4 we evaluate the falsification

procedure described in Sec 7.2.

11.1 Benchmarks

The benchmarks are organised in 6 different categories based on their con-

text of origin: LS, NS, ITS, TA, TTS and HS1.

LS consists of 52 nonterminating linear software benchmarks taken from

the C programs of the software termination competition [95]. We con-

sidered programs from the C and C Integer categories of the compe-
1all benchmarks can be downloaded from https://github.com/enmag/F3
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tition that can be easily encoded as transition systems with Boolean,

integer and real state variables. Therefore, we did not consider pro-

grams involving recursion or dynamic memory allocation.

NS contains 30 nonlinear software programs. 29 of them have been taken

from [66]. We defined the remaining one such that it includes a vari-

able to the power of 3 and a division by a constant. These are two

elements not present in any of the other 29 benchmarks.

ITS encompasses 70 LTL falsification problems on infinite-state transi-

tion systems. 2 of these problems are proof obligations generated

in the verification of a contract-based design, 29 come from scaling

up to 30 processes a model of the bakery mutual exclusion protocol,

other 29 instances are the scaling up to 30 process of a semaphore-

based synchronisation protocol. The last 10 are instances we created

and describe small systems that involve nondeterministic unbounded

counters. We defined these models to test the capability of tools to

deal with nondeterminism and identify infinite executions where the

repeating pattern has non-constant length.

TA contains 174 timed automata. The models describe 6 different pro-

tocols, each of which has been scaled from 1 to 30 processes. The

protocols are the critical, csma, fddi, fischer, lynch and train proto-

cols from [84]. For every protocol we defined one true and one false

property for each of the following specification languages: invariant,

LTL and MTL0,∞.

TTS consists of 120 LTL falsification problems on timed transition sys-

tems. 116 of them come from the scaling from 1 to 30 processes of

4 protocols (inspired by the csma, fischer, lynch and token ring pro-

tocols), and 4 are handcrafted instances. We now describe how we

modified the 4 protocols and remark that the resulting systems can-
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not be modelled as timed automata.

• The extended csma protocol introduces an adaptive backoff time

for each process that increases every time a station encounters a

collision and decreases each time it successfully communicates the

whole message.

• We extended the fischer and lynch protocols by allowing each

process to propose a wait time. Each process, before entering

the critical section, must wait for at least the maximum of the

proposed values.

• In the model of the token ring protocol we added a stopwatch that

keeps track of the total amount of time spent while transmitting.

In these models the LTL specification requires to verify whether

the total transmission time is bounded by 10 subject to a fairness

assumption on the token manager of the protocol.

These extensions require the comparison between a clock and an infinite-

state variable, hence cannot be represented as TA. In fact, TA do not

allow for infinite-state variables and clocks can be compared only with

constants. Finally, we created the 4 remaining instances as follows.

The first TTS is an abstracted version of the extended csma protocol.

The system describes a single station and communication bus, while

all other components have been abstracted as a non-deterministic en-

vironment. The second system is a sender-receiver protocol with ac-

knowledgement of the messages based on a unique message identifier.

The third model represents a modified stopwatch where the clock vari-

able has a nonlinear reset. Finally, the last TTS describes a clock

variable that is never reset and a nondeterministic state variable that

must always be greater than the clock.

HS are 9 LTL falsification problems on hybrid systems. 5 of them have
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been taken from the ARCH competition [86] and represent an adaptive

cruise control system, a controller for the track permission of a train,

a model of the flow of a liquid through some tanks and pipes and

2 different properties on a system describing the synchronisation of

machines communicating via a ethernet network. The remaining 4

HS models describe a bouncing ball and they differ in the behaviour

of the bounce. These models are meant to test the capability of the

tools to handle the dynamic system described by the law of motion of

the ball and a single discrete step used to represent the bounce.

11.2 Reference Tools

The state-of-the-art tools we use as reference for the evaluation of nuXmv

and F3 are: Anant [66], AProVe [94], ATMOC [124, 125], CTAV [136,

135], DiVinE3 [104], iRankFinder [79], LTSmin [119], T2 [43], Ulti-

mate [105] and Uppaal [75]. Unfortunately we could not obtain the

software described in [28] to solve E-CHC problems.

We selected AProVe, iRankFinder and Ultimate because they are

the tools that achieved the best results in the C and C Integer categories

of the termination competition 20212. We considered Anant because it

implements techniques specialised to deal with nonlinear programs and we

took most of the NS benchmarks from the work that describes them [66].

