
LTL falsification in infinite-state systems

Alessandro Cimatti, Alberto Griggio, Enrico Magnago

Fondazione Bruno Kessler, Trento, Italy

Abstract

In infinite-state systems not all false LTL properties admit lasso-shaped wit-

nesses. In this work, we propose an automatic approach that presents potentially

non-lasso witnesses in an indirect way. The approach is based on two key in-

sights. First, we define the notion of well-founded funnel to describe a source set

of states that inevitably reach a destination set. We show that, under suitable

conditions, a sequence of funnels ensures the existence of a fair path. Second,

we adopt a compositional approach to partition the original system into pro-

jections and employ them together with funnels to build the indirect witness.

Then, we propose an algorithm that identifies candidate funnels, proves their

well-foundedness, and searches for a sequencing order. We experimentally eval-

uate the approach on examples taken from software, timed and hybrid systems,

showing its wide applicability and expressiveness, with an implementation that

outperforms various competitor tools.

Keywords: First-Order Linear-Time Temporal Logic, SMT-based Model

Checking, Temporal Satisfiability, Infinite-State Transition Systems

1. Introduction

A well-known result in finite-state LTL model checking guarantees that the

verification problem is decidable and, in particular, if a system does not satisfy a

IThis is a pre-print version of the homonymous paper published in Information and Com-
putation [1]. It combines and extends the works presented in [2] and [3].

Email addresses: cimatti@fbk.eu (Alessandro Cimatti), griggio@fbk.eu (Alberto
Griggio), magnago@fbk.eu (Enrico Magnago)

Preprint submitted to Information and Computation October 30, 2022

property there exists a witness in the form of a lasso-shaped fair path [4]. Model

checking of LTL properties in infinite-state systems (e.g. software programs,5

infinite-state transition systems, timed transition systems and hybrid systems)

is an undecidable problem and there could be no lasso-shaped witness for the

violation of some property.

A well-known instance of this problem is software (non)termination. In

this context closed recurrence sets [5] are used to represent a witness for the10

nontermination of some software program. A closed recurrence set consists of

a reachable set of states that is disjoint from the end states and inductive with

respect to a left-total transition relation that underapproximates the transition

relation of the program. The set represents at least one infinite execution for the

program: (i) its reachability ensures that there is some finite execution of the15

program ending in some state within the set; (ii) since the set is also inductive,

we know that no transition starting from within the set can reach a state outside

of it and (iii) the left-total transition relation ensures that there always exists at

least one successor state satisfying also the transition relation of the program.

In this work we are interested in representing fair paths of transition systems.20

Therefore, we do not look for any infinite execution, as in the nontermination

case, but consider only those that visit a given set of states, called fair states,

infinitely often. Recurrent sets are not sufficient, apart from some trivial cases,

to conclude that every infinite execution visits some fair state infinitely often.

Unless the set underapproximates the fair states, without additional informa-25

tion, we cannot conclude that the infinite executions described by the closed

recurrence set are fair. For this reason, we split the closed recurrence set into

two components S and D such that D is a subset of the fair states. The union

of S and D must satisfy the same conditions described above for closed recur-

rence sets and, in addition, the left-total transition relation must not allow for30

infinite sequences of S states: every state in S must reach a state in D in a

finite number of steps.

When writing or reasoning on a transition system, a human usually restricts

its attention to a component at-a-time and partitions the state-space into regions

2

such that all states in a region exhibit similar features and the system visits35

the regions in some order. We propose an approach that mimics this kind

of reasoning by splitting the monolithical problem described above into two

orthogonal directions: by segmenting the infinite paths into finite paths and

decomposing the system with respect to some partitioning of the symbols.

We segment the fair paths into a concatenation of finite paths: we split S40

into multiple regions such that each region represents a set of finite paths that

must eventually reach the following region. Notice that, while each path in a

region must be finite, there might be no upper bound to their length: a region

can represent an infinite number of finite paths with increasing lengths. We

call each segment funnel and their concatenation representing the fair paths45

funnel-loop. In addition, we decompose the system by partitioning its symbols.

Each component, called E -component (for existential component), describes the

behaviour of a subset of the symbols while assuming some properties about the

others. These properties represent the conditions that are necessary for this

behaviour to be enabled and we need to prove that such conditions are ensured50

by some other component.

The main contributions of this work are the following: (i) we define an indi-

rect representation of a non-empty set of fair paths for a transition system using

funnel-loops; (ii) we show such representation to be both sound and relatively

complete; (iii) we partition the search problem in two orthogonal directions:55

segmentation and decomposition; (iv) we define a search procedure capable of

identifying funnel-loops; (v) finally, we show the wide applicability and effec-

tiveness of the proposed procedure via a prototype implementation.

This work is an extension and an integration of our previous works presented

in [2] and [3]. In this article, we unify the two approaches in an integrated60

framework, in which the search for a funnel-loop witnessing the falsification

of a given property (first introduced in [3]) can be decomposed by using the

E -component concept of [2] extended with ranking functions.1 Moreover, we

1E -components (without ranking functions) were called AG-skeletons in [2].

3

enrich the results of [3] by a relative-completeness theorem for the representation

of fair paths as funnel-loops, and an encoding for the search problem of a funnel-65

loop in existentially-quantified constrained Horn clauses. Finally, we provide all

the proofs of our results and we revised our experimental evaluation considering

also an additional competitor tool.2

The paper is structured as follows. In Section 2 we describe the notation

and introduce the constructs we use in the following sections. In Section 3 we70

provide an overview of the proposed approach. In Section 4 we introduce a

running example that we will use to illustrate our procedures. In Section 5

we define funnels and funnel-loops, prove their properties and show how they

can be used to identify fair paths for a fair transition system. In Section 6 we

define E -components, their composition and projection operators and show the75

relationship between E -components and funnel-loops. In Section 7 we present

an algorithm to search for a funnel-loop describing a non-empty set of fair

paths of a fair transition system. In Section 8 we discuss the related work. In

Section 9 we briefly describe some implementation details of our prototype and

then discuss our experimental results. In Section 10 we draw some conclusions80

and outline the directions for future work.

2. Background

We work in the setting of SMT, with the theory of quantified mixed integer-

real nonlinear arithmetic. We assume the standard notions of interpretation,

model, satisfiability, validity and logical consequence.85

2.1. Symbols, formulae, implicants and entailment

Given a set of symbols V , we use V ′=̇{v′|v ∈ V } for the set containing

the primed version of the symbols. We write φ(V) for a Boolean formula over

the symbols in V and φ(V, V ′) for a Boolean formula or relation over V ∪ V ′.

When clear from the context we will omit the set of symbols and simply write90

2In order to aid readability, some of the more technical proofs are presented in appendix.

4

φ, ψ and φ′ for φ(V), ψ(V, V ′) and φ(V ′) respectively. We say that a formula

φ(V, V ′) underapproximates a formula ψ(V, V ′) iff every time φ holds then also

ψ must hold, hence φ → ψ is valid. We use > and ⊥ in formulae to represent

respectively the true and false Boolean constants.

We denote with v a total assignment over V , i.e. a state. Given a formula95

φ(V) we write φ(v) for the evaluation of φ obtained by replacing every symbol

in V with its corresponding assignment in v and φ(v′) for the evaluation of

φ where every symbol v ∈ V is replaced by the assignment of v′ in v′. We

overload the |= symbol: when φ and ψ are SMT formulae, then φ |= ψ stands

for entailment in SMT; when M is a fair transition system and ψ is a linear100

temporal property, then M |= ψ is to be interpreted with the LTL semantics.

Finally, if ψ is a quantifier-free SMT formula and φ is a conjunction of (a

subset of) the atoms of ψ, then φ is an implicant of ψ iff φ |= ψ.

2.2. Well-founded relations and ranking functions

A binary relation ρ ⊆ Q × Q is well-founded if every non-empty subset105

U ⊆ Q has a minimal element with respect to ρ, i.e. there is m ∈ U such

that no u ∈ U satisfies ρ(u,m). Given a relation φ(V, V ′), a ranking func-

tion Rf(V) is a function from the assignments to the symbols V to some

set Q, such that the relation < =̇{〈Rf(v0),Rf(v′1)〉 | v0,v
′
1 |= φ} is well-

founded and we call 0 its minimal element. Given a set of ranking functions110

{Rfi}ni=0, we define their sum as Rf=̇
∑n

i=0 Rfi=̇〈Rf0, . . . ,Rfn〉. Rf is a rank-

ing function with minimal element 0=̇〈00, . . . ,0n〉 and comparison operator

< =̇{〈v0,v1〉|(
∧n

i=0 Rfi(v0) ≤i Rfi(v1)) ∧ (
∨n

i=0 Rfi(v0) <i Rfi(v1))} where

<i is the well-founded relation associated with Rfi and ≤i is a shortcut for the

disjunction of <i and the equality.115

2.3. LTL model checking

A symbolic fair transition system M is a tuple 〈V, I(V), T (V, V ′), F (V)〉,

where V is the set of state variables; I and F denote respectively the initial

and fair states; and T represents the transitions where V ′ refers to the next

5

state variables. A path or trace of M is a finite or infinite sequence of states120

v0,v1, . . ., such that v0 |= I and vi,v
′
i+1 |= T for all i, where v′i assigns to every

symbol v′ ∈ V ′ the same value assigned by vi to v. A state v is reachable in

M if there is a finite path of M ending in v. Given a formula φ(V) we write

M φ iff there exists a finite path in M ending in a state v such that v |= φ.

A path v0,v1, . . . of M is fair iff for each i there exists j > i such that125

vj |= F and the language of M , written L(M), is the set of all fair paths of

M .3 We also assume the standard notions of temporal logic model checking,

using the usual definitions of U,G,F for the “until”, “always” and “eventually”

temporal operators (LTL [6]): for a LTL property ϕ we write M |= ϕ iff ϕ

holds in every path π ∈ L(M). Given a fair transition system M , we are130

interested in the problem of deciding whether M admits at least one fair path

(i.e. L(M) 6= ∅). Notice that the existential LTL model checking problem, i.e.

the problem of deciding whether a system M=̇〈V, I, T,>〉 admits at least a path

that satisfies a given LTL formula ϕ, can be reduced to checking for the existence

of a fair path in the fair transition system M ×Mϕ=̇〈V ∪Vϕ, I ∧Iϕ, T ∧Tϕ, Fϕ〉,135

where Mϕ=̇〈Vϕ, Iϕ, Tϕ, Fϕ〉 is a symbolic encoding of an automaton accepting

the language of ϕ [7], which can be obtained, for example, with the procedure of

[8]. In addition, in finite-state systems liveness-to-safety [9] allows the reduction

of such problem to the falsification of safety properties.

A standard technique for the analysis of infinite-state systems is predicate140

abstraction [10]. Predicate abstraction partitions the state space according to

the equivalence relation induced by a set of predicates. Given a finite set of

predicates, it defines a finite set of abstract states each of which corresponds

to a total truth assignment of such predicates. An abstract state corresponds

to a possibly infinite set of concrete states: all states that agree on the truth145

assignments of the predicates. Implicit abstraction is an approach to avoid the

explicit computation of the abstract space. Implicit abstraction has been used,

e.g. in [11], in combination with liveness-to-safety to identify abstract fair loops

3Note that fair paths are necessarily infinite.

6

for an infinite-state system in the abstract space. However, in general, there

might not exist a fair path in the concrete system corresponding to the abstract150

one.

Finally, we consider also timed systems such as timed automata [12], timed

transition systems [13] and hybrid systems [14]. Timed systems are infinite-state

transition systems in which each state is associated with a real-valued time and

transitions may cause time to elapse. An LTL property holds in such systems155

iff it holds in all its non-Zeno paths. A path is non-Zeno iff the sequence of

time points associated to its states is diverging (i.e. there is no upper bound on

the value of time along the path).4

3. Overview of the approach

Our objective is to define a representation of and a search procedure for a160

non-empty set of fair paths for a transition system. We split the representation

of the fair paths along two orthogonal directions. We first segment them into

finite sequences of elements each of which represents a set of finite paths. Then,

we decompose the fair transition system with respect to a partitioning of its

symbols; in this case each component represents a set of infinite behaviours for165

a subset of the symbols. Therefore, the search problem is reduced to the problem

of identifying an appropriate set of components such that their composition is

a witness for some fair path in the transition system.

3.1. Segmentation: funnels

We segment fair paths into a sequence of elements called funnels that, like170

actual funnels, take items from a source and constrain them to follow a path

leading to a destination. Funnels are compact witnesses for universal and ex-

istential reachability [15]: each funnel characterizes a set of finite paths, each

starting from the source region, remaining in it for a bounded number of steps,

and eventually ending in the destination region. Funnels are concatenated in175

4As for fair paths, also non-Zeno paths are necessarily infinite.

7

Figure 1: Funnels combined into chain forming a funnel-loop.

chains such that the destination region of a funnel is contained in the source

region of the following one. Funnel-loops are chains of funnels in which the

destination region of the last funnel is included in the source region of first

one. An example of funnel-loop composed of 6 funnels is depicted in Fig. 1.

Funnel-loops describe a loop over the regions of the corresponding funnels and180

we ensure the fairness of such loop by requiring at least one of the destination

regions to contain only fair states. Therefore, we propose to represent witnesses

for fair paths of transition systems by composing a finite number of reachability

witnesses. Sec. 5 formally presents funnel-loops and shows them to be a sound

(Th. 1) and complete (Th. 2) representation of fair paths.185

3.2. Decomposition: existential components

We decompose a fair transition system with respect to a partitioning of

its symbols. For each subset of the symbols, we identify components, called

E -components (for existential components), that represent their behaviour with

respect to a sequence of regions. E -components distinguish three kinds of tran-190

sitions between their regions and all states in the same region must exhibit

transitions of the same kind. In this sense, the regions of an E -component

group states with similar behaviour. We define two operators over these struc-

tures. The first operation, called projection, shrinks the set of paths described

by an E -component by considering only a subset of its regions. The second195

operation, called composition, defines how E -components can be composed to

obtain a description of the behaviour of a larger set of symbols: the union of

8

the symbols of the composed elements. In this setting we represent fair paths

as the composition and projection of a finite set of E -components.

Sec. 6 formally defines E -components and the two operators, while Theo-200

rems 3 and 6 highlight the relationship between funnel-loops and E -components.

In more detail, Th. 3 shows that a funnel-loop also defines a correspond-

ing E -component and, viceversa, Th. 6 details the conditions under which an

E -component corresponds to a funnel-loop proving the existence of at least one

fair path for some fair transition system.205

3.3. Search procedure

We propose a fully-automated procedure that, given a fair transition system

and a possibly empty set of E -components, searches for a funnel-loop containing

at least one and only fair paths (Alg. 1). We propose to search for a funnel-

loop by enumerating candidate fair loops of the transition system (Alg. 2). We210

consider loops such that the first and last state of the path are in the same

abstract state with respect to a set of abstraction predicates. For every such

candidate loop we compute a sequence of regions and transitions containing it

(Alg. 3). Then, we search for a funnel-loop corresponding to a strengthening of

the sequence of regions and transitions such that all required hypotheses are met215

(Sec. 7.4). If the search succeeds we return the obtained funnel-loop, otherwise

we continue by analysing the next candidate fair loop.

The procedure, described in Sec. 7, is fully-automated and deals with an

undecidable problem. Therefore, there will always exist some inputs for which

it fails to provide an answer and, from a more practical perspective, inputs for220

which it takes a very long time to provide an answer. For this reason, the pro-

cedure is capable of exploiting some additional information in the form of a set

of E -components. If some E -components are provided, the procedure identifies

candidate fair loops that are also a path for some composition and projection of

a subset of the E -components. It then tries to identify the funnel-loop that cor-225

responds to an E -component describing the behaviour for the missing symbols:

it completes the E -component with a transition relation over the remaining

9

symbols such that all assumptions are met.