Finally, for software programs we considered also T2 which is a widely

known tool for software analysis.

For the analysis of TA we selected a collection of tools we believe is

representative of the techniques available in the state-of-the-art. Uppaal

is a widely known model checker for timed automata and is used as a refer-

ence implementation by many works in this field. LTSmin at its core is a

2the results are available at https://termcomp.github.io/Y2021/
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toolset for the manipulation of labelled transition systems. The toolset has

many extensions that address different verification problems by relying on

its Partitioned Next-State Interface (PINS). In this work we are interested

in its opaal front-end that supports LTL verification on timed automata.

We considered also version 3 of DiVinE as an additional tool supporting

LTL verification on timed automata via region and zone abstraction. Un-

fortunately, the tool does not support the analysis of timed automata since

version 4. CTAV is yet another tool that relies on simulating abstractions

for timed automata, but supports also MTL specifications. To the best

of our knowledge, CTAV is the only other tool capable of proving MTL

properties on timed automata. Finally, ATMOC employs symbolic tech-

niques closer to the ones we implemented in nuXmv and it is also capable

of falsifying MTL specifications. The similarity of the approaches enables

us to better understand the cost of the additional expressive power of our

approach.

In the case of nuXmv we consider two different algorithms. Both al-

gorithms were already available in the tool and, thanks to the reduction

presented in Chapter 4, can now be applied to MTL verification problems

on TTS. In addition, we enhanced their capability to identify counterex-

amples to temporal properties on timed systems (TA, TTS, HS) via the

approach described in Sec. 8.2. Notice that this implies that in the LS,

NS and ITS cases nuXmv can identify only lasso shaped counterexam-

ples. We will refer to the first algorithm as nuXmv-IC3. This procedure

is based on IC3 [40] and has been presented in [57] and [73]. nuXmv-

IC3 is capable of both verifying and falsifying a specification. The second

algorithm is based on bounded model checking [31] and will refer to it as

nuXmv-BMC. nuXmv-BMC cannot conclude that a property holds, but

only identify counterexamples.

Most of the tools we considered in our experiments are not able to handle
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all the benchmarks. Therefore, we limit their application as described in

the following and summarised in Table 11.1.

• We ran Anant, AProVe, iRankFinder and T2 only on the soft-

ware nontermination problems (LS and NS groups).

• We ran ATMOC, CTAV, DiVinE3, LTSmin and Uppaal only on

the timed automata (TA) benchmarks. CTAV, DiVinE3, LTSmin

and Uppaal do not support MTL specifications, hence we considered

them only for the invariant and LTL properties. LTSmin does not

support clocks in the specifications, hence we could not use it to verify

the true invariant property on the csma models. In addition, Uppaal

supports only a fragment of LTL. In particular, it is not sufficient to

express the false LTL properties of the fischer and lynch benchmarks

and it supports the true LTL properties only of the csma benchmarks.

For this reason, we could run it only on 29 [resp. 116] of the 174 TA

instances for the true [resp. false] LTL specifications. Finally, AT-

MOC supports invariant, LTL and MTL specifications. However, it

is capable of verifying only invariant properties, while in the LTL and

MTL cases it supports only falsification via a BMC-based algorithm.

Therefore, we run it on all the invariant verification and falsification

problems and only on the false LTL and MTL specifications.

• Ultimate does not support nonlinear arithmetic, hence we could

not run it on the NS family. In addition, since it supports LTL

specifications but works on programs rather than transition systems,

we translated the ITS benchmarks to LTL verification problems on

software programs, using the same approach described in [73].

• We have not implemented the support for MTL0,∞ specifications in

F3 and it is only capable of falsifying properties. For this reason, we

run it only on the LTL falsification problems.

244



CHAPTER 11. EXPERIMENTAL EVALUATION

• nuXmv is the only tool applicable to all the benchmarks. We exe-

cuted nuXmv-IC3 on all benchmarks and nuXmv-BMC only on the

falsification problems.
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LS Term False 52 3 3 7 7 7 3 3 7 3 3 3 3 7

NS Term False 30 3 3 7 7 7 3 3 7 3 3 3 7 7

ITS LTL False 70 7 7 7 7 7 3 7 7 3 3 7 3 7

TA INV False 174 7 7 3 3 3 7 7 3 3 3 7 7 3

TA INV True 174 7 7 3 3 3 7 7 31 3 7 7 7 3

TA LTL False 174 7 7 3 3 3 3 7 3 3 3 7 7 32

TA LTL True 174 7 7 7 3 3 7 7 3 3 7 7 7 33

TA MTL False 174 7 7 3 3 7 7 7 7 3 3 7 7 7

TA MTL True 174 7 7 7 3 7 7 7 7 3 7 7 7 7

TTS LTL False 120 7 7 7 7 7 3 7 7 3 3 7 7 7

HS LTL False 9 7 7 7 7 7 3 7 7 3 3 7 7 7
1. LTSmin does not handle the invariant specification of the csma protocol.