4. Running example

We now introduce a simple LTL verification problem on a software program230

that will be used as running example throughout this work.

Consider the simple program shown in Fig. 2, where nondet is a function

that nondeterministically selects a value from the set provided as input. Our

1: int x← nondet(Z)

2: real y ← nondet(R)

3: while x2 ≥ xy do

4: y ← nondet(R)

5: x← x+ 1

6: end while

Figure 2: Running example.

objective is to check whether in every infinite execution of such program the

value of y will eventually remain always positive or always negative. This state-235

ment can be written in LTL as (FGy ≥ 0) ∨ (FGy ≤ 0). Intuitively, any

counterexample to such specification must be a nonterminating execution of the

program in which both y > 0 and y < 0 hold infinitely often.

We encode the software program as an infinite-state transition system using

an additional variable pc to model the program counter. Then, we employ the

reduction from LTL model checking to the existence of a fair path. The resulting

infinite-state transition system is Ex =̇〈{x, y, pc, f0, f1}, pc = 3, T, f0∧f1〉, where

pc and x are two integer variables, y is a real variable, f0 and f1 are two Boolean

symbols (introduced by the reduction to keep track of the fairness conditions

10

y > 0 and y < 0) and the transition relation is defined as follows:

T =̇ (pc = 3→ (x2 ≥ xy ∧ pc′ = 4 ∧ x′ = x ∧ y′ = y)) ∧

(pc = 4→ (pc′ = 5 ∧ x′ = x)) ∧

(pc = 5→ (pc′ = 3 ∧ x′ = x+ 1 ∧ y′ = y)) ∧

((f0 ∧ f1)→ (¬f ′0 ∧ ¬f ′1)) ∧

(f ′0 → (f0 ∨ y > 0)) ∧ (f ′1 → (f1 ∨ y < 0)).

The first three lines encode the transition relation of the program. Notice that

every state such that pc = 3 and ¬(x2 ≥ xy) hold is a deadlock for Ex . In all240

such cases, the transition relation admits no successor state. Finally, the last

two lines of the formula ensure that in every execution in which f0 ∧ f1 holds

infinitely often also y > 0 and y < 0 hold infinitely often.

5. Segmenting paths with funnels

Fair

S0

D2

S1

D0

S2

D1

Figure 3: Funnels combined into chain forming a funnel-loop.

In this section, first we formally define funnels and their concatenation into245

funnel-loops (Fig. 3); then we provide a set of sufficient conditions for a funnel-

loop to represent at least one fair path of a transition system and show that if

such a fair path exists then also a corresponding funnel-loop must exist.

5.1. Funnels

Funnels segment fair paths into finite subpaths. Given a set of symbols250

V , a funnel is a 4-tuple 〈S(V), T (V, V ′), D(V),Rf(V)〉. S and D are formulae

representing respectively the source and destination regions, T is the transition

11

relation and Rf is a ranking function for S with respect to the transition relation

T . Intuitively, this structure represents a terminating loop over S where D are

the end states of the loop. Depending on the shape of the ranking function,255

the loop might correspond to a simple loop or to more complex termination

arguments such as nested loops. Every path through the funnel starts from a

state in S and follows the relation T such that it remains in S while the ranking

function Rf is greater than the minimal element 0 and, finally, it reaches a

state in D when Rf is 0. If we consider a trivial ranking function that is always260

equal to the minimal element 0 the 4-tuple simply asserts that every state in S

is mapped into D by a single transition T .

Definition 1 (Funnel). Given a set of symbols V , a funnel is defined as the

4-tuple

fnl =̇ 〈S(V), T (V, V ′), D(V),Rf(V)〉

where: Rf is a ranking function with minimal element 0 and S, D and T265

are formulae representing respectively the source region, destination region and

transition relation of fnl. Every funnel satisfies the following hypotheses.

F.1 The transition relation is left-total relative to the source region.

∀V ∃V ′ : S → T

F.2 Every funnel keeps iterating on the source region as long as its ranking

function is greater than the minimal element.270

∀V, V ′ : (S ∧ 0 < Rf ∧ T)→ S′

F.3 Every step from the source region decreases the ranking function.

∀V, V ′ : (S ∧ 0 < Rf ∧ T)→ Rf′ < Rf

F.4 Once the ranking function is equal to 0 the funnel reaches its destina-

tion region.

∀V, V ′ : (S ∧Rf = 0 ∧ T)→ D′

12

Given a funnel fnli we write Si, Ti, Di and Rfi to refer to its components.

We define the transition system corresponding to a funnel fnl=̇〈S, T,D,Rf〉275

over symbols V as Mfnl=̇〈V, S, (¬D ∧ T) ∨ (D ∧D′),>〉. We refer to the paths

through a funnel fnl meaning the finite paths of the corresponding transition

system that end in D and write fnl |= φ meaning that φ holds in every path in

L(Mfnl). Notice that the paths through a funnel are all finite and each of them

is a prefix of some path in L(Mfnl). From the definition it easily follows that280

every funnel fnl satisfies the following:

fnl |= S U D

5.2. Funnel-loops

We define a funnel-loop as a chain of funnels [fnli]
n−1
i=0 such that the desti-

nation region of each funnel is included in the source region of the following one

and the destination region of the last funnel is included in the source region of285

the first one.

Definition 2 (Funnel-loop). A sequence of n ≥ 1 funnels [fnli]
n−1
i=0 over sym-

bols V is a funnel-loop iff the following hold.

FL.1 The destination region of a funnel is included in the source region of

the following funnel.290

∀0 ≤ i < n− 1, V : Di → Si+1

FL.2 The destination region of the last funnel Dn−1 is contained in the

source region of the first funnel S0.

∀V : Dn−1 → S0

We define the paths through a funnel-loop floop, L(floop), as the infinite

paths obtained by infinite concatenation of the paths through the funnels in the

corresponding chain and write floop |= φ meaning that φ holds in all such paths.295

For every funnel different from the last one, Hyp. FL.1 ensures that we can

13

extend every path of such funnel, ending in its destination region, by following

the transition relation of the next funnel. Therefore, every path starting in any

source region will eventually reach the destination region of the last funnel:

floop |= (

n−1∨
i=0

Si) U Dn−1

By Hyp. FL.2 every time we reach the destination region of the last funnel asso-300

ciated with floop we are also in the source region of the first funnel. Therefore,

we can extend the execution by appending another finite number of steps: a

finite path starting from S0 and ending in the last destination region Dn−1. We

can do this infinitely many times obtaining infinite paths.

floop |= G((

n−1∨
i=0

Si) U Dn−1)

The definition of funnel-loop allows for regions with non-empty intersections.305

This eases the construction of the structure in practical cases. It is possible to

consider one funnel at a time and then chain them simply by checking the

inclusion of each destination into the corresponding source region. However, for

every funnel-loop there exists one with pairwise-disjoint regions that has the

same language projected over the common variables.5 For this reason, when310

proving statements about the language of these structures, we assume without

loss of generality that the regions of every funnel in the funnel-loops are pairwise-

disjoint.

We propose to identify a non-empty set of fair paths for a transition system

M as a funnel-loop floop; every path through floop must correspond to an315

infinite fair execution of M . The totality of the transition relation of each funnel

(F.1) and their chaining (FL.1, FL.2) ensure that all the paths in L(floop) are

infinite. We need such paths to be fair paths, hence they must visit the fairness

condition infinitely often. By construction of floop we know that every path

goes through each Si and each Di infinitely many times. Since by FL.1 and FL.2320

5See Appendix B.1 for a proof.

14

for every source region Si, there exists a destination region Dj that is contained

in it, it is sufficient to require one of the destination regions to contain only fair

states. Without loss of generality we assume such a region to be the last one.

These conditions ensure that floop represents a set of fair paths of M . However,

such set might be empty or non-reachable in M . Therefore, we finally require325

the union of the source regions to contain at least one state reachable in M .

The existence of such state is sufficient to conclude non-emptiness of L(floop)

because the transition relation of each funnel always allows for a successor state

(F.1) and, by induction, this ensures that every region and the language of

floop are not empty. Th. 1 shows that these requirements are sufficient for a330

funnel-loop to prove the existence of a fair path in M and Th. 2 shows that if M

admits a fair path then there exists a funnel-loop of length one for M . Therefore,

funnel-loops composed of a single funnel are expressive enough to represent any

fair path. However, funnel-loops of greater length lead to a description easier to

understand for a person and, in addition, could simplify the search procedure:335

we might not need to consider complex disjunctive representations of the regions,

ranking functions and transition relations.

Theorem 1. Let M=̇〈V, IM , TM , FM 〉 be a fair transition system. Let floop

be a funnel-loop of length n over the symbols V and funnels [fnli]
n−1
i=0 such that:

FF.1 There is at least one state in the union of the source regions of floop340

that is reachable in M :

M
n−1∨
i=0

Si

FF.2 The destination region of the last funnel contains only fair states of

M .

∀V : Dn−1 → FM

FF.3 Every transition of every funnel underapproximates the transition

relation of M . For every funnel fnli in [fnli]
n−1
i=0 :345

∀V, V ′ : Si ∧ Ti → TM

15

Then M admits at least one fair path.

Proof. We first prove that every path in L(floop) is infinite. Then we prove

that every such path is fair with respect to the fairness condition FM and that

every step in every such path satisfies the transition relation TM . Finally, we

prove that L(floop) allows for at least one path which is a suffix of some path350

of M .

• Every path in L(floop) is infinite. Consider a funnel fnl=̇〈S, T,D,Rf〉

in floop. Hyp. F.1 ensures that its transition relation T allows for a

successor state for every state in S. Hyp. F.2 ensures that every path of

fnl remains in S while 0 < Rf. Hyp. F.3 ensures that every such path will355

eventually reach a state in S ∧Rf = 0. Hyp. F.4 ensures that every state

in such region in one T step reaches a state in D. Therefore, every path

starting from the source region S of each funnel can be extended until it

reaches its destination region D. If fnli−1 has a successor fnli in floop,

by Hyp. FL.1 the destination region Di−1 is included in Si: every state360

in Di−1 is also in Si. Therefore, the concatenation of fnli−1 and fnli

allows to extend every path starting from either Si−1 or Si until it reaches

Di. By induction this shows that the funnel chain allows the extension of

every path starting from the union of the source regions until it reaches

the last destination region:365

floop |= (

n−1∨
i=0

Si) U Dn−1

Hyp. FL.2 requires the last destination region Dn−1 to be a subset of the

first source region S0. As stated above, we can extend every path starting

in every region until it reaches Dn−1, hence from S0 we reach Dn−1 again

in a finite number of steps and at least one. Therefore, since we can extend

each path of a finite non-zero number of steps infinitely many times every370

path in L(floop) is infinite.

• Every path in L(floop) visits FM infinitely often. Hyp. FF.2 ensures that

Dn−1 underapproximates the fair states FM . We have already shown

16

above that every path of floop reaches a state in Dn−1 infinitely often.

Therefore, such paths visit FM infinitely often.375

• Every step of every path in L(floop) satisfies TM . Every step of every

path in L(floop), by definition, corresponds to a transition of some funnel

fnl. By hypotheses F.2, F.4, FL.1 and FL.2 every such path remains

within the union of the regions and visits them following the order of the

funnels. Therefore, every transition in every path of floop must satisfy380

S∧T for some funnel fnl in the sequence. Hyp. FF.3 ensures that if S∧T

holds that also TM is true. Therefore every step of every path of floop is

also a step of M .

• L(floop) allows for at least one path which is a suffix of some path of M .

Hyp. FF.1 ensures that there exists a finite path πpref of M starting in385

IM and ending in some state v such that v |=
∨n−1

i=0 Si. Therefore, v

must be in Si for some 0 ≤ i < n. Then, in floop we can extend v to an

infinite fair path πsuf starting in v. As shown above every step of πsuf

satisfies the transition relation of M and visits the fairness condition FM

infinitely often. The concatenation π of πpref and πsuf without repetition390

of v, starts from a state in IM , every steps satisfies TM and visits FM

infinitely often. Therefore, π is a fair path for M : π ∈ L(M).

�

Th. 2 ensures that if a transition system admits a fair path then there exists

a corresponding funnel-loop, provided it is possible to represent the states in395

the path as formulae and, in particular, we are interested in finite formulae. In

finite-state systems this is always the case: every set of states is finite and can

be represented as a finite quantifier-free formula (e.g. the disjunction of the

assignments in the set). However, this might not be the case in infinite-state

systems: there might be an infinite set of states which cannot be represented400

by a finite formula. Therefore, the following theorem guarantees completeness

relative to the expressiveness of the logic used to represent the regions and the

17

transition relation of the funnel. Notice that the existence of a finite represen-

tation is not the only source of incompleteness. In fact, the existence of a finite

formula does not imply the existence of a complete procedure capable of finding405

it. We remark that we are dealing with an undecidable problem, hence there

exists no procedure to solve it that is both sound and complete.

Theorem 2. If a fair transition system M admits at least one fair path, then

there exists a funnel-loop floop of length 1 for M . However, the existence of one

representable via finite formulae depends on the expressiveness of the considered410

logic.

Proof. In the following we will define a predicate φ(V) as the set of assignments

v such that v |= φ, meaning that φ(V) is a formula equivalent to the disjunction

of the assignments in the set. Notice that there might be no finite representation

of φ.415

Let M=̇〈V, IM , TM , FM 〉 and, by hypothesis, there exists a fair path π in

L(M). Without loss of generality we assume that π visits every state at most

once. If this is not the case, to obtain a fair path satisfying the hypothesis,

it is sufficient to add an additional integer symbol whose assignment increases

by one at every transition. In more detail, consider the fair transition system420

〈V ∪ c, IM ∧ c = 0, TM ∧ c′ = c+ 1, FM 〉, if π is a fair path of M then, we can

obtain a fair path for the modified system by extending the assignment of every

state of π such that c = 0 in the first state and in all other states assign to c

the assignment of the previous state plus 1.

Let floop be a funnel-loop of length 1, and let its funnel be425

fnl=̇〈S, T,D,Rf〉. We define the components of fnl as follows:

• S contains all and only states of π.

S=̇{v | v ∈ π}

• D contains all and only the fair states of π.

D=̇{v | v ∈ π ∧ FM (v)}

18

• T is a relation containing all pairs of state 〈v,v′〉 such that v′ is the

successor state of v in π.430

T =̇{〈v,v′〉 | 〈v,v′〉 ∈ π}

• Rf associates to every state in π the number of steps required to reach

the next fair state in π minus 1.

∀k > 0,∀V1, . . . , Vk : Rf(V1) = k − 1↔ (

k−1∧
i=1

T (Vi, Vi+1))→ FM (Vk)

This is well-defined since each state appears only once in π and by con-

struction T allows for a single successor for each state. In addition, π is

a fair path by hypothesis, hence there can be at most a finite number of435

non-fair states between every pair of fair states.

We now show that fnl satisfies all hypotheses of Def. 1.

F.1 π is an infinite sequence of states, all states of π are in S and each pair

of subsequent states of π is in T . Therefore, T must be left-total with

respect to S and Hyp. F.1 holds.440

F.2 By construction S contains all states of π and T is a relation between

states of π. Therefore, S is an inductive invariant for T and Hyp. F.2

holds.

F.3 By construction, Rf is greater than 0 in all states that require more than

1 transition to reach a fair state and T is such that it brings all such445

states 1 step closer to the next fair state in π. Therefore, S(V) ∧ 0 <

Rf(V) ∧ T (V, V ′)→ Rf(V) = Rf(V ′) + 1, which implies Hyp. F.3.

F.4 By construction Rf assigns the minimal value 0 to the states that reach

a fair state in 1 step. Therefore, Hyp. F.4 holds.