2. Uppaal supports only the false LTL specifications of the fischer and lynch protocols.

3. Uppaal supports only the true LTL specification of the csma protocol.

Table 11.1: Applicability of tools to the different verification tasks.

Experimental setup. We executed each tool on a single benchmark at a

time. Each test has been executed on a machine running Ubuntu 20.04

equipped with an Intel(R) Xeon(R) Gold 6226R 2.90 GHz CPU. We run

each experiment using a 1 hour limit on its CPU time and a maximum

resident set size of 30 GB.

Interpretation of the results. We summarise the results in survival plots.

For each tool t, the plots show a point 〈x, y〉 iff t required x seconds to

solve its y simplest instances, i.e. the y instances for which t required

less time. In addition, we do not distinguish between nuXmv-IC3 and
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nuXmv-BMC in the computation of the number of instances that have

been solved by only one tool. We do this because the 2 algorithms employ

the same procedure to identify counterexamples and we are interested in

evaluating the effectiveness of this technique and not its integration in the

algorithms.

11.3 Model Checking Timed Systems

In this section we evaluate the effectiveness of our reductions from MTL0,∞

and LTL model checking on timed systems to the verification of LTL

specifications on infinite-state transition systems.

We consider verification of invariants, LTL and MTL0,∞ specifications

on timed automata. The invariant verification problems are useful to eval-

uate the effectiveness of the reduction without the additional complexity

of the temporal and metric operators of LTL and MTL0,∞. Then, we

consider a set of LTL verification problems to assess the cost associated

with the temporal (non-metric) operators and, finally, the MTL0,∞ model

checking problems allow the evaluation of the effectiveness of the complete

reduction.

The instances in which the temporal properties do not hold are useful

to evaluate the effectiveness of the technique we described in Sec. 8.2 to

identify diverging clocks that has been implemented in the nuXmv algo-

rithms.

In all cases we compare against state-of-the-art tools in the context of

timed automata, hence tools that rely on decision procedures based on

region and/or zone abstraction. Our approach supports a more expressive,

but undecidable, modelling language and does not rely on such specialised

techniques. From this perspective the comparison on invariant and LTL

specifications has the objective of understanding the cost of the additional
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expressive power in the common fragment.

11.3.1 Results

Table 11.2 reports the number of instances solved for each category by

each tool. In addition, in the subscript we report the number of instances

uniquely solved by each tool, if any. We highlight that in 3 cases the
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INV True 174 – 14438 – 956 44 43 331 821

INV False 174 142 137 – 74 137 42 88 99

LTL True 174 – 3919 – – 14 48 6116 62

LTL False 174 156 90 140 151 148 71 163 1163

MTL True 174 – 5745 – – 131 – – –

MTL False 174 147 121 – 148 15226 – – –
Entries marked with “–” denote that the tool cannot handle the given benchmarks.

1. LTSmin supports only 145 true invariant specifications.

2. Uppaal supports only 29 true LTL specifications.

3. Uppaal supports only 116 false LTL specifications.

Table 11.2: Number of solved verification problems on TA.

procedures implemented in nuXmv solved the highest number of instances

among all the tools, and also in the other cases it seems to be competitive.

The class in which nuXmv seems to be less competitive is the one requiring

to prove LTL specifications where it solved 39 instances, while the best

result, achieved by LTSmin, is 61. However, nuXmv-IC3 solved 19 unique

instances and LTSmin 16. This indicates a high degree of complementarity

between the two tools. In the case of the LTL falsification benchmarks,

nuXmv-BMC is the second best tool after LTSmin. In this case nuXmv-

BMC solved 156 instances and LTSmin 163, with ATMOC and CTAV

closely matching this result with 151 and 148 instances solved respectively.

247



11.3. MODEL CHECKING TIMED SYSTEMS

The other setting in which nuXmv does not achieve the best result is the

falsification of MTL specifications. In this case nuXmv-BMC solves 147

instances, only 5 less than CTAV and 1 less than ATMOC.