We now show that fnl corresponds to a funnel-loop floop of length one: it450

satisfies all hypotheses of Def. 2.

FL.1 floop contains a single funnel, hence Hyp. FL.1 trivially holds.

19

FL.2 By construction S contains all states of π while D contains the subset of

states of π that are also fair. Therefore, D → S is valid and Hyp. FL.2

holds.455

Finally, floop represents fair paths of M : it satisfies all hypotheses of Th. 1

FF.1 π is a path of M , hence its first state is an initial state of M . All states

of π are in S. Therefore, S contains at least 1 initial state of M and

Hyp. FF.1 holds.

FF.2 The last destination region of floop is D. By construction D contains460

only fair states, hence Hyp. FF.2 holds.

FF.3 π is a path of M . Therefore, every pair of states 〈v,v′〉 such that v′ is the

successor state of v in π, must also be in the relation TM . By construction

T contains only such pairs, hence T → TM is valid and Hyp. FF.3 holds.

�465

5.3. Example

We now define two funnel-loops, of length respectively 6 and 1, for the run-

ning example introduced in Sec. 4. Both funnel-loops are sufficient to conclude

the existence of a fair path for the fair transition system Ex we defined in Sec. 4.

Here we simply recall that the system has 5 state variables V =̇{x, y, pc, f0, f1}470

and that the fair states are all the states where f0 ∧ f1 holds.

We first describe the funnel-loop floop=̇[fnli]
5
i=0 depicted in Fig. 4. The

figure reports the source regions and transition relations of each funnel. The

transitions in the figure report only the constraints for x and y, while the ones

for pc, f0 and f1 can be trivially inferred by the assignments in the regions. More475

formally, each funnel fnli is the tuple 〈Si, Ti, Di,Rfi〉. We define each ranking

function such that it is always equal to its minimal element, ∀V : Rfi(V) = 0,

and each destination region as the corresponding source region, Di=̇S(i+1)%6.

We define the remaining components, source regions and transition relations, as

follows.480

20

FEx

FEx

T0

x′ = x

y′ = y

T1

x′ = x

y′ = −y

T2

x′ = x+ 1

y′ = y

T5

x′ = x+ 1

y′ = y

S0

pc = 3

x ≥ y > 0

f0 ∧ f1

S1

pc = 4

x ≥ y > 0

¬f0 ∧ ¬f1

S2

pc = 5

x ≥ −y > 0

f0 ∧ ¬f1

T3
x′ = x

y′ = y

T4
x′ = x

y′ = −y

S3
pc = 3

x ≥ −y > 0

f0 ∧ f1

S4
pc = 4

x ≥ −y > 0

¬f0 ∧ ¬f1

S5pc = 5

x ≥ y > 0

¬f0 ∧ f1

Figure 4: funnel-loop floop of length 6.

0. The first funnel fnl0 represents the step from location 3 to location 4 of

Fig. 2. In S0 both f0 and f1 are true, hence S0 contains only fair states and

also D5=̇S0 does. Notice that x ≥ y ∧ y > 0 implies x2 ≥ xy. Therefore,

the condition of the while loop is satisfied.

S0 =̇ pc = 3 ∧ x ≥ y ∧ y > 0 ∧ f0 ∧ f1

T0 =̇ pc′ = 4 ∧ x′ = x ∧ y′ = y ∧ ¬f ′0 ∧ ¬f ′1

1. The second funnel fnl1 performs the step from pc = 4 to pc = 5. In this

step, the program of Fig. 2 assigns a nondeterministic value to y. The

funnel underapproximates this transition by always assigning to y the

opposite of its current value. In addition, since y > 0 in S1, the transition

relation assigns f ′0 to true.

S1 =̇ pc = 4 ∧ x ≥ y ∧ y > 0 ∧ ¬f0 ∧ ¬f1

T1 =̇ pc′ = 5 ∧ x′ = x ∧ y′ = −y ∧ f ′0 ∧ ¬f ′1

2. The third funnel fnl2 performs the last step of the first iteration of the

while loop. Its transition relation increases the value of x by one and,

21

since y < 0 holds in the current state, f1 is true in the next one.

S2 =̇ pc = 5 ∧ x ≥ −y ∧ y < 0 ∧ f0 ∧ ¬f1

T2 =̇ pc′ = 3 ∧ x′ = x+ 1 ∧ y′ = y ∧ f ′0 ∧ f ′1

3. The fourth funnel fnl3 represents the first step of the loop of Fig. 2 as

fnl0. However, in this case y is negative.

S3 =̇ pc = 3 ∧ x ≥ −y ∧ y < 0 ∧ f0 ∧ f1

T3 =̇ pc′ = 4 ∧ x′ = x ∧ y′ = y ∧ ¬f ′0 ∧ ¬f ′1

4. The fifth funnel fnl4 is analogous to fnl1, but has negative value of y.

S4 =̇ pc = 4 ∧ x ≥ −y ∧ y < 0 ∧ ¬f0 ∧ ¬f1

T4 =̇ pc′ = 5 ∧ x′ = x ∧ y′ = −y ∧ ¬f ′0 ∧ f ′1

5. Finally, funnel fnl5 is analogous to fnl2, but has positive value of y.

S5 =̇ pc = 5 ∧ x ≥ y ∧ y > 0 ∧ ¬f0 ∧ f1

T5 =̇ pc′ = 3 ∧ x′ = x+ 1 ∧ y′ = y ∧ f ′0 ∧ f ′1

It can be easily observed that each funnel satisfies all hypotheses of Def. 1

and the funnels are correctly chained (Def. 2) by definition of the destination

regions. Notice that every region and transition of floop is a purely conjunctive

formula and both S0 and S3 underapproximate the fair states. Therefore, in

every iteration through floop we visit the fair states twice, in S0 with positive y485

and in S3 with negative y. floop satisfies all hypotheses of Th. 1 and represents

at least one counterexample for our initial LTL model checking problem.

It is possible to define a funnel-loop composed of a single funnel

fnl=̇〈S, T,D,Rf〉, where the components can be defined in terms of the funnels

we defined above as follows. The source region is the union of the source regions

of the {fnli}5i=0: S=̇
∨5

i=0 Si. The destination region is the last destination re-

gion of floop: D=̇D5. The transition relation can be defined as T =̇
∨5

i=0(Si∧Ti)

22

by observing that the source regions {Si}5i=0 are pairwise-disjoint. Finally, the

ranking function Rf is defined as a function that maps every assignment to the

symbols in V to a number in N such that it assigns decreasing values to states

in the regions S0, . . . , S4 and assigns the constant 0 to states in S5:

Rf(V)=̇



0 if S5(V),

1 if S4(V),

2 if S3(V),

3 if S2(V),

4 if S1(V),

5 otherwise.

By construction the transition relation maps every state in S0 to some state

in S1, which is in turn mapped into S2 and so on. Therefore, every state in

S∧Rf > 0 is mapped to some other state in S in which the ranking function has490

lower value. S ∧Rf = 0 is equivalent to S5 and in such region T corresponds to

T5. Therefore, in a single transition we reach D5 that, by definition, is equivalent

to D and contained in S0.

6. Model decomposition via Existential Components

In the previous section we segmented the paths of a fair transition system495

into funnels representing finite paths. In the following we adopt an orthogonal

view and decompose the system with respect to a partitioning of its symbols.

For each set of symbols, an existential component (E -component) describes

their behaviour with respect to a set of regions and represents a set of loops

over such regions. Each E -component represents some infinite behaviour that500

a subset of the symbols can exhibit, provided that all other symbols satisfy

a set of assumptions. Therefore, while funnels describe sets of finite paths,

E -components describe (possibly empty) sets of infinite paths.

We will show how E -components can be obtained from funnel-loops with an

additional restriction on their transition relation, hence how an E -component505

23

can be constructed by concatenating funnels.

We then compose E -components to obtain another E -component whose

loops consider the union of the symbols of the smaller ones. We compose them

until we obtain a component considering all the symbols of the system. Among

all its loops we search for one that is also fair. We then restrict its language to510

only fair paths by projecting the E -component over the regions of the fair loop.

We show that such E -component corresponds to a funnel-loop for the transition

system, hence proving that it admits at least one fair path.

We first define the structure and properties of the E -components and we

show under which conditions a funnel-loop corresponds to an E -component.515

Then, we define the composition and projection operators for E -components

and, finally, we show how such operators allow the representation of a funnel-

loop that satisfies all hypotheses of Th. 1.

6.1. E-component

R0

Rf0 = 0
Rf1 = 0

R1

Figure 5: E -component with two regions showing the three kinds of transitions.

An E -component is a transition system associated with a set of regions,520

assumptions and ranking functions. We call the conjunction of a region and

its corresponding assumption restricted region and, in addition, E -components

associate to each restricted region a ranking function. An E -component is such

that its restricted regions group states with “similar behaviour” with respect to

the transition relation. If some state in a restricted region allows for a transi-525

tion with certain characteristics, then a transition with the same characteristics

must exist for all states in the restricted region, hence the name existential

components. In the following, we first describe in more detail what we mean by

24

similar behaviour via the definition of three predicates that classify transitions.

Then, we employ these predicates to formally define E -components. Finally, we530

characterise the language of such components.

We are interested in transitions representing self-loops over the restricted

regions of two types: self-loops in which the ranking function decreases and

self-loops in which the ranking function remains constant. We call them ranked

and stutter transitions respectively and characterise them using two relations535

rankedT j(V, V
′) and stutterT j(V, V

′) over symbols V and V ′. A transition in

the restricted region with index j is a ranked transition iff rankedT j holds and it

is a stutter transition iff stutterT j does. Finally, we consider transitions between

possibly distinct restricted regions, starting from a state in which the ranking

function is 0 and reaching some state in the second region. We call them progress540

transitions and characterise them using the predicate progressT j,j′(V, V
′). We

call a transition a progress transition from region j to region j′ iff progressT j,j′

holds. Therefore, we distinguish three kinds of transitions between regions

and require that either no state allows for a transition of a given kind or all

states in the same restricted region admit such a transition. Fig. 5 depicts an545

E -component with two regions and the three different kinds of transitions.

We now proceed to formally define E -components and their operators. For a

set of symbols V , let R=̇{Rj(V)}m−1j=0 be the set of regions, A=̇{Aj(V)}m−1j=0 be

the set of assumptions and W=̇{Rfj(V)}m−1j=0 be the set of ranking functions.

Then, Rj ∧ Aj is the jth restricted region and Rfj is the ranking function

associated to it. We define the three relations that classify the transitions as

follows:

rankedT j(V, V
′) =̇ Rj ∧Aj ∧ 0j <j Rfj ∧R′j ∧A′j ∧Rf′j < Rfj

stutterT j(V, V
′) =̇ Rj ∧Aj ∧R′j ∧A′j ∧Rf′j = Rfj

progressT j,j′(V, V
′) =̇ Rj ∧Aj ∧ 0j = Rfj ∧R′j′ ∧A′j′

Notice that the relations rankedT j and sutterT j are always disjoint; in the

first case the ranking function strictly decreases, while in the second one it

must remain constant. However, they are not a partitioning of all possible

25

transitions. In fact, transitions in which the ranking function increases or that550

move to another region are in neither of the two sets of transitions. In addition,

progressT j,j′ and rankedT j are always disjoint by definition, while the first one

could have a non-empty intersection with sutterT j if j = j′. In particular, all

transitions that both start and end in a state satisfying Rj ∧ Aj ∧ Rfj = 0j

are in the intersection of stutterT j and progressT j,j . Therefore, the existence555

of one such transition implies that all states in the restricted region must allow

for at least one stutter transition. In addition, for the states in which Rfj = 0j ,

this transition is also a progress transition, hence they all admit at least one

progress transition that remains in the same region.

We remark that E -components represent the possibility of performing such560

transitions: they group states for which there exists a successor along the same

transition types.

Given a partitioning {V i}ni=0 of the symbols V we want to define the re-

stricted regions such that they allow a set of next assignments to the symbols

in a single partition V i, while the assignment to the symbols in V 6=i=̇V \ V i is565

abstracted and only the assumptions are retained. For this reason, we introduce

a quantifier alternation (∃V i′∀V 6=i′), and require the existence of a transition

of the given type for every assignment to the V 6=i′ satisfying the corresponding

assumptions. Therefore, we now formally define E -components as follows.

Definition 3. E-component. Given a set of symbols V such that {V i}ni=0 is a570

partitioning of V for some n ∈ N. An E-component Hi of length mi ∈ N and

responsible for V i is a transition system 〈V, Ii(V), T i(V, V ′)〉 associated with:

• a set of regions Ri=̇{Ri
j(V) | 0 ≤ j < mi},

• a set of assumptions Ai=̇{Ai
j(V

6=i) | 0 ≤ j < mi}, where

V 6=i=̇
⋃

0≤k<n,k 6=i V
k and Ai

j(V
6=i)=̇

∧
0≤k<n,k 6=iA

i,k
j (V k)575

• a set of functions Wi=̇{Rfij(V) | 0 ≤ j < mi} such that each Rfij is a

ranking function with respect to a well-founded relation <i
j and minimal

element 0i
j.

26

such that the following hold:

I . The set of initial states Ii(V) of Hi is a subset of the union of the restricted580

regions:

Hi |=
mi−1∨
j=0

Ri
j ∧Ai

j

II . Either no state admits a ranked transition or all states do.

∀j : 0 ≤ j < mi →

∃V, V ′ : rankedT j(V, V
′) |=

∀V ∃V i′∀V 6=i′ : Ri
j ∧Ai

j ∧ 0i
j <

i
j Rfij ∧Ai

j

′ → Ri
j

′ ∧ T i ∧Rfij
′
<i

j Rfij

III . Either no state admits a stutter transition or all states do.

∀j : 0 ≤ j < mi →

∃V, V ′ : stutterT j(V, V
′) |=

∀V ∃V i′∀V 6=i′ : Ri
j ∧Ai

j ∧Ai
j

′ → Ri
j

′ ∧ T i ∧Rfij
′

= Rfij

IV . All states admit progress transitions with the same destination regions:

they reach the same restricted regions.

∀j, j′ : 0 ≤ j < mi ∧ 0 ≤ j′ < mi →

∃V, V ′ : progressT j,j′(V, V
′) |=

∀V ∃V i′∀V 6=i′ : Ri
j ∧Ai

j ∧Rfij = 0i
j ∧Ai

j′
′ → Ri

j′
′ ∧ T i

When clear from the context we will simply write 0 and < for 0i
j and <i

j

respectively. In the definition, each assumption Ai
j(V

6=i) of E -component i at

index j is composed of n conjuncts {Ai,k
j (V k)}0≤k<n,k 6=i where each conjunct is

a formula over the symbols in a single partition V k different from V i.585

We define the language of an E -component H=̇〈V, I, T 〉 over R, A and

W, written L(H), as the language of the corresponding transition system

M=̇〈V, I, TM ,>〉, where TM is defined as follows:

TM =̇T ∧ (

m−1∨
j=0

R′j ∧A′j) ∧
m−1∧
j=0

(Rj ∧Aj ∧ 0 < Rfj)→ (R′j ∧A′j ∧Rf′j ≤ Rfj)

27

Therefore, we consider only paths that remain within the set of restricted re-

gions and move from one region to another only if the corresponding ranking

function is equal to the minimal element: we can perform only ranked or stutter

transitions as long as the ranking function corresponding to the current region

is greater than its minimal element.590

As for funnel-loops, also the definition of E -component allows for regions

with non-empty intersection. Similarly to the previous case, this eases the con-

struction of these structures since it has more permissive constraints. However,

for every E -component there exists one with pairwise-disjoint regions that ad-

mits the same language.6 For this reason, when proving statements about the595

language of these structures, we assume without loss of generality the regions

of the E -components to be pairwise-disjoint.