We now inspect one class at a time and for each of them we report the

survival plot summarising the results.

Invariant specifications

Fig. 11.1 reports the number of invariant specifications verified by each

tool in the given amount of time. It can be observed that the two fully

symbolic techniques, ATMOC and nuXmv-IC3, follow similar trends,

with the algorithm of nuXmv being faster. Uppaal seems to be more

effective than nuXmv-IC3 in solving from 20 to 60 instances (the distance

between the two lines decreases) and they appear to solve the 60 simplest

instances in roughly the same amount of time.
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Figure 11.1: Survival plot, verification of true invariants on TA.
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However, the performance of Uppaal quickly degrades after that, while

nuXmv-IC3 manages to solve many more instances and it appears to be

relatively close to the virtual best after 110 problems. In addition, nuXmv

proved 38 properties that all other tools failed to verify.

Fig. 11.2 shows the results we obtained in the falsification of invariant

properties on the 174 timed automata. In the survival plot, nuXmv ap-

pears to be the fastest; its BMC algorithm is the quickest in solving up to

about 110 instances and also solves the highest number overall. CTAV is

faster than nuXmv-BMC in solving the last few problems, from 110 to

137. However, our approach solves 5 more instances. All the other tools

stop before solving 100 instances. Uppaal solves a total of 99 instances

and it is faster than CTAV until they solve 80 problems. After that, as in

the previous case, the performance of Uppaal quickly degrades.
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Figure 11.2: Survival plot, verification of false invariants on TA.

249



11.3. MODEL CHECKING TIMED SYSTEMS

LTL specifications

The results we obtained in the verification of 174 true LTL specifications

are reported in the survival plot of Fig. 11.3. The plot confirms our initial

observation that nuXmv is not very effective in this setting. In this context

both LTSmin and DiVinE3 appear to be capable of solving more instances

and in less time. We remark that Uppaal has limited support for LTL

specifications, hence we could run it only on 29 of the 174 instances. In

this case nuXmv-IC3 was able to prove 19 properties that no other tool

managed to verify, while LTSmin solved 16 unique instances.
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Figure 11.3: Survival plot, verification of true LTL on TA.

Fig. 11.4 shows the survival plot summarising the results obtained in

the falsification of LTL specifications on timed automata. nuXmv-BMC

appears to be the fastest up to about 100 instances, where its execution

time starts to increase more steeply. Our approach is then overtook by

Uppaal, CTAV and LTSmin in this order. However, it manages to solve
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a higher number of instances than the first two tools, while LTSmin solves

7 additional problems.

nuXmv-BMC and ATMOC show similar results. They solve a compa-

rable number of instances, 156 and 151 respectively, and ATMOC appears

to catch up to the execution time of nuXmv near the end. Both of them

employ a fully symbolic technique based on BMC. However, while AT-

MOC employs an ad-hoc encoding that exploits the region abstraction

for timed automata, both nuXmv-IC3 and nuXmv-BMC rely on a more

generic encoding suitable also to timed transition systems. This might be

the source of the advantage that ATMOC appears to have on the harder

instances.
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Figure 11.4: Survival plot, verification of false LTL on TA.

MTL specifications

Fig. 11.5 reports the results obtained in the verification of MTL specifi-

cations. The only two tools capable of handling such instances are CTAV
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and nuXmv-IC3. CTAV appears to be very quick in solving the sim-

plest instances. However, it is capable of solving only 13 in the allocated

time, while nuXmv-IC3 solves 57. CTAV solved a single problem that

nuXmv-IC3 failed to verify and nuXmv solved 45 unique instances. If

we consider that there are 174 total instances, it is immediately apparent

that the results are still not ideal. The two tools together managed to solve

only one third (58) of the 174 problems. This could be a symptom of the

inherent difficulty of verifying an expressive language such as MTL.
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Figure 11.5: Survival plot, verification of true MTL on TA.

Finally, Fig. 11.6 considers the false MTL specifications. CTAV identi-

fied the highest number of counterexamples, followed by ATMOC. nuXmv-

BMC solves only 1 instance less than ATMOC and appears to be partic-

ularly fast. It is interesting to observe the number of instances solved by

nuXmv-IC3 in the true and false MTL cases. In the previous case the

procedure managed to prove 57 MTL specifications, while in the falsifica-
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tion case it solved 121 instances. Similarly, CTAV previously solved only

13 cases, while it was capable of falsifying 152 specifications. This seems

to highlight that, for current model checking approaches, the verification

of MTL specifications is much harder than the corresponding falsification

problem.
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Figure 11.6: Survival plot, verification of false MTL on TA.

Concluding remarks

There is no clear winner on the 1044 model checking problems on timed

automata. In the falsification instances nuXmv-BMC is the approach

that identified the highest number of counterexamples in the invariant case,

while also in the LTL and MTL cases it solved a competitive number of

instances, respectively 7 and 5 instances less than the maximum.

Due to the similarities in their approach it is relevant to observe the

difference in performance between nuXmv-BMC and ATMOC on the

LTL and MTL falsification instances. They are the only fully symbolic
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tools and both implement a BMC-based algorithm. However, ATMOC

implements an ad-hoc BMC encoding for timed automata that exploits

the region abstraction, while nuXmv-BMC employs a more general ap-

proach applicable to TTS. Our approach appears to be generally faster

with ATMOC gaining on the hardest instances and identifying a few more

counterexamples.

Consider now the true properties. In this case the results vary signifi-

cantly depending on the specification language we consider. nuXmv-IC3

appears effective on invariant and MTL specifications. In both cases it

solved the highest number of instances and it proved to be very compet-

itive also in terms of the time required to solve them. However, it seems

to struggle on the verification of LTL properties, where it is outperformed

by both LTSmin and DiVinE3. In the case of invariant specifications,

nuXmv does not incur in the additional complexity introduced by the

reduction we presented in this work (Chapter 4). The generality of the

rewriting comes into play when we consider temporal properties. This

causes nuXmv-IC3 to explore a large space in order to prove such prop-

erties. It is relevant to notice that the only other tool that supports the

verification of MTL properties (i.e. CTAV) also performed poorly in

the verification of LTL specification. In both LTL and MTL verification

benchmarks nuXmv-IC3 solved more instances in less time than CTAV.

These results prove the effectiveness of our approach, both in terms of

the number of instances it solved and the time it required to do that. Our

approach supports the model checking of invariant, LTL and MTL specifi-

cations on TTS. However, there is a lack of tools supporting this modelling

formalism and, in our experiments, we considered benchmarks in the from

of TA. Even in this restricted case, nuXmv and CTAV are the only tools

capable of supporting the model checking of three types of specifications

we considered. By considering TA, we compared nuXmv against tools
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that are tailored to this verification scenario. Our approach still appears

to be reasonably competitive in all settings. nuXmv is one of the fastest

tools in all contexts apart from the verification of LTL specification. In

addition, it showed to be the tool capable of solving the highest number of

instances in 3 of the 6 settings we considered (verification and falsification

of invariant specifications and verification of MTL properties).

11.4 Falsification

In this section we evaluate the effectiveness of the LTL falsification proce-

dure implemented in F3. We consider a wide range of benchmarks: linear

and nonlinear software programs, infinite-state transition systems, timed

automata and hybrid systems. The objective of this evaluation is to assess

the performance of the procedure across these contexts.

It is relevant to notice that many of the state-of-the-art tools are also

capable of proving that a specification holds, while F3 can only identify

counterexamples. In addition, tools for software analysis are often capable

of analysing programs with recursive procedures and dynamic memory al-

location. These features are specific to software programs and cannot be

found in the other contexts, such as ITS, TA and HS. For this reason, we do

not consider them in our evaluation and describe each software program via

a corresponding infinite-state transition system using an explicit program

counter pc. The (non)termination of the original program can be deter-

mined by verifying the LTL property Fpc = end on the transition system,

where end is the value assigned to the program counter upon completion

of the procedure. Any counterexample for such property corresponds to a

nonterminating execution for the program.
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11.4.1 Results

Table 11.3 summarises the number of instances solved by each tool in the

different contexts. In addition, in the subscript we report the number of

instances uniquely solved by each tool, if any. F3 identified the highest

number of counterexamples in 5 of the 6 contexts and it is the tool that

solved the highest number of instances overall. In the table it is also

possible to notice that F3 solved a significant number of instances that no

other tool managed to address successfully.
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LS 52 52 38 43 – – – 39 – 28 28 38 49 –

NS 30 302 26 5 – – – 6 – 14 14 2 – –

ITS 70 6557 – – – – – – – 4 4 – 8 –

TA 174 140 – – 151 148 71 – 164 155 89 – – 1161

TTS 120 7472 – – – – – – – 2927 10 – – –

HS 9 33 – – – – – – – 0 0 – – –

Total 455 364 64 48 151 148 71 45 164 230 145 40 56 116
Entries marked with “–” denote that the tool cannot handle the given benchmarks.