6.2. Example decomposition

We now describe a possible decomposition of our running example (Sec. 4)

into E -components. The fair transition system Ex is defined over the set of600

variables V =̇{x, y, pc, f0, f1}. We consider one variable at a time and define

a component representing some of its possible behaviours in the system. It is

possible to define many different components for every subset of the symbols,

for the sake of brevity and clarity we only describe one for each symbol. In

the following E -components we implicitly define every set of initial states as605

the disjunction of the regions and every ranking function as always equal to its

minimal element, hence the E -components will admit no ranked transition.

Rpc
0

pc = 3

Rpc
1

pc = 4

Rpc
2

pc = 5

Figure 6: E -component responsible for pc.

Consider first the program counter pc.

From the transition relation of Ex it is

immediately apparent that the variable610

will keep assuming the values [3, 4, 5] in

this order. For this reason we define

a E -component Hpc, depicted in Fig. 6.

6See Appendix B.2 for a proof.

28

Hpc is responsible for pc and its three regions are defined as Rpc
0 =̇pc = 3,

Rpc
1 =̇pc = 4 and Rpc

2 =̇pc = 5. Then, its transition relation is the disjunction of615

the 3 progress transitions between the regions: T pc=̇(pc = 3 ∧ pc′ = 4) ∨ (pc =

4 ∧ pc′ = 5) ∨ (pc = 5 ∧ pc′ = 3). We do not introduce any self-loop on the

regions, since none exists in the transition relation of Ex . Finally, this behaviour

does not require any assumption. In fact, the transition relation T pc is sufficient

to ensure that we move from one region to another without having to assume620

anything about the other symbols.

Rfi
0

fi

Rfi
1

¬fi

Figure 7: E -components responsible for fi.

Consider now the Boolean symbols

f0 and f1. In this case, we define two

E -components: Hf0 for f0 and Hf1 for

f1. The two E -components are shown625

in Fig. 7. In both E -components we

need to distinguish the truth value of the two symbols in order to identify the

fair states, hence we define each E -component using two regions. For i ∈ {0, 1},

let Rfi
0 , Rfi

1 be the regions of Hfi and T fi its transition relation. We define

the two regions such that one corresponds to the case in which the variable is630

assigned to true and the other to the case in which the variable is false. In Ex

the two variables can remain constant for any number of steps and toggle their

truth value when a certain condition is met. The simplest components we can

define in this case are defined as Rfi
0 =̇fi, R

fi
1 =̇¬fi and T fi=̇>, for i ∈ {0, 1},

with no assumptions on the other symbols.635

Consider now the variable y and we define Hy as the E -component responsi-

ble for such variable. In the transition relation of Ex the variable appears in the

following predicates {y < 0, y > 0, x2 ≥ xy, y′ = y}. In only one case it appears

together with another symbol: x2 ≥ xy. We can observe that if |x| ≥ |y| then

the predicate must hold. This suggests a dependency between x and y and for640

this reason we could define a single E -component that considers both symbols

together. However, we would like to keep them separated for this example.

We break the dependency between the two symbols by considering the stronger

conditions x ≥ 1 and y ≤ 1. Then, the presence of y < 0 and y > 0 suggests the

29

need for two regions to distinguish the sign of the variable. Fig. 8 depicts Hy.645

Ry
0

y = −1

x ≥ 1

Ry
1

y = 1

x ≥ 1

y′ = y

y′ = y

y′ = y y′ = y

Figure 8: E -component responsible for y.

The E -component has two regions:

Ry
0=̇y = −1 and Ry

1=̇y = 1. The re-

gions differentiate the two cases and we

introduce two corresponding assump-

tions Ay
0=̇x ≥ 1 and Ay

1=̇x ≥ 1. Fi-650

nally, we define the transition relation

T y of Hy such that it allows stutter

transitions in both regions and also progress transitions to move from one re-

gion to the other: T y=̇y′ = y ∨ y′ = −y.

Rx
0

x ≥ 1

y ≤ 1

x′ = x+ 1 x′ = x

Figure 9: E -component responsible

for x.

The only remaining symbol is x, for which655

we define the E -component Hx depicted in

Fig 9. In the transition relation of Ex the

variable appears in the following predicates

{x2 ≥ xy, x′ = x, x′ = x + 1}. We apply

the same reasoning as above to analyse the660

predicate x2 ≥ xy and obtain a single region

Rx
0=̇x ≥ 1 with assumption Ax

0=̇y ≤ 1 for Hx. We define the transition relation

T x of Hx as the disjunction of the two remaining predicates, T x=̇x′ = x∨ x′ =

x+ 1.

The purpose of E -components is to split the process of identifying some fair665

path into two phases. In the first phase, one symbol or one group of closely

related symbols should be considered at a time to identify possible infinite be-

haviours over them, as exemplified above. The successive step requires to iden-

tify how they should be composed in order to obtain a structure that represents

fair paths of the transition system. For this reason, in §6.4 we introduce two670

operators over E -components. The operators need to ensure that the compo-

nents to be combined are compatible and preserve the existence of the infinite

behaviours. We achieve this by combining E -components such that the respec-

tive assumptions are met. §6.5 shows how the E -components we defined above

can be composed to prove the existence of a fair path in Ex .675

30

6.3. From funnel-loops to E-components

The following theorem shows the correspondence between a funnel-loop and

an E -component. Therefore, it enables the use of funnels and funnel-loops in

the decomposition of a system.

Theorem 3. Given a set of symbols V̂ ⊆ V , a funnel-loop floop composed of680

funnels [fnli]
n−1
i=0 such that all its transition relations are of the form Ti(V, V̂

′)

corresponds to an E-component H=̇〈V,
∨n−1

i=0 Si,
∨n−1

i=0 Si ∧ Ti〉 responsible for

symbols V̂ and associated with regions {Si}n−1i=0 , ranking functions {Rfi}n−1i=0

and assumptions {>}n−1i=0 .

Proof. We show that H satisfies all hypotheses of Def. 3.685

I By definition all assumptions are > and the initial states are defined as

the union of the regions. Therefore, Hyp. I holds.

II Hyp. F.1 ensures that in every region Si, Ti always allows for a successor

state. Therefore, also
∨n−1

i=0 Si∧Ti is left-total in the union of the regions.

Hyp. F.3 ensures that every self-loop on Si decreases the associated rank-690

ing function Rfi. If a self-loop exist such transition is a ranked transition

and all such transitions are ranked. All such states admit a successor and

the successor must decrease the value of the ranking function. Therefore,

Hyp. II holds.

III As observed in the previous case, all self-loops on a region must decrease695

the corresponding transition relation. Therefore, H admits no stutter

transitions and Hyp. III holds.

IV Hyp. F.4 ensures that from every region Si when the ranking function Rfi

is equal to 0, in one transition Ti we always reach a state in Di and, by

hypotheses FL.1 and FL.2, such state is in the following region S(i+1)%n.700

Since, the transition relation is left-total by Hyp. F.1, then all states in

Si∧Rfi = 0 admit at least one and only successors in S(i+1)%n. Therefore,

Hyp. IV holds.

�

31

6.4. Operators over E-component705

We now define the projection and composition operators for E -components.

Intuitively, the first operator shrinks an E -component by considering only a

subset of its regions, while the second operator computes the product of n

E -components. These two operators will be useful to identify an E -component

that meets some additional requirements in order to represent a funnel-loop.710

E-component projection. We define a projection operation for E -components

that can be used to obtain a smaller E -component describing a subset of the

paths of the original structure. We project an E -component over an ordered

subset of its regions, then we restrict the transition relation by removing all

stuttering transitions and such that the progress transitions must follow the715

ordering of the regions and from the last region they can only reach the first

one. Therefore, the projection restricts the language of an E -component to the

paths that visit only regions in the sequence in order and are either finite or

reach the last region infinitely often.

Definition 4. Given an E-component H=̇〈V, I, T 〉 over m regions R, assump-720

tions A and ranking functions W, we define its projection to a sequence of k

indexes idxs=̇〈j↓0 , . . . , j
↓
k−1〉 such that idxs ⊆ {0, . . . ,m−1} as the E-component

H↓=̇〈V, I↓, T ↓〉 associated with regions R↓, assumptions A↓ and ranking func-

tions W↓ defined as follows:

• I↓=̇I ∧
∨

j∈idxs(Rj ∧Aj);725

• T ↓=̇T ∧
∧k−1

h=0Rj↓h
→ ((R′

j↓h
∧Rf′

j↓h
< Rfj↓h

) ∨ (Rfj↓h
= 0 ∧R′

j↓
(h+1)%k

))

• R↓=̇{Rj | j ∈ idxs ∧Rj ∈ R};

• A↓=̇{Aj | j ∈ idxs ∧Aj ∈ A};

• W↓=̇{Rfj | j ∈ idxs ∧Rfj ∈ W}.

Notice that in the projection we restrict the set of initial states to only730

those in one of the restricted regions corresponding to the indexes idxs, and

32

the transition relation is strengthened such that it imposes that the regions in

idxs are always visited in order. In addition, the projection operator does not

modify the regions, assumptions and ranking function of an E -component, but

considers a subset of them.735

Theorem 4. The projection H↓ over indexes idxs of an E-component H over

regions R, assumptions A and ranking functions W is an E-component.

The proof of Th. 4 is reported in Appendix B.3.

E-component composition. We compose E -components such that they meet

their respective assumptions. Given a set {Hi}ni=0 of E -components, we say740

that a set of transitions from regions {Ri
ji
}ni=0 to regions {Ri

j′i
}ni=0 are com-

patible, if every transition T i ensures that
∧n

s=0,s6=iA
s,i
j′s

holds. In addition, we

compose restricted regions of E -components iff the corresponding ranking func-

tions are independent: it is possible to decrease one independently from the

others. In the following we define two binary predicates compatible{Hi}ni=0
and745

indepRank{Hi}ni=0
that hold iff the two conditions are met.

Definition 5 (compatible transitions). Let {Hi}ni=0 be a set of

E-components such that {V i}ni=0 are pairwise disjoint and
⋃n

i=0 V
i ⊆ V .

A transition from state v to v′ is compatible iff the transitions of the

E-components, from every pair of states in the same regions, meet the respective

33

assumptions of the E-components.

compatible{Hi}ni=0
(V̂ , V̂ ′)=̇∀V, V ′ :

∧
0≤j0<m0,0≤j′0<m0,...,0≤jn<mn,0≤j′n<mn︸ ︷︷ ︸

all possible pair of indexes for the E-components {Hi}ni=0

(

n∧
i=0

Ri
ji(V̂) ∧Ai

ji(V̂
6=i) ∧Ri

j′i
(V̂ ′) ∧Ai

j′i
(V̂ 6=i′)︸ ︷︷ ︸

ji,j′i containing both V̂ and V̂ ′

∧

Ri
ji(V) ∧Ai

ji(V
6=i) ∧Ri

j′i
(V ′) ∧Ai

j′i
(V 6={h}

n
h=0
′
) ∧ T i(V, V ′)︸ ︷︷ ︸

for all V in ji, V ′ in j′i such that V, V ′ |= T i and V ′ meets all

assumptions of Hi at j′i on symbols of E-components not in {Hi}ni=0

∧

(Rfij′i(V̂
′) < Rfiji(V̂)↔ Rfij′i(V

′) < Rfiji(V))︸ ︷︷ ︸
transition V,V ′ of the same type of transitionV̂ ,V̂ ′

∧

(0 < Rfiji(V̂)↔ 0 < Rfiji(V)) ∧ (0 < Rfij′i(V̂
′)↔ 0 < Rfij′i(V

′)))→
n∧

i=0

n∧
h=0,h6=i

Ai,h
j′i

(V h′).︸ ︷︷ ︸
all assumptions of Hi on the {V h}nh=0 are met

A set of transitions has independent ranks if it is possible to decrease each

ranking function independently from the others. Consider the restricted regions

{Ri
ji
∧Ai

ji
}ni=0, there exist transitions with independent ranks if, for each Rfirjir

with 0 ≤ ir ≤ n, it is possible to perform a self-loop on the conjunction of the750

restricted regions
∧n

i=0R
i
ji
∧ Ai

ji
such that Rfirjir decreases and all the other

ranking functions remain constant:
∧n

i=0,i6=ir
Rfiji

′
= Rfiji .

Definition 6 (independent ranks). Let {Hi}ni=0 be a set of the

E-components such that {V i}ni=0 are pairwise disjoint and
⋃n

i=0 V
i ⊆ V .

A self-loop over the intersection of the restricted regions has independent

ranks iff for every ranking function there exists a compatible conjunction of the

34

transitions decreasing only that function.

indepRank{Hi}ni=0
(V̂ , V̂ ′)=̇

∧
0≤j0<m0,...,0≤jn<mn︸ ︷︷ ︸

all possible indexes for the E-components {Hi}ni=0

(((

n∑
i=0

Rfiji)(V̂
′) < (

n∑
i=0

Rfiji)(V̂)︸ ︷︷ ︸
some ranking function decreases, all others remain constant

∧

n∧
i=0

Ri
ji(V̂) ∧Ai

ji(V̂
6=i) ∧Ri

ji(V̂
′) ∧Ai

ji(V̂
6=i′)︸ ︷︷ ︸

V̂ ,V̂ ′are in restricted regions ji,j′i

)→

n∧
i=0

(∀V : (

n∧
h=0

Rh
jh

(V) ∧Ah
jh

(V 6=h))→ Rfiji(V) = 0)︸ ︷︷ ︸
current ranking function Rfiji

is always 0

∨

∃V, V ′ : (

n∧
h=0

Rh
jh

(V) ∧Ah
jh

(V 6=h) ∧ Th(V, V ′) ∧Rh
jh

(V ′) ∧Ah
jh

(V 6=h′))︸ ︷︷ ︸
V,V ′ in same restricted regions of V̂ ,V̂ ′

∧

Rfiji(V
′) < Rfiji(V) ∧ (

n∧
h=0,h6=i

Rfhjh(V ′) = Rfhjh(V))︸ ︷︷ ︸
current ranking function decreases, all others remain constant

∧

compatible{Hk}nk=0
(V, V ′))

The composition operator for a set of E -components {Hi}ni=0 requires the

corresponding sets {V i}ni=0 to be pairwise disjoint. We write {V i}i 6∈{0,...,n} for

the possibly empty list of other sets to complete the partitioning: {V i}ni=0 ∪755

{V i}i 6∈{0,...,n} is a partitioning of V .

Definition 7 (composition of E-components). We define the composition

of a set of E-components {Hi}ni=0, such that the sets of local symbols {V i}ni=0

are pairwise disjoint, as Hc=̇
⊗n

i=0H
i = 〈V, Ic, T c〉 where:

• V c=̇
⋃n

i=0 V
i.760

• The set of regions is the intersection of the regions and assumptions over

35

V c of the E-components.

Rc=̇{
n∧

i=0

Ri
ji ∧

n∧
h=0,h6=i

Ai,h
ji
| ∀i ∈ {0, . . . , n}, ji ∈ {0, . . . ,mi − 1} : Ri

ji ∈ R
i∧

∀h ∈ {0, . . . , n} \ {i} : Ai
ji ∈ A

i ∧Ai,h
ji
∈ Ai

ji}

• The set of assumptions is given by the conjunction of the assumptions of

the {Hi}ni=0 over the symbols not in V c.

Ac=̇{
n∧

i=0

∧
h6∈{0,...,n}

Ai,h
ji
| ∀i ∈ {0, . . . , n}, h 6∈ {0, . . . , n}, ji ∈ {0, . . . ,mi − 1} :

Ai
ji ∈ A

i ∧Ai,h
ji
∈ Ai

ji}

• The ranking functions for the regions are obtained by considering the sum

of the ones corresponding to the regions of the {Hi}ni=0.