1. Uppaal supports only 116 false LTL specifications.

Table 11.3: Number of falsified LTL specifications per benchmark family.

Linear software

Fig. 11.7 summarises, in a survival plot, the results we obtained on the

linear software benchmarks. The figure shows that both algorithms of

nuXmv quickly identify the cases in which there is a lasso-shaped non-

terminating execution. However, they fail to solve the instances where no

such execution exists. F3 is the only tool that solved all 52 instances and

it is also the fourth fastest in solving up to 22 benchmarks and third fastest
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afterwards. However, we have no way of measuring the time spent by the

other tools in trying to prove termination. Therefore, we cannot draw any

definite conclusion by comparing their execution times.
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Figure 11.7: Survival plot, linear software nontermination.

Nonlinear software

Fig. 11.8 reports the results on the nonlinear software instances. Notice

that all but one of the nonlinear software benchmarks come from the paper

that first introduced Anant [66]. We remark that Anant, AProVe,

iRankFinder, nuXmv-IC3 and T2 are all capable of both proving and

disproving termination, while F3 and nuXmv-BMC can only conclude

nontermination. As in the previous case, nuXmv-BMC quickly identified

all nonterminating instances for which there exists a lasso-shaped witness.

However, it managed to identify such a counterexample in only 14 of the

30 model checking problems. Anant and F3 show similar performance in

solving their first 15 instances. After that up to the 20th instance Anant
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appears faster, but it takes a lot of time in solving its 21th instance and it

is overtook by F3. F3 is the only tool that solved all of the instances and

is the only tool that managed to solve 2 of them.
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Figure 11.8: Survival plot, nonlinear software nontermination.

Infinite-state transition systems

Consider now the 70 LTL falsification problems on ITS. The results we

obtained in this context are reported in Fig. 11.9. Also in this case, F3

solved the highest number of instances, while nuXmv-BMC identified

only 4 counterexamples and Ultimate, considering both its LTL and

termination configurations, solved only 8 instances.
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Figure 11.9: Survival plot, false LTL on ITS.

Timed automata

The results on the falsification of LTL specifications on TA are reported

in Fig. 11.4. We already analysed such figure from the perspective of the

approach we implemented in nuXmv-BMC. Now, instead, we consider

the performance of F3 with respect to the other tools. The plot highlights

that F3 is among the slowest tools in this context. This does not come as

a surprise since most of the other tools have been specifically developed to

analyse TA, while F3 implements a much more general technique. How-

ever, F3 solved a number of instances comparable to the other tools. It

solved 140 problems outperforming DiVinE3, which solved 71, and getting

relatively close to the highest value of 163, achieved by LTSmin.
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Timed transition systems

Fig. 11.10 summarises the results we obtained on TTS. There is a limited

number of tools that support verification of these models. The only two

approaches that provided counterexamples for the properties we considered

in our experiments are the ones we introduced in this thesis. Both managed

to identify several counterexamples, but F3 appears to be both faster and

capable of solving more instances. Notice that the virtual best solver solved

101 instances, while F3 stopped at 74 and nuXmv at 29. This indicates

a high degree of complementarity. In fact, there are only 2 instances that

have been solved by both techniques. The counterexample representation

of F3 is strictly more expressive than the one used in nuXmv, nuXmv-

BMC looks for counterexamples with a specific shape. This allows it to be

much faster in exploring the space, while F3 requires more time to analyse

and refute the candidates.
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Figure 11.10: Survival plot, false LTL on TTS.
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Hybrid system

We considered 9 LTL falsification problems on hybrid systems. Among all

the models we considered these are the most difficult ones; they combine

both nonlinear dynamics with timing constraints. F3 is the only tool that

managed to solve at least one instance, and it solved only 3 in total. Up

to now, in all our experiments we did not provide any hints to F3. In this

case, we employed this capability and provided F3 with some user-defined

hints in the form of E -comps. For each of the 6 unsolved instances we

were able to define a single E -comp responsible for at most 2 symbols that

allowed F3 to identify a counterexample. The definition of such hints was

done manually and required the inspection of the model to identify the

portion of the system that could be the hardest for F3 to automatically

analyse. In most cases, we defined a hint that specifies the amount of

time that needs to elapse at every transition. In our benchmarks, these

hints greatly reduced the number of candidate loops generated by F3 and

also effectively reduced the complexity of the formulae describing them by

allowing the simplification of the nonlinear terms.