Wc=̇{
n∑

i=0

Rfiji | ∀i ∈ {0, . . . , n}, ji ∈ {0, . . . ,m
i − 1} : Rfiji ∈ W

i}

• Ic=̇
∧n

i=0 I
i;

• The set of transitions is given by the conjunction of the transition relations

of the {Hi}ni=0 restricted to the compatible transitions.

T c=̇compatible{Hi}ni=0
∧ indepRank{Hi}ni=0

∧
n∧

i=0

T i

Theorem 5. Given a set of E-components {Hi}ni=0, their composition

Hc=̇
⊗n

i=0H
i = 〈V, Ic, T c〉 is an E-component with respect to regions Rc, as-765

sumptions Ac and ranking functions Wc.

The proof of Th. 5 is reported in Appendix B.4.

We remark that the definition of the composition operator ensures that Hc ad-

mits only transitions that satisfy both compatible and indepRank . In addition,

we consider only simple interactions between the ranking functions of different770

E -components. It is possible to extend the operator to allow for more complex

36

combinations such as nesting of ranking functions or allowing the ranking func-

tion of an E -component to decrease once every time all the other E -components

perform a loop over their regions. However, including this kind of compositions

would make the definitions and proofs much more complex and with many more775

cases to be considered.

6.5. Example E-components composition

We now show how the E -components we defined in Subsec. 6.2 can be com-

bined to conclude the existence of a fair path in the fair transition system Ex

defined in Sec. 4.780

We first compute a E -component Hf0,f1 as Hf0 ⊗ Hf1 . Hf0 and Hf1

have no assumptions and all ranking functions are always equal to their

minimal element. Therefore, all transitions are compatible and the result

of the composition is the synchronous product of the two E -components.

Rf0,f1
0

¬f0 ∧ ¬f1

Rf0,f1
1

f0 ∧ ¬f1

Rf0,f1
3

¬f0 ∧ f1

Rf0,f1
2

f0 ∧ f1

Figure 10:

E -component responsible for {f0, f1}.

Fig. 10 depicts the resulting785

E -component Hf0,f1 . Hf0,f1 has

four regions, one for each of the

possible truth assignments of the two

Boolean symbols f0 and f1 and it

allows all 16 possible transitions and790

self-loops over them.

We now compute Hx,y responsible

for x and y as the composition of Hx

and Hy; the E -component is depicted in Fig. 11. The assumption of Hx requires

y ≤ 1 and both assumptions of Hy require x ≥ 1. Therefore, it can be easily795

seen that Hx will always meet the assumptions required by Hy and vice-versa

also Hy meets the assumption of Hx. Since the two E -components do not have

any assumptions on the other symbols, the resulting E -component Hx,y has

no assumptions. Hx,y has two regions, obtained by the conjunction of the two

regions of Hy with the only region of Hx. The transition relation of Hx,y is given800

by the conjunction of the transition relations of Hx and Hy. Both regions of the

37

x′ = x+ 1
y′ = y

x′ = x
y′ = y

Rx,y
0

x ≥ 1
y = −1

x′ = x+ 1
y′ = y

x′ = x
y′ = y

Rx,y
1

x ≥ 1
y = 1

x′ = x+ 1 ∧ y′ = −y

x′ = x ∧ y′ = −y

x′ = x ∧ y′ = −y

x′ = x+ 1 ∧ y′ = −y

Figure 11: E -component responsible for {x, y}.

E -component admit stutter transitions of two kinds: one in which both variables

x and y remain constant, and one in which y is constant and x increases by one.

Notice that the ranking functions of the regions are always constant and equal to

the minimal element. Therefore, the transitions satisfy indepRank because its805

definition (Def. 6) is an implication in which the left-hand-side requires at least

one ranking function to decrease. Finally, Hx,y also admits progress transitions

from one region to the other of two kinds: in both cases the value of y changes

its sign, while in one case x remains constant and in the other it increments by

one.810

R0

pc = 3

f0 ∧ f1
x ≥ 1

y = 1

x′ = x

y′ = y

R1

pc = 4

¬f0 ∧ ¬f1
x ≥ 1

y = 1

x′ = x

y′ = −y

R2

pc = 5

f0 ∧ ¬f1
x ≥ 1

y = −1

x′ = x+ 1

y′ = y

R3

pc = 3

f0 ∧ f1
x ≥ 1

y = −1

x′ = x

y′ = y

R4

pc = 4

¬f0 ∧ ¬f1
x ≥ 1

y = −1

x′ = x

y′ = −y

R5

pc = 5

¬f0 ∧ f1
x ≥ 1

y = 1

x′ = x+ 1

y′ = y

Figure 12: E -component responsible for all symbols.

38

Finally, we compute H=̇Hpc ⊗ Hx,y ⊗ Hf0,f1 . None of the E -components

has assumptions and all their ranking functions are always equal to the minimal

element. For this reason, all transitions are compatible and have independent

ranks. Therefore, the transition relation of H is the conjunction of the transition

relations of the 3 E -components. H has 24 regions, given by the product of the 3

regions of Hpc, 2 of Hx,y and 4 of Hf0,f1 . The regions represent all the different

configurations that can be reached by employing compatible transitions of our

E -components Hpc, Hf0 , Hf1 , Hx and Hy. Recall that our objective is to

identify fair paths for the fair transition system Ex defined in Sec. 4. Not all

transitions of H are also transition of Ex . For example, H admits a transition

that increases the value of x from states where pc = 3, while this is not possible

in Ex . However, using the projection operator we can restrict H by considering

a subset of its regions. In particular, we are interested in the sequence of regions

that would allow us to obtain a representation of at least one fair path for Ex .

We select 6 regions and depict the projection of H over such regions in Fig. 12.

We call this projection H↓. In particular we consider the following regions:

R0 =̇ f0 ∧ f1 ∧ y = 1 ∧ x ≥ 1 ∧ pc = 3,

R1 =̇ ¬f0 ∧ ¬f1 ∧ y = 1 ∧ x ≥ 1 ∧ pc = 4,

R2 =̇ f0 ∧ ¬f1 ∧ y = −1 ∧ x ≥ 1 ∧ pc = 5,

R3 =̇ f0 ∧ f1 ∧ y = −1 ∧ x ≥ 1 ∧ pc = 3,

R4 =̇ ¬f0 ∧ ¬f1 ∧ y = −1 ∧ x ≥ 1 ∧ pc = 4,

R5 =̇ ¬f0 ∧ f1 ∧ y = 1 ∧ x ≥ 1 ∧ pc = 5.

Notice that the 6 regions underapproximate those that we have already consid-

ered in the funnel-loop described in §5.3. In particular, for every i ∈ {0, . . . , 5}

Ri underapproximates Si. In fact, there is correspondence between the paths

of H↓ and those of the funnel-loop. Therefore, H↓ proves the existence of a

fair path in the language of the fair transition system Ex and we reached our815

goal. In the following we formalise this relationship between E -components and

funnel-loops. Th. 6 details the conditions under which an E -component implies

39

the existence of a funnel-loop proving the non-emptiness of the language of a

fair transition system.

6.6. From E-components to funnel-loops820

We now provide a sequence of sufficient conditions for an E -component

H=̇〈V, I, T 〉 over regions R, assumptions A and ranking functions W to de-

scribe a funnel-loop.

Theorem 6. Let M be a given fair transition system M=̇〈V, IM , TM , FM 〉.

The existence of an E-component H=̇〈V, I, T 〉 responsible for all symbols V825

over regions R and ranking functions W of length m satisfying all the following

conditions, implies the existence of a funnel-loop for M , hence the existence of

at least one fair path in M .

H.0 An initial state of H is reachable in M :

M I

H.1 The transition relation of H, restricted to the transitions that follow the830

sequence of regions R, underapproximates the transition relation of M :

∀j, V, V ′ : Rj ∧ T ∧ ((Rf′j < Rf ∧R′j) ∨ (Rfj = 0 ∧R′(j+1)%m))→ TM

H.2 From the last region in R, H can only reach fair states.

∀V, V ′ : Rm−1 ∧Rfm−1 = 0 ∧ T ∧R′0 → FM ′

H.3 There must exist a transition from each Rj with Rfj = 0 to the following

region R(j+1)%m:

∀j∃V, V ′ : 0 ≤ j < n− 1→ Rj ∧Rfj = 0 ∧ T ∧R′(j+1)%m

H.4 If a region has a non-trivial ranking function, then it must be possible to835

decrease it:

∀j : 0 ≤ j < m→ (∀V : Rfj = 0) ∨ (∃V, V ′ : Rj ∧ T ∧R′j ∧Rf′j < Rf)

40

Proof. Since H is responsible for all symbols V , then all assumptions in A are

empty. We first define the funnel-loop floop corresponding to the E -component

H and then prove that: all of its funnels meet the hypotheses of Def. 1, floop

is indeed a funnel-loop (Def. 2) and floop meets all the hypotheses of Th. 1.840

Define floop as the concatenation of the funnels {fnlj}m−1j=0 . Each funnel

fnlj is the 4-tuple 〈Sj , Tj , Dj ,Rfj〉 such that:

• Sj=̇Rj for Rj ∈ R;

• Tj=̇T ∧ ((Rf′j < Rfj ∧R′j) ∨ (Rfj = 0 ∧R′(j+1)%m));

• Dj=̇∃V ′ : Rj ∧Rfj = 0 ∧ T ∧R′(j+1)%m;845

• Rfj ∈ W.

We show that each fnlj is a funnel (Def. 1).

F.1 Tj is left-total with respect to Sj because T always allows for at least one

successor that is either in the same region with decreasing ranking function

or in the following region. H is an E -component, hence it satisfies Hyp. II850

and Hyp. IV. Hypotheses H.4 and H.3 ensure that at least one transition

of both kinds exists in H. Therefore, from every state in Sj with 0 < Rfj

there exists a successor in the same region with Rf′j < Rfj and from every

state in Sj with Rfj = 0, T admits a successor in S(j+1)%m.

F.2 holds by construction of Tj ; 0 < Rfj implies that the second component855

of the disjunction in Tj is false and Tj becomes equivalent to T ∧Rf′j <

Rfj ∧R′j which implies R′j .

F.3 holds by construction of Tj ; 0 < Rfj implies that the second component

of the disjunction in Tj is false and Tj becomes equivalent to T ∧Rf′j <

Rfj ∧R′j which implies Rf′j < Rfj .860

F.4 holds by construction of Di: we defined it as the existential image of

Rj ∧Rfj = 0 with respect to T ∧R′(j+1)%m.

We now show that floop is a funnel-loop (Def. 2).

41

FL.1, FL.2 By construction each Tj , from a state in Rj ∧Rfj = 0 with j < m

can only reach states that are in R(j+1)%m. Therefore, by construction of865

Dj both Hyp. FL.1 (for j < m− 1 and Hyp. FL.2 (for j = m− 1) hold.

Finally, we show that floop meets all hypotheses of Th. 1.

FF.1 Hyp. I ensures that the initial states of H underapproximate the union of

its regions. Hyp. H.0 ensures that there exist a reachable initial state in

H. Therefore, there is a reachable state in the union of the regions and870

Hyp. FF.1 holds.

FF.2 Dm−1 is defined as the existential image of Rm−1 ∧ Rfm−1 = 0 with

respect to T ∧ R′0. Hyp. H.2 ensures that all such states are also fair,

hence Hyp. FF.2 holds.

FF.3 By construction each Sj∧Tj underapproximates T . Hyp. H.1 ensures that875

T underapproximates TM . Therefore each Sj∧Tj underapproximates TM .

�

7. Search procedure

This section describes the procedure for the synthesis of a funnel-loop. Given

a fair transition system M and a set of E -components H, the procedure tries to880

find, in a fully automated manner, a funnel-loop fnl loop for M and a finite path

of M ending in a region of fnl loop. H is a possibly empty set of E -components

provided by the user to guide the search. For this reason we will refer to them

as hints. The procedure selects a possibly empty subset of hints and uses them

as building blocks to define the funnel-loop while synthesising the missing com-885

ponents. When the set of hints is empty the procedure identifies a funnel-loop

for a fair transition system without relying on any additional information. In

the following, we call trivial hint the E -component H=̇〈V,>,>〉 responsible for

no symbols (V H=̇∅) such that all its regions and assumptions are the constant

> and all its ranking functions are always 0.890

42

Algorithm 1 search-funnel-loop(M , H)

. Iterate over candidate loops of increasing length.

1: for 〈prefix , loop r , loop t , H〉 ∈ generate-candidate-loops(M,H) do

2: v0 ← prefix [len(prefix)− 1] . Witness for reachability, Hyp. FF.1.

. Iterate over funnel-loop templates for current candidate loop.

3: for template ∈ generate-templates(v0, loop r , loop t , H) do

4: ef constrs ← template.ef constraints() . Get ∃∀ problem.

5: 〈found ,model〉 ← seach-parameter-assignment(ef constrs)

6: if found == > then . Replace parameters with assignment.

7: fnl loop ← template.instantiate(model)

8: return 〈prefix , fnl loop〉 . Reachability witness and funnel-loop.

9: end if

10: end for

11: end for

12: return unknown

Alg. 1 describes the main steps of the procedure. We reduce the synthesis

problem to a sequence of SMT queries. In order to reduce the search space,

given a E -component H we only look for funnel-loops obtained by deterministic

completions of H; we strengthen the transition relation of H by adding deter-

ministic assignments to the symbols for which H is not responsible. More in895

detail, Alg. 1 enumerates candidate conjunctive fair loops of the fair transition

system and compositions of E -components that admit such loop (line 1). If

generate-candidate-loops selects no hints or H is empty the returned H is

the trivial hint. For each candidate loop, the procedure generates a sequence

of parameterised funnel-loops, called funnel-loop templates, as a strengthening900

of the corresponding E -component (line 3). The predicates of a funnel-loop

template are over the symbols of the system M and a set of parameters P . The

procedure searches an assignment to the parameters such that all the hypothe-

ses of Defs. 1 and 2 and of Th. 1 hold. At line 4 the procedure obtains the

∃∀-quantified problem associated with the funnel-loop template and then, at905

43

line 5 tries to solve it. Finally, at line 7, it replaces the parameters with the as-

signment identified at the previous step, thus obtaining the desired funnel-loop.

The procedure relies on ranking functions to perform two different tasks.

Alg. 2 tries to synthesise ranking functions to avoid considering candidate loops

for which we know a ranking function exists. The existence of the ranking910

function proves that the loop must eventually terminate, hence it cannot cor-

respond to an infinite path. Then, ranking function templates are also used as

components for the funnels of the funnel-loop template generated by Alg. 3.

Before going into the details of the procedure, we first show its application

to our running example. We then describe how we represent and enumerate915

candidate loops and compositions of E -components for the transition system M .

After that, we detail how a funnel-loop template is generated from a candidate

loop and E -component. Finally, we report the synthesis problem associated

with a funnel-loop template.

7.1. Example funnel-loop search920

We first recall the definition of the fair transition system Ex we introduced

in Sec. 4. Let V =̇{x, y, pc, f0, f1} be a set of symbols such that pc and x are

integer variables, y has real type and f0 and f1 are two Boolean symbols. Then,

the fair transition system is Ex =̇〈V, I, T, F 〉, where:

I =̇ pc = 3;

F =̇ f0 ∧ f1;

T =̇ (pc = 3→ (x2 ≥ xy ∧ pc′ = 4 ∧ x′ = x ∧ y′ = y)) ∧

(pc = 4→ (pc′ = 5 ∧ x′ = x)) ∧

(pc = 5→ (pc′ = 3 ∧ x′ = x+ 1 ∧ y′ = y)) ∧

((f0 ∧ f1)→ (¬f ′0 ∧ ¬f ′1)) ∧

(f ′0 → (f0 ∨ y > 0)) ∧ (f ′1 → (f1 ∨ y < 0)).

In addition, we assume no hints were provided, i.e. H=̇∅. Let Ex and H

be the inputs of our procedure. Alg. 1 at line 1 iterates over the candidate

44

loops generated from Ex and H. 〈v0, loop r , loop t , H〉. loop r and loop t are

sequences of predicates over V and V ∪ V ′ respectively. The two sequences,

together with H, describe the abstract loop. Instead, v0 is a state in the first

region of loop r reachable in Ex . Therefore, it is the last state of a finite

path prefix of Ex that starts its initial states and ends in v0. We compute

〈v0, loop r , loop t , H〉 by employing a liveness-to-safety [9] transformation of

Ex where the loop-back is identified in an abstract state. We then employ an

unrolling of the transition relation in the style of Bounded Model Checking

(BMC) [16] to enumerate concrete paths of Ex with such abstract loop-back.

The stem of this concrete path corresponds to our prefix . loop r and loop t

are obtained from the loop of the concrete path by computing an implicant for

the unrolling of the transition relation of Ex . We then partition the predicates

in the implicant depending on their index in the unrolling and whether they

contain only current (loop r) or both current and next-state variables (loop t).

Assume we are considering a BMC unrolling of 6 transitions of Ex and obtain

the following path:

0 : f0 ∧ f1 ∧ pc = 3 ∧ x = 1 ∧ y = 1;

1 : ¬f0 ∧ ¬f1 ∧ pc = 4 ∧ x = 1 ∧ y = 1;

2 : f0 ∧ ¬f1 ∧ pc = 5 ∧ x = 1 ∧ y = −1;

3 : f0 ∧ f1 ∧ pc = 3 ∧ x = 2 ∧ y = −1;

4 : ¬f0 ∧ ¬f1 ∧ pc = 4 ∧ x = 2 ∧ y = −1;

5 : ¬f0 ∧ f1 ∧ pc = 5 ∧ x = 2 ∧ y = 2;

6 : f0 ∧ f1 ∧ pc = 3 ∧ x = 3 ∧ y = 2;

where the states with indexes 0 and 6 correspond to the same state in the

abstract space defined by the predicates appearing in Ex . We use this path to

compute an implicant for the formula F (V0) ∧
∧5

i=0 T (Vi, Vi+1). The implicant

is a conjunction of a subset of the atoms appearing in the formula such that it

implies the formula itself. In addition, the path is a satisfying assignment also925

for the implicant. Each predicate in the unrolling depends either on a single

45

Vi or on Vi ∪ Vi+1 for some i, hence the same holds for the predicates in the

implicant. We partition the atoms of the implicant such that the predicates

that depend only on Vi are in loop r [i%6] and those that depend on Vi ∪ Vi+1

are placed in loop t [i]. The first and last state correspond to the same abstract930

region, hence their predicates are placed together into loop r [0].

The computation above allows us to obtain the following. Since H is empty

H is the trivial hint. The prefix contains a single state: prefix =̇ [f0 ∧ f1 ∧ pc =

3∧ x = 1∧ y = 1], loop r and loop t have length 6 and each loop r [i]∧ loop t [i]

underapproximates the transition relation T .

0 :

1 :

2 :

3 :

4 :

5 :

loop r =̇ [

f0 ∧ f1 ∧ pc = 3 ∧ x2 ≥ xy,

¬f0 ∧ ¬f1 ∧ pc = 4 ∧ y > 0,

f0 ∧ ¬f1 ∧ pc = 5 ∧ y < 0,

f0 ∧ f1 ∧ pc = 3 ∧ x2 ≥ xy,

¬f0 ∧ ¬f1 ∧ pc = 4 ∧ y < 0,

¬f0 ∧ f1 ∧ pc = 5 ∧ y > 0]

loop t =̇ [

¬f ′0 ∧ ¬f ′1 ∧ pc′ = 4 ∧ x′ = x ∧ y′ = y,

f ′0 ∧ ¬f ′1 ∧ pc′ = 5 ∧ x′ = x,

f ′0 ∧ f ′1 ∧ pc′ = 3 ∧ x′ = x+ 1 ∧ y′ = y,

¬f ′0 ∧ ¬f ′1 ∧ pc′ = 4 ∧ x′ = x ∧ y′ = y,

¬f ′0 ∧ f ′1 ∧ pc′ = 5 ∧ x′ = x,

f ′0 ∧ f ′1 ∧ pc′ = 3 ∧ x′ = x+ 1 ∧ y′ = y]

We now search for a funnel-loop as a strengthening of this candidate loop.

Notice that the candidate loop by itself is not sufficient. In fact, loop t [1] does

not constrain the next assignment of y′, hence it does not guarantee that y < 0

holds in the next state as required by loop r [2]. Before building the funnel-loop

template, we can perform some simplifications on the candidate loop to reduce

the number of parameters introduced by the template and ease the presentation.

First of all, notice that every step i in loop t assigns to the variables f0, f1 and

pc a constant value that corresponds to the one required by loop r [(i + 1)%6].

Therefore, for brevity, we will omit such constraints from the formulae in loop t

and focus our presentation on x and y. Moreover, many steps in loop t require

x or y to remain constant. Consider a step t=̇loop t [i] that requires y to be

constant. We need t to map states in rs=̇loop r [i] into rd=̇loop r [(i + 1)%6].

Therefore, if rd requires y to be positive (y > 0), then the same must hold in

46

rs and vice-versa. We can exploit identity relations in loop t to symbolically

propagate constraints in loop r . By employing these transformations we obtain

the following:

0 :

1 :

2 :

3 :

4 :

5 :

loop r =̇ [

f0 ∧ f1 ∧ pc = 3 ∧ x2 ≥ xy ∧ y > 0,

¬f0 ∧ ¬f1 ∧ pc = 4 ∧ y > 0,

f0 ∧ ¬f1 ∧ pc = 5 ∧ y < 0,

f0 ∧ f1 ∧ pc = 3 ∧ x2 ≥ xy ∧ y < 0,

¬f0 ∧ ¬f1 ∧ pc = 4 ∧ y < 0,

¬f0 ∧ f1 ∧ pc = 5 ∧ y > 0]

loop t =̇ [

x′ = x ∧ y′ = y,

x′ = x,

x′ = x+ 1 ∧ y′ = y,

x′ = x ∧ y′ = y,

x′ = x,

x′ = x+ 1 ∧ y′ = y]

We now define a funnel-loop template of length 6 that can be generated by the

procedure at line 3. For i ∈ {0, . . . , 5}, we define the ith funnel of the template

as a strengthening of loop r [i] and loop t [i]. In the template we use symbols

from the set P =̇{pi|i ∈ N}, disjoint from V , as parameters. The parameters935

are variables for which we need to find an assignment such that the template

corresponds to an actual funnel-loop. Notice that the steps in loop t already

prescribe functional assignments for all variables but for y at steps 1 and 4. For

this reason, we introduce 2 parametric affine expressions to underapproximate

the assignment to y′. In addition, we introduce parametric affine inequalities940

over x and y to strengthen the elements of loop r. Also in this case we reduce

the number of parameters we need to introduce by exploiting the functional

assignments of loop t. For i ∈ {0, 1 . . . , 5}, let fnli=̇〈srci, ti,0, dsti〉 be the ith

funnel of the template. We define each destination region dsti as the set of

states reachable from the previous source region when the ranking function is945

equal to the minimal element. Since we defined every ranking function to be

always equal to the minimal element, we define each destination region as:

dsti=̇∃V : srci(V, P) ∧ ti(V, V ′, P).

47

We define the source regions and transition relations as follows.

src0 =̇ loop r [0] ∧ p6x+ p7y + p8 ≥ 0,

src1 =̇ loop r [1] ∧ p6x+ p7y + p8 ≥ 0,

src2 =̇ loop r [2] ∧ p9x+ p10y + p11 + p9 ≥ 0,

src3 =̇ loop r [3] ∧ p9x+ p10y + p11 ≥ 0,

src4 =̇ loop r [4] ∧ p9x+ p10y + p11 ≥ 0,

src5 =̇ loop r [5] ∧ p6x+ p7y + p8 + p6 ≥ 0;

t0 =̇ loop t [0],

t1 =̇ loop t [1] ∧ y′ = p0x+ p1y + p2,

t2 =̇ loop t [2],

t3 =̇ loop t [3],

t4 =̇ loop t [4] ∧ y′ = p3x+ p4y + p5,

t5 =̇ loop t [5].

We introduced two parametric inequalities: p6x + p7y + p8 ≥ 0 at index 1 and

p9x+p10y+p11 ≥ 0 at index 4. Then, we propagated the inequalities backward

exploiting the assignments to x and y of loop t . In particular, in loop t [0] and950

loop t [3] both x and y must remain constant. In loop t [2] and loop t [5], instead,

y remains constant and x increases by 1. Therefore, p9x + p10y + p11 ≥ 0 in

src3 implies that p9x + p10y + p11 + p9 ≥ 0 must hold in src2 and similarly

p6x+ p7y + p8 ≥ 0 in src0 implies p6x+ p7y + p8 + p6 ≥ 0 at src5. We remark

that exploiting the equalities in the transition relations is an optimisation we955

employ to reduce the number of parameters and has no effect on the correctness

of the approach.

Now, we need to identify an assignment to the parameters p0, . . . , p11 such

that the funnel-loop template satisfies all hypotheses of Def. 1, Def. 2 and Th. 1.

The procedure generates this synthesis problem at line 4 and it searches for960

a solution (assignment to the parameters) at line 5. The synthesis problem

requires the funnel-loop to be reachable in Ex (FF.1), hence also not empty.

We ensure this by requiring the first region of the funnel-loop to contain the

last state of the prefix, hence the state f0, f1, pc = 3, x = 1, y = 1 must be in

src0. Then, the funnel-loop must never encounter a deadlock (F.1). This is965

true by construction of the transition relations of the funnels, because every ti

is left-total for every assignment to the parameters. We need the funnels to be

correctly chained (FL.1, FL.2) and to underapproximate the transition relation

T of Ex (FF.3). We defined the destination regions as the set of states reachable

48

from the source region in one step. Therefore, we require the following to hold:970

∃P∀V : srci(V, P) ∧ ti(V, V ′, P)→ src(i+1)%6(V ′, P) ∧ T (V, V ′)

Finally, every state in src0 is a fair state, hence every path through the funnel-

loop template is a fair path of Ex (FF.2).

The following assignment to the parameters satisfies all these requirements:

p0 = 0, p1 = −1, p2 = 0, p3 = 0, p4 = −1, p5 = 0, p6 = 1, p7 = −1, p8 = 0, p9 =

1, p10 = 1, p11 = 0. We can substitute these values in the funnel-loop template

and obtain the following funnel-loop.

src0 =̇ loop r [0] ∧ x ≥ y,

src1 =̇ loop r [1] ∧ x ≥ y,

src2 =̇ loop r [2] ∧ x ≥ −y,

src3 =̇ loop r [3] ∧ x ≥ −y,

src4 =̇ loop r [4] ∧ x ≥ −y,

src5 =̇ loop r [5] ∧ x ≥ y;

t0 =̇ loop t [0],

t1 =̇ loop t [1] ∧ y′ = −y,

t2 =̇ loop t [2],

t3 =̇ loop t [3],

t4 =̇ loop t [4] ∧ y′ = −y,

t5 =̇ loop t [5].

Notice that in this process the parametric expressions allowed us to identify

an underapproximation of the transition relation of Ex that toggles the sign

of y instead of allowing any possible assignment. In addition, the parametric975

inequalities restricted the regions we obtained from the candidate loop to only

the states in which x ≥ |y|, hence ensuring that the loop condition x2 ≥ xy of

our example holds. In fact, x2 ≥ xy is redundant in src0 and src3; it is implied

by x ≥ y ∧ y > 0 in the first region and by x ≥ −y ∧ y < 0 in the second one.

Therefore, this funnel-loop is equivalent to the one we defined in §5.3.980

7.2. Candidate fair loops: representation and enumeration

We identify lasso-shaped paths in the abstract space built by the assignments

to a finite set of predicates: two states that agree on the truth assignment for

all such predicates correspond to the same abstract state. We then represent

the fair loop as a sequence of transitions and regions (sets of states) that un-985

derapproximate the transition relation of M .

49

Given a fair transition system M=̇〈V, IM , TM , FM 〉 we describe a can-

didate fair loop of length n for M , associated with an E -component

H=̇〈V, IH , TH〉 over regions R=̇[Ri]
n−1
i=0 , assumptions A=̇[Ai]

n−1
i=0 , ranking func-

tions Rf=̇[Rfi]
n−1
i=0 and responsible for symbols V H ⊆ V , as a sequence of re-

gions loop r=̇[loop r i(V)]n−1i=0 , transitions loop t=̇[loop t i(V, V
6=H ′)]n−2i=0 and an

initial state v0, where V 6=H=̇V \ V H . Such that: (i) v0 |= loop r0 ∧ IH , (ii)

v0 is reachable in M , (iii) the conjunction of a loop r i and the corresponding

restricted region Ri ∧Ai underapproximates the fair states

∃i∀V : loop r i ∧Ri ∧Ai → FM ,

and (iv) for each step, the conjunction of loop t i and the transition relation TH

of H is an implicant for a transition in M

∀i, V, V ′ : (loop r i ∧Ri ∧Ai ∧ loop t i ∧ TH∧

((0 < Rfi ∧R′i) ∨ (Rfi = 0 ∧R′i+i)))→ TM .

Without loss of generality, and to simplify the presentation, we assume the

fair region to be the first one. The structure of a candidate loop resembles a

funnel-loop. However, candidate loops are not guaranteed to satisfy all required

hypotheses. In particular, the transitions loop t i ∧ TH could admit deadlocks990

(Hyp. F.1) and they are not guaranteed to map every state in the previous region

into some state in the following one (Hypotheses FL.1 and FL.2). In addition,

H may not provide all the required ranking functions. For this reason, in order

to identify a funnel-loop, we look for a strengthening of the candidate loop that

also satisfies these conditions.995

The enumeration of candidate loops and compositions is performed by Alg. 2.

The procedure is based on Bounded Model Checking (BMC) [16], for the enu-

meration of candidate paths, and on the computation of an underapproximation

of M for each path. The function encode-l2s-fair-abstract-loop (line 1)

encodes the search for a fair lasso-shaped path in the intersection of M and the1000

composition of a subset of H into a reachability problem given by 〈V, I, T, bad〉.

The problem requires us to identify paths over the variables V , starting in I(V)

50

Algorithm 2 generate-candidate-loops(M , H)

. L2S encoding into reachability problem and E -component selection.

1: 〈V, I, T, bad〉 ← encode-l2s-fair-abstract-loop(M,H)

2: for k ∈ [0, 1, 2, . . .] do . BMC unrolling: k steps.

3: query ← I(V0) ∧
∧k−1

i=0 T (Vi, Vi+1) ∧ bad(Vk) . BMC reachability.

4: 〈sat ,model〉 ← smt-solve(query) . Find first path of length k.

5: refs ← [] . Keep track of visited paths of length k.

6: while sat do . Generate all candidates from paths of same length.

7: H ← get-candidate-composition(model) . Path selects hints.

8: 〈conflict〉 ← get-comp-error(H)

9: if conflict 6= ⊥ then . Learn incompatible transitions.

10: 〈V, I, T, bad〉 ← remove-conflict(V, I, T, bad , conflict)

11: else . H is valid E -component.

12: 〈loop r , loop t〉 ← underapproximate(model , query , H)

13: 〈is ranked , rf 〉 ← rank-loop(loop r , loop t , H)

14: if is ranked then . Learn ranking function.