Concluding remarks

F3 proved to be effective in all the contexts we considered. In our ex-

periments it solved a significant number of instances in every benchmark

category. In 5 of the 6 categories we considered, F3 is the tool that solved

the highest number of instances and, notably, it solved all instances in the

two software categories. However, it is not the fastest when competing

against ad-hoc techniques. F3 spends most of the time in the analysis of

candidate loops. Therefore, the order in which the space of these candi-

dates is explored greatly affects the overall execution time. Currently, the

exploration is based on a BMC unrolling of the transition relation, hence
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it favours shorter candidates and the space is explored in a breadth-first

manner. This implies that F3 is less effective when the counterexample is

deep and requires a long candidate. In this case F3 would have to analyse

and discard many candidates before finding the desired one.
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Chapter 12

Conclusions and Future Work

12.1 Conclusions

The complexity of systems developed by engineers has been steadily in-

creasing over the years. As the system complexity grows it becomes harder

to ensure its correct behaviour and the consistency of its design. Formal

methods provide a number of mathematically precise languages to model,

specify and reason about such systems. The development of the formal

representation of the system is not an easy task and usually requires an

iterative process involving successive refinements and inspections. Two as-

pects are of particular importance in tools that support this process. The

first one is the expressiveness of their modelling language and the second

is their capability of analysing and inspecting such models.

In this thesis, we first proposed a novel reduction-based approach to

support the verification of expressive specification languages on timed sys-

tems. Then, we defined a compact and expressive structure to represent

counterexamples. We employed this novel representation to develop a pro-

cedure applicable and effective in a wide range of contexts and also an

approach tailored to identify counterexamples in a more specific context

(timed transition systems). The experimental evaluation highlighted some

degree of complementarity between the two approaches. The generality of
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the first approach allows its application across different contexts and our

experimental evaluation showed it to be competitive even against tools im-

plementing context-specific algorithms. Although we were able to achieve

good performance using only general assumptions on the verification prob-

lems, exploiting the prior information about the context is essential to

achieve the best performance in the verification of a specific class of sys-

tems. Finally, our experimental evaluation demonstrates the relevance of

the two novel approaches. They were able to solve 235 verification prob-

lems that none of the other tools we considered managed to address within

the allocated resources.

12.2 Future work

This thesis opens several future research directions and further improve-

ments to be explored.

The reduction based approach for the verification of MTL specifications

defined in Chapter 4 is very general. The procedure can be tailored to

generate simpler encodings in recurring cases. This could allow nuXmv

to achieve better results in the verification of LTL specifications on timed

automata. From the expressiveness point of view, the reduction could

be extended to directly deal with the dynamical components described

in terms of constraints over the derivatives with respect to time. This

would enable the procedure to reason directly about the system of ordinary

differential equations (ODEs) instead of relying on the existence of an

explicit solution for the system.

The execution time of F3 is dominated by the analysis of the candi-

date loops it generates. Heuristics that allow the early pruning of such

candidates have a great impact on the time required to identify a coun-

terexample. The algorithm proposed in this thesis focuses on infinite be-
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haviours generated by arithmetic operations over the reals and the integers

and relies on a coarse abstraction of the nonlinear terms. The approach

proved to be effective in many cases. However, we believe that improving

the support for nonlinearities, for example by enabling the refinement of

such abstraction, could lead to better results in contexts, such as hybrid

systems, were they play a significant role. Furthermore, the approach could

be extended to consider also fair paths whose infinite behaviour depends

on other theories, for example strings, arrays and algebraic datatypes. In

addition, as we move away from lasso-shaped counterexamples we are also

loosing the capability of checking the correctness of the witness in poly-

nomial time. In fact, checking the correctness of a funnel-loop requires to

prove that all hypotheses of Th. 6 hold. Therefore, the procedures pro-

posed in this thesis could be further extended to produce not only the final

funnel-loop but also the proofs required to verify its correctness. Another

direction for future work is to expand the ideas we employed in the design

of F3 to tackle more general verification tasks defined as E-CHCs or some

fragment of them. This would enable their use to solve many different exis-

tential problems in the domain of formal verification. Finally, the approach

could be integrated with other techniques capable of proving a specification

(and not only identifying a counterexample) and also with techniques such

as the ones presented in [102] and [121, 67] to support the verification of

branching-time logics, such as CTL and CTL*, on infinite-state systems.
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ume 3. De Bure frères, 1828.

[47] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto

Griggio, Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco

Roveri, and Stefano Tonetta. The nuXmv symbolic model checker.

In CAV, volume 8559 of Lecture Notes in Computer Science, pages

334–342. Springer, 2014.

[48] Krishnendu Chatterjee, Ehsan Kafshdar Goharshady, Petr Novotný,
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[96] Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. Prov-

ing and disproving termination of higher-order functions. In Bern-

hard Gramlich, editor, Frontiers of Combining Systems, 5th Interna-

tional Workshop, FroCoS 2005, Vienna, Austria, September 19-21,

2005, Proceedings, volume 3717 of Lecture Notes in Computer Sci-

ence, pages 216–231. Springer, 2005.

284



BIBLIOGRAPHY

[97] Antoine Girard, Colas Le Guernic, and Oded Maler. Efficient compu-

tation of reachable sets of linear time-invariant systems with inputs.

In João P. Hespanha and Ashish Tiwari, editors, Hybrid Systems:

Computation and Control, 9th International Workshop, HSCC 2006,

Santa Barbara, CA, USA, March 29-31, 2006, Proceedings, volume

3927 of Lecture Notes in Computer Science, pages 257–271. Springer,

2006.

[98] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and An-

drey Rybalchenko. Synthesizing software verifiers from proof rules.

In Jan Vitek, Haibo Lin, and Frank Tip, editors, ACM SIGPLAN

Conference on Programming Language Design and Implementation,

PLDI ’12, Beijing, China - June 11 - 16, 2012, pages 405–416. ACM,

2012.

[99] Colas Le Guernic and Antoine Girard. Reachability analysis of hy-

brid systems using support functions. In Ahmed Bouajjani and Oded

Maler, editors, Computer Aided Verification, 21st International Con-

ference, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Pro-

ceedings, volume 5643 of Lecture Notes in Computer Science, pages

540–554. Springer, 2009.

[100] Ashutosh Gupta, Thomas A. Henzinger, Rupak Majumdar, An-

drey Rybalchenko, and Ru-Gang Xu. Proving non-termination. In

George C. Necula and Philip Wadler, editors, Proceedings of the 35th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2008, San Francisco, California, USA, January 7-

12, 2008, pages 147–158. ACM, 2008.

[101] Arie Gurfinkel and Nikolaj Bjørner. The science, art, and magic of

constrained horn clauses. In 21st International Symposium on Sym-

285



BIBLIOGRAPHY

bolic and Numeric Algorithms for Scientific Computing, SYNASC

2019, Timisoara, Romania, September 4-7, 2019, pages 6–10. IEEE,

2019.

[102] Zyad Hassan, Aaron R. Bradley, and Fabio Somenzi. Incremental,

inductive CTL model checking. In P. Madhusudan and Sanjit A. Se-

shia, editors, Computer Aided Verification - 24th International Con-

ference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings,

volume 7358 of Lecture Notes in Computer Science, pages 532–547.

Springer, 2012.

[103] Zyad Hassan, Aaron R. Bradley, and Fabio Somenzi. Better general-

ization in IC3. In FMCAD, pages 157–164. IEEE, 2013.
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Bounded model checking of an MITL fragment for timed automata.

In Josep Carmona, Mihai T. Lazarescu, and Marta Pietkiewicz-

Koutny, editors, 13th International Conference on Application of

Concurrency to System Design, ACSD 2013, Barcelona, Spain, 8-

10 July, 2013, pages 216–225. IEEE Computer Society, 2013.

[126] Soonho Kong, Sicun Gao, Wei Chen, and Edmund M. Clarke.

dReach: δ-reachability analysis for hybrid systems. In Baier and

Tinelli [16], pages 200–205.

[127] Ron Koymans. Specifying real-time properties with metric temporal

logic. Real Time Syst., 2(4):255–299, 1990.

[128] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-

theoretic approach to branching-time model checking. J. ACM,

47(2):312–360, 2000.

[129] Shuvendu K. Lahiri, Robert Nieuwenhuis, and Albert Oliveras. SMT

techniques for fast predicate abstraction. In Thomas Ball and

Robert B. Jones, editors, CAV, volume 4144 of LNCS, pages 424–

437. Springer, 2006.
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