15: 〈V, I, T, bad〉 ← remove-ranked-loops(V, I, T, bad , rf)

16: else . Unable to find ranking function, could be nonterminating.

17: prefix ← get-prefix(model) . Get stem of abstract lasso.

18: yield 〈prefix , loop r , loop t , H〉 . Coroutine returns triples.

19: refs.append(¬(
∧

r∈loop r r ∧
∧

t∈loop t t)) . Mark visited.

20: end if

21: end if

22: query ← I(V0) ∧
∧k−1

i=0 T (Vi, Vi+1) ∧ bad(Vk) ∧
∧

ref∈refs ref

23: 〈sat ,model〉 ← smt-solve(query) . Find next path of length k.

24: end while

25: end for

and following the steps given by T (V, V ′) that end in some state in bad(V). We

obtain this encoding via a liveness-to-safety [9] construction that transforms the

problem of identifying an abstract lasso into a reachability problem. The loop-1005

51

back state is identified in the abstract space defined by the predicates in the

E -components and in the transition relation and fairness condition of M . The

last state and the loop-back state of the abstract lasso must agree on the truth

assignment of all such predicates, hence they may not be the very same assign-

ment. In the encoding, a set of fresh Boolean variables selects the E -components1010

to be considered, and the path must be such that at most one ranking function

decreases at a time. We then rely on a SMT-solver to identify fair lasso paths of

increasing length k (line 2), as done for the abstract liveness-to-safety algorithm

of [11]. The models of this BMC unrolling describe a path in the language of

both M and the composition of a subset of the E -components in H. If H is1015

empty or none of the hints is selected, get-candidate-composition (line 7)

returns the trivial hint H of length equal to the number of states in the ab-

stract lasso. Instead, if some hints are selected, H is given by their composition

projected over the ordered sequence of regions visited by the path. The se-

lected E -components might not be compatible, for this reason, after extracting1020

the candidate composition at line 7 from the BMC model, get-comp-error

(line 8) checks if each transition in the composition is compatible (the trivial hint

is trivally compatible). If this is not the case, a conflict predicate representing

the transitions that are not compatible is used by remove-conflict to refine

the reachability problem 〈V, I, T, bad〉 such that we avoid generating the same1025

conflict again. If H is a valid E -component the function underapproximate

(line 12) computes two sequences of n − 1 formulae: loop r=̇[loop r i(V)]n−2i=0

and loop t=̇[loop t i(V, V
′)]n−2i=0 such that each loop r i ∧ loop t i, together with

H, underapproximates the transition relation of M . The function computes an

implicant for the formula query such that the assignments of the lasso described1030

by model satisfy both formulae. We then partition, for each step i, the predi-

cates in the implicant into two sets. All predicates containing only symbols of

V at step i are in loop r i, while the predicates containing symbols from V ∪ V ′

at step i are in loop t i. Therefore, we split the predicates used to describe the

regions from the ones that constrain the transitions. We use loop r i and loop t i1035

as formulae meaning the conjunction of all the predicates in the set and they,

52

together with H, describe the candidate fair loop.

Then, at line 13, we try to synthesise a ranking function for such candidate

loop via the method rank-loop. In the literature there are many approaches

for the synthesis of ranking functions [17, 18, 19], here we simply assume we are1040

given a method that returns the representation of a ranking function rf proving

the termination of a candidate loop. If the procedure succeeds in identifying a

ranking function, the reachability problem 〈V, I, T, bad〉 is refined such that we

avoid enumerating other loops ranked by the same function, as described in [11].

This is achieved by calling remove-ranked-loops at line 15). Otherwise, at1045

line 17, get-prefix extracts from model the prefix of the loop; i.e. the path

of M ending in the the loop-back state. The prefix represents a witness for the

reachability of the first region of the candidate loop in M and the procedure

returns it together with the current candidate loop, at line 18. If no candi-

date loop of length k exists, we clear the list of refinements and enumerate the1050

candidate loops of length k + 1.

Example. We now provide a brief example on the computation of the under-

approximation of M described by loop r and loop t . Assume the transition

relation of M is T =̇(a ≤ 1 → b′ > b) ∧ (a ≥ 2 → b′ < b), and the loop de-

scribed by model is given by the assignments a0 = 1, b0 = 0, a1 = 2, b1 = 11055

and a2 = 0, b2 = 0. Three steps of M are represented by the formula

T (V0, V1)∧T (V1, V2). An implicant for such formula satisfied by model is given

by {a0 ≤ 1, b1 > b0, a1 ≥ 2, b2 < b1}. Such an implicant can be obtained,

for example, by applying the techniques presented in [20, 21]. Finally, we par-

tition this set into loop r and loop t by defining their components as follows:1060

loop r0=̇a ≤ 1, loop t0=̇b′ > b, loop r1=̇a1 ≥ 2 and loop t1=̇b′ < b.

7.3. Funnel-loop templates

We call funnel-loop template a candidate funnel-loop whose predicates con-

tain symbols of both V and a set of parameters P (P and V are disjoint).

For each candidate fair loop we generate a sequence of such templates and1065

53

try to identify an assignment to the symbols P such that by replacing them

with the identified values we obtain a funnel-loop satisfying all the required

hypotheses. In the following, the function called new-param-expr generates

expressions over the symbols V and the parameters P , e.g. affine linear func-

tions p0 +
∑|V |

i=1 pivi, where |V | is the number of symbols in V and for all i,1070

pi ∈ P and vi ∈ V . The function introduces as many parameters as necessary

to generate the required expressions.

Alg. 3 shows the procedure we use to generate funnel-loop templates from a

candidate loop. We generate templates of the same length as the candidate loop.

Function heuristic-pick-num-ineqs (line 1) selects a list of natural numbers1075

to be used to generate the funnel-loop templates. Each number corresponds

to the amount of parametric inequalities added to each region of the candidate

loop to define the corresponding source region of a funnel template (line 7).

The higher the number the more freedom will the template have in shrinking

the regions, but in the search problem we will have more parameters and a1080

larger space to explore. Notice that, since the first region of the candidate

loop is fair by construction, then the last destination region in the funnel-loop

template will be fair and Hyp. FF.2 holds. We create the ith funnel of the funnel-

loop template (lines 6–25) as a restriction of the conjunction of the ith region

and transition of the candidate loop. In addition, the only nondeterministic1085

component in t is given by the transition relation of H. All other components

of the transition relation t of the funnel are a deterministic functional assignment

as follows. Let V H be the symbols for which H is responsible. For each symbol

vi+1 ∈ Vi+1 \ V H
i+1, if loop t i already contains a functional assignment for vi+1,

then we use that (line 17). Otherwise, we generate a functional assignment for1090

vi+1 as a parametric expression over the symbols in Vi (line 19). The resulting

transition relation is total and Hyp. F.1 holds. We define the destination region

of a funnel implicitly as the set of states reachable in one step from S ∧Rf = 0

(line 23), hence Hyp. F.4 holds by construction. Finally, the procedure returns

the funnel-loop template associated with the list of parametric funnels and initial1095

state v0. We will ensure that v0 is in the first source region of the funnel-loop.

54

Algorithm 3 generate-templates(v0, loop r , loop t , H)

1: ineqs ← heuristic-pick-num-ineqs(loop r , loop t , H)

2: 〈V H , IH , TH ,R,A,Rf〉 ← H . Get components defining H.

3: for ineq ∈ ineqs do . Use ineq parametric inequalities in regions.

4: n← len(loop r) . Length of template + 1: loop-back region.

5: funnels ← [] . List of funnels for funnel-loop template.

6: for i ∈ [0..n− 2] do . Create ith funnel: 〈src, t, rf , dst〉.

7: src ← loop r [i] ∧R[i] ∧ A[i] ∧
∧ineq−1

j=0 new-param-expr(V) ≥ 0

8: if ∃V : 0 < Rf[i](V) then

9: rf ← Rf[i] . H defines ranking function.

10: else

11: rf ← new-param-expr(V) . Parametric ranking function.

12: end if

13: t← R[i] ∧ A[i] . Transition of H in ith region.

14: t← t ∧ TH ∧ ((0 < rf ∧R[i]′ ∧ rf ′ ≤ rf) ∨ (rf = 0 ∧R[i+ 1]′))

15: for vi+1 ∈ Vi+1 \ V H
i+1 do . Add functional assign for vi+1 in t

16: if vi+1 = f(Vi) ∈ loop t [i] for some function f then

17: t← t ∧ vi+1 = f(Vi) . Functional assignment in candidate.

18: else

19: t← t ∧ vi+1 = new-param-expr(Vi) . Create new expr.

20: end if

21: end for

22: P ← collect-parameters(src, rf , t) . Params in current funnel.

23: dst(V ′, P)← ∃V : src(V, P) ∧ rf (V, P) = 0 ∧ t(V, V ′, P)

24: funnels.append(Funnel(src, t, rf , dst))

25: end for

26: yield Funnel-loop(funnels,v0) . Coroutine returns templates.

27: end for

Therefore, since v0 is reachable in M , Hyp. FF.1 holds.

55

Example. We now provide an example to illustrate how a funnel is generated in

the lines from 7 to 24. In this example we assume the following: V =̇{a, b, c} is a

set of real-valued symbols; new-param-expr generates affine linear expressions1100

over V and a set of parameters P =̇{pi}i∈N; we are constructing a funnel-loop

template adding a single predicate to shrink the region (ineq = 1); loop r [i]=̇b <

c; loop t [i]=̇c′ = c ∧ b′ > b + a ∧ b′ > c and the hint H responsible for {a} has

the following components: R[i]=̇a > 0, R[i + 1]=̇a > 0, A[i]=̇>, Rf[i]=̇0 and

TH=̇a′ > a.1105

For simplicity, we defined P as an infinite set. However, in this example we

will use 12 parameters {pi}11i=0; we will introduce 3 affine parametric expressions

each of which requires 4 parameters. The first expression represents an addi-

tional inequality for the region, the second one is used to represent the ranking

function, and the last one corresponds to the functional assignment of b′ in the1110

transition relation.

Line 7 defines the source region src of the funnel as the conjunction of the

loop r [i], the restricted region of H and, since ineq = 1 it introduces a single

parametric predicate: p0 + p1a+ p2b+ p3c ≥ 0.

src(V, P) =̇ b < c ∧ a > 0 ∧ p0 + p1a+ p2b+ p3c ≥ 0.

The condition at line 8 is false since the ranking function provided by H is1115

always equal to 0. The procedure then executes line 11, which introduces a new

parametric expression to represent the ranking function:

rf (V, P) =̇ p4 + p5a+ p6b+ p7c.

We implicitly consider the function equal to the minimal element 0 if rf (V, P) ≤

0. Then, line 14 initialises t from the transition relation of H as:

t =̇ a > 0 ∧ a′ > a ∧ ((rf (V, P) ≤ 0 ∧ a′ > 0) ∨

(0 < rf (V, P) ∧ a′ > 0 ∧ rf (V ′, P) ≤ rf (V, P))).

The loop starting at line 15 iterates over the symbols in {b, c}. Consider first the

symbol c, in loop t [i] we find the equality c′ = c, hence the condition at line 16

56

holds and the equality is added to t as a conjunct. Consider now the symbol

b, loop t [i] prescribes no equality for b′, hence a new parametric expression is

introduced and added to t at line 19, let such equality be b′ = p8 + p9a+ p10b+

p11c. Therefore, the final t is as follows:

t =̇ a > 0 ∧ a′ > a ∧ ((0 < rf (V, P) ∧ a′ > 0 ∧ rf (V ′, P) ≤ rf (V, P))∨

(rf (V, P) ≤ 0 ∧ a′ > 0)) ∧ c′ = c ∧ b′ = p8 + p9a+ p10b+ p11c.

Finally, dst is defined as the set of states that admit a predecessor through t in

src with rf = 0:

dst(a′, b′, c′, P) =̇ ∃a, b, c : src(a, b, c, P) ∧ rf (a, b, c, P) ≤ 0 ∧ t(a, b, c, a′, b′, c′, P).

7.4. Funnel-loop synthesis problem

We now describe the ∃∀ quantified formula that corresponds to the synthesis

problem of a funnel-loop template. Alg. 1 computes this formula for every1120

funnel-loop template template via the method ef constraints at line 4. We

search for an assignment to the parameters P of the funnel-loop template such

that by replacing them with the identified values we obtain a funnel-loop that

satisfies all hypotheses of Defs. 1, 2 and of Th. 1. In the hypotheses, for every

funnel fnl i=̇〈Si, Ti, Di,Rfi〉, we replace each destination region Di with the1125

quantified formula:

Di(V
′) =̇ ∃V : Si(V) ∧Rfi(V) = 0 ∧ Ti(V, V ′). (1)

Every instance of the funnel-loop template must contain a fair region since

loop r0 is a subset of the fair states and S0, by construction, underapproximates

loop r0. We ensure that Hyp. FF.1 holds by requiring that v0 is in the source

region of the first funnel fnl0 with the constraint:1130

∃P : S0(v0, P). (2)

Hyp. F.1 holds by construction, since the next region implies the assump-

tions required by the E -component. Therefore, the transition relation of the

57

E -component must always allow for a successor for all assignments to the V 6=H ′.

In addition, the other components of the transition relation of the funnel de-

scribe a functional assignment to the V 6=H ′ without any circular dependency.

Hyp. F.4 holds since we implicitly defined the destination region of each funnel

fnl i as the set of states reachable in one step from Si ∧ Rfi = 0. Then, we

ensure that every instantiation of every funnel template fnl i in the funnel-loop

template satisfies hypotheses F.2 and F.3 by requiring that the following hold:

∃P ∀V, V ′ : (Si(V, P) ∧ 0 < Rfi(V, P) ∧ Ti(V, V ′, P))→ Si(V
′, P); (3)

∃P ∀V, V ′ : (Si(V, P) ∧ 0 < Rfi(V, P) ∧ Ti(V, V ′, P))→ Rfi(V
′, P) < Rfi(V, P).

(4)

The funnels must be correctly chained for hypotheses FL.1 and FL.2 to hold.

Notice that in these formulae are implications whose left-hand-side is Di and we

bring the existential quantifier out in front of the formula as a universal quan-

tifier. For Hyp. FL.1 to hold we require every two consecutive funnel templates

fnl i and fnl i+1 in the funnel-loop template to satisfy the following:1135

∃P ∀V, V ′ : (Si(V, P) ∧Rfi(V, P) = 0 ∧ Ti(V, V ′, P))→ Si+1(V ′, P). (5)

Similarly, considering the first and last funnels fnl0 and fnln−1, for Hyp. FL.2

we require:

∃P ∀V, V ′ : (Sn−1(V, P)∧Rfn−1(V, P) = 0∧Tn−1(V, V ′, P))→ S0(V ′, P). (6)

This ensures that Dn−1 is a subset of S0. We have observed above that S0

contains only fair states, hence FF.2 holds. Finally, we require each funnel-loop

instance to underapproximate M (Hyp. FF.3) by requiring the following to hold1140

for every funnel fnl:

∃P ∀V, V ′ : S(V, P) ∧ T (V, V ′, P)→ TM (V, V ′). (7)

The final synthesis problem is then given by the conjunction of all the con-

straints (1)–(7). A solution for this problem is a model that assigns a value to

each symbol in P such that the formulae hold for all possible assignments to the

58

symbols in V ∪V ′. From one such model we can generate a concrete funnel-loop1145

by substituting the parameters P with their assignment.

8. Related work

Most of the literature in verification of temporal properties of infinite-state

transition systems, hybrid automata and termination analysis focuses on the

universal case, while the existential one has received relatively little attention.1150

Most closely related are the works concerned with proving program non-

termination. The works [22] and [5] are based on the notion of closed recurrence

set, that corresponds to proving the non-termination of a relation. Instead, the

works [23] and [24] search for non-terminating executions via a sequence of

safety queries. Other approaches look for specific classes of programs ([25] and1155

[26] prove the decidability of termination for linear loops over the integers), or

specific non-termination arguments (in [27] non-termination is seen as the sum

of geometric series). However, none of these works deals with fairness and they

rely on the existence of a control flow graph, whereas we work at the level of

transition system.1160

The work [28] reduces the verification of the universal fragment of CTL on

a infinite-state transition system to the problem of deciding whether a program

always returns true. The approach can be applied also on LTL properties by

relying on a reduction based on prophecy variables and it relies on some off-the-

shelf tool for the analysis of the program. Therefore, its capability of proving1165

or identifying a counterexample for some property depends on the ones of the

considered underlying tool.

The work [29] explicitly deals with fairness for infinite-state programs and

supports full CTL*; it is able to deal with existential properties and to provide

fair paths as witnesses. The approach focuses on programs manipulating integer1170

variables, with an explicit control-flow graph, rather than more general symbolic

transition systems expressed over different theories (including real arithmetic).

Another approach supporting full CTL* is proposed in [30]. The work presents

59

a model checking algorithm for the verification of CTL* on finite-state systems

and a deductive proof system for CTL* on infinite-state systems. In the first1175

case the authors reduce the verification of CTL* properties to the verification of

properties without temporal operators and a single fair path quantifier in front

of the formula. To the best of our knowledge there is no generalisation of this

algorithm, first reported in [31] and then also in [32], to the infinite state setting.

The rules presented in the second case have been exploited in [33] to implement1180

a procedure for the verification of CTL properties, while our objective is the

falsification of LTL properties. Moreover, in these settings ([29], [30]) there is

no notion of non-zenoness.

The works on timed automata are less relevant: although the concrete sys-

tem may exhibit no lasso-shaped witnesses, due to the divergence of clocks,1185

the problem is decidable, and lasso-shaped counterexamples exist in finite bi-

simulating abstractions. This view is adopted, for example, in Uppaal [34].

Other tools directly search for non lasso-shaped counterexamples, but the pro-

posed techniques are specific for the setting of timed automata [35, 13] and lack

the generality of the method proposed in this paper.1190

Our approach can be applied also to hybrid systems. Most of the works in

this context are concerned with the verification of safety properties [36]. In-

stead, we deal with the falsification of general LTL, liveness properties. The

works [37] and [38] propose a general approach for the verification of LTL prop-

erties on such systems. However, they can only identify lasso-shaped counterex-1195

amples and lack the generality of the approach we present in this work. Other

approaches consider only particular types of liveness properties or impose ad-

ditional restrictions on the model. The technique presented in [39] considers

only stability properties and [40] falsifies properties under robustness assump-

tions, while [41] considers robust discrete time systems. In [42] the authors1200

propose a technique to falsify LTL properties via randomised search, however

it is restricted to safety LTL and does not consider Zeno paths.

Inductive Reachability Witness (IRW), defined in [15], is a structure roughly

equivalent to our definition of funnel. [15] proposes to identify a single IRW as a

60

witness for reachability queries in imperative programs over real variables: hence1205

as a compact representation of a finite path. Instead, we look for a sequence

of funnels, in the form of a funnel-loop, that represents an infinite path for an

infinite-state fair transition system.

Finally, the verification conditions we identify in this work for the search of

a funnel-loop can be expressed in the form of existentially-quantified constrained1210

Horn-like clauses (E-CHCs) [33].7 E-CHCs are an extension of constrained Horn

clauses (CHCs) [43, 44, 45] with existential quantifiers. The two formalisms

have been proposed as means to decouple the definition of verification problems

from the actual solving algorithm. This enables the separation of the proof

methodology from the procedures used to address the problem. Unfortunately,1215

we were not able to obtain any tool capable of identifying solutions to E-CHCs,

hence we could not investigate this direction any further.

9. Experimental Evaluation

This section first presents our implementation of the approach (9.1), then

describes the benchmarks we used (9.2) and briefly presents the other state-of-1220

the-art tools we considered (9.3), finally it reports the setup, the results and the

discussion of the experimental evaluation we performed (9.4).

9.1. Implementation

We have implemented these procedures in a prototype, called F38 (for Find-

FairFunnel), written in Python. F3 uses MathSAT5 [46] and Z3 [47] as un-1225

derlying SMT engines, interacting with them through pysmt [48]. SMT-solvers

sometimes take a very long time on a single query. For this reason we associate

a timeout to each call to SMT-solve. If the solver is unable to answer within

7Appendix A reports an encoding for the funnel-loop search problem in E-CHCs and proves

it to be both sound and complete.
8the tool and the benchmarks can be downloaded from https://github.com/enmag/F3

61

https://github.com/enmag/F3

the given time F3 assumes unknown as result and continues. F3 takes as in-

put a transition system M , a fairness condition F and a possibly empty set of1230

E -components H, and tries to identify a funnel that proves that M admits at

least one path that visits F infinitely-often. We then employ the usual tableau

construction to support LTL specifications via reduction to the previous case.

In order to support timed systems, we use the product construction described

in [38] to remove all Zeno-paths of the model. F3 enumerates funnel templates1235

in increasing order of complexity. By default, F3 considers a minimum of 0 and

a maximum of 2 inequalities in the implementation of heuristic-pick-num-

ineqs of Alg. 3. F3 considers only simple ranking functions corresponding to the

PR-ranking template described in [17] which are simple affine linear functions.

Such ranking functions are used in the definition of the funnel templates and1240

when trying to identify a ranking function for a candidate abstract loop in Alg. 2.

In addition, we only synthesise predicates in the form of affine linear equalities

or inequalities; the implementation of the function new-parametric-expr in

F3 generates affine linear expressions. An important optimization is that F3

generates ranking function templates (line 11 of Alg. 3) only when it finds a pair1245

of abstract states that prescribe the same assignment to the Boolean variables

of M ; if the abstract states differ in their Boolean variables, rf is simply set

to the constant 0. This avoids the introduction of unnecessary parameters for

funnels which do not need an explicit ranking function. F3 solves the param-

eter synthesis problem described in Sec. 7 via a combination of the EF-SMT1250

procedure of [49] and the application of Motzkin’s transposition theorem [50]

to reduce the problem into a purely existentially-quantified one which can then

be solved via standard quantifier-free SMT reasoning: we first try to apply EF-

SMT, and resort to the elimination of universal quantifiers only if this fails to

provide a definite answer. Finally, when applying the Motzkin’s transposition1255

theorem, F3 replaces non-linear terms with fresh symbols, in order to obtain

a linear system. This simple way of handling non-linearities has the benefit of

being very easy to implement; on the other hand, however, it can produce very

coarse approximations, which can prevent F3 from finding counterexamples in

62

cases where non-linearities play a significant role. A possible approach to handle1260

non-linearities in a more precise manner is described in [15].

9.2. Benchmarks

In order to evaluate the effectiveness of our method, we have evaluated F3

on a wide range of benchmarks coming from different domains, from software

(non)termination to timed automata and infinite-state symbolic transition sys-1265

tems. More specifically, we considered a total of 455 benchmarks, divided into

6 categories:

LS consists of 52 nonterminating linear software benchmarks taken from the C

programs of the software termination competition [51];

NS contains 30 nonlinear software programs, of which 29 have been taken from1270

[5] and one we defined;

ITS are 70 LTL falsification problems on infinite-state systems; 2 of such prob-

lems are proof obligations generated in the verification of a contract-based

design, 29 come from the scaling to up to 30 processes of a model of the

bakery mutual exclusion protocol in which we introduced a bug, other 291275

come from the scaling to up to 30 processes of a semaphore-based syn-

chronisation protocol, and the last 10 are instances we created;

TA contains 174 LTL falsification problems on timed automata; we consider 6

different protocols taken from [52] (critical, csma, fddi, fischer, lynch and

train) and scale each of them from 1 to 30 processes;1280

TTS consists of 120 LTL falsification problems on timed transition systems,

of which 116 come from the scaling from 1 to 30 processes of 4 protocols

(inspired by the csma, fischer, lynch and token ring protocols), and 4

are handcrafted instances. The 4 protocols are a subset of the ones we

considered in the TA instances. However, in this case we have extended1285

them to obtain models that cannot be represented as timed automata. For

the csma protocol we introduced an adaptive backoff time for each process

63

that increases every time a station encounters a collision and decreases

each time it successfully communicates the whole message. We extended

the fischer and lynch protocols by allowing each process to propose a wait1290

time, then the actual waiting time used to ensure mutual exclusion is

the maximum of the proposed values. Finally, in the token ring protocol

we added a stopwatch variable that keeps track of the total amount of

time spent while transmitting and we ask to verify whether such value is

bounded by 10 subject to a fairness assumption on the token manager of1295

the protocol.

HS are 9 LTL falsification problems on hybrid systems (encoded as nonlinear

infinite-state transition systems), 5 of which have been taken from the

ARCH competition [53] and 4 are models of a bouncing ball which differ

on the behaviour of the bounce.1300

F3 only handles symbolic transition systems, and not software programs;

therefore, we have encoded the software benchmarks as infinite-state transition

systems by introducing an explicit program counter as state variable. Moreover,

since F3 only supports systems with Boolean, integer and real variables, we have

not considered programs that involve recursion or dynamic memory allocation.1305

9.3. Competitor tools

We compare F3 with the following state-of-the-art tools: Anant [5],

AProVe [54], DiVinE3 [55], iRankFinder [56], MITLBMC [57],

nuXmv [13], T2 [58], Ultimate [59] and Uppaal [60]. Unfortunately we could

not obtain the software described in [33] to solve E-CHC problems. Most of1310

the other tools are not able to handle all the benchmarks we have considered.

Therefore, we limit their application as follows:

• we ran Anant, AProVe, iRankFinder and T2 only on the software

nontermination problems (LS and NS groups);

• we ran DiVinE3, MITLBMC and Uppaal only on the timed automata1315

(TA) benchmarks; moreover, since Uppaal supports only a fragment of

64

Table 1: Summary of experimental results (number of solved instances per benchmark family).

Benchmark family F
3

(n
o

h
in

ts
)

A
n

a
n
t

A
P

ro
V

e

D
iV

in
E

3

iR
a
n

k
F

in
d

e
r

M
IT

L
B

M
C

n
u

X
m

v

T
2

U
lt

im
a
te

U
p

p
a
a
l

LS (52) 52 38 43 – 39 – 28 38 49 –

NS (30) 30 25 5 – 6 – 14 2 – –

ITS (70) 67 – – – – – 4 – 8 –

TA (174) 130 – – 43 – 151 90 – 0 103

TTS (120) 50 – – – – – 8 – 1 –

HS (9) 4 – – – – – 0 – – –

Total (455) 333 63 48 43 45 151 144 40 58 103
Entries marked with “–” denote that the tool cannot handle the given benchmarks.

LTL which is not sufficient to express the properties of the fischer and

lynch benchmarks, we could run it only on 116 of the 174 TA instances;

• as Ultimate doesn’t support non-linear arithmetic, we didn’t run it on

the NS family. Moreover, since it supports LTL specifications but works1320

on programs rather than transition systems, we translated the benchmarks

to LTL verification problems on software programs, using the same ap-

proach described in [11].

• nuXmv is the only other tool (besides F3) that supports all the bench-

marks. Our focus is falsification of universal properties (or dually verifica-1325

tion of existential ones), hence we ran nuXmv using only its BMC engine.

The other algorithms available in nuXmv have no additional falsification

capabilities and also try to verify the property.

9.4. Evaluation

We executed each tool on the corresponding benchmarks on a machine run-1330

ning Ubuntu 20.04 equipped with an Intel(R) Xeon(R) Gold 6226R 2.90 GHz

65

CPU, using a 1 hour timeout and a memory limit of 30 GB for each bench-

mark. A summary of the evaluation results is reported in Table 1. We run

F3 on those benchmarks without providing any hint and the table shows, for

each tool, the number of solved instances in each benchmark family. When a1335

tool is not applicable to a specific family, this is marked with “-”. From the

table, we can see that F3 solved the highest number of instances overall and also

the highest number of instances in all categories with the exception of timed

automata. In this category F3 is outperformed only by MITLBMC, which

implements a technique explicitly developed for timed automata. This demon-1340

strates the generality of our approach, although (unsurprisingly) it is possible

to define more efficient procedures to target specific classes of problems. F3

successfully identifies a fair path in all nonlinear software benchmarks and also

in 4 of the hybrid (nonlinear) systems. Therefore, while being coarse-grained,

the approximation of the nonlinear terms used by F3 appears to be sufficient in1345

these cases. Finally, we should remark that the competitor tools (with the ex-

ception of MITLBMC and nuXmv in BMC mode) are also able to prove that

a universal property holds, whereas F3 can only find counterexamples. On the

other hand, however, our techniques can be easily integrated with approaches

focusing on proving properties, such as [11, 38].1350

We then considered the 5 hybrid benchmarks that F3 failed to solve without

hints. In 4 cases the definition of a single hint is sufficient to allow F3 to

identify a fair path. The remaining benchmark is a handcrafted one representing

a bouncing ball such that the interval of time between consecutive bounces

follows the harmonic series and the tool is required to identify a non-Zeno path1355

in which the ball keeps bouncing forever. We know that the harmonic series

diverges, hence such a path exists. However, the path does not have the finite-

variability property, often assumed in real-time temporal logics (e.g. [61, 62]);

there is no bound on the number of times predicates change truth assignment

for any finite interval of time: there is no lower bound on the time between1360

two bounces. In addition, the absence of such bounds hinders the definition

of simple ranking functions, since they require a minimum constant progress

66

at every transition. We remark that the HS instances are the most complex

ones, they involve both nonlinearities and timing constraints. The definition

of the hints for such complex systems requires in depth analysis of each model1365

and also an understanding of the features that the automated procedure could

struggle to analyse. However, the integration of the hints within an automatic

procedure allows the user to focus on the few hardest components of the model,

while relying on the automated procedure to analyse the relatively simpler ones.

Therefore, it provides an additional possibility to be explored to analyse the1370

system before resorting to a purely manual inspection. Our experiments, while

relatively limited in number, showed this approach to be viable allowing the

procedure to identify 4 additional counterexamples on complex instances that

no other tool managed to address successfully.

We conclude with some general observations about F3. F3 identifies funnel-1375

loops by trying to instantiate a number of templates. As in every template-

based approach, this implies that it will fail to identify funnel-loops that do

not match the considered templates. For example, F3 generates the templates

by strengthening the candidate loops with affine expressions and inequalities,

hence it will fail to identify funnel-loops that require the procedure to identify1380

nonlinear assignments or constraints. In our experiments this issue has been

mitigated by the fact that the candidate loop itself might provide the necessary

nonlinear terms, hence F3 does not need to synthesise them. F3 employs sym-

bolic reasoning and inherits the instability typical of this kind of techniques that

deal with undecidable problems. The execution time of F3 is greatly affected1385

by the order in which the candidate loops are explored. For each candidate

loop for which it fails to identify a ranking function, F3 generates and tries to

instantiate a number of funnel-loop templates. The number of these templates

can be relatively large and, in our experiments, F3 spent most of the time in

trying to instantiate them. For this reason, the execution time of F3 might1390

change significantly depending on the order in which the SMT-solvers identify

candidate loops. F3 tries to mitigate this problem by analysing the templates in

increasing order of complexity and by applying heuristics normalizations on the

67

expressions before calling the SMT-solver. In principle each funnel-loop tem-

plate can be analysed independently from the others and performing such tasks1395

in parallel could mitigate this issue; in addition, one could also analyse different

candidate loops in parallel. However, we did not explore this possibility and our

prototype does not employ any kind of parallelism.

10. Conclusions

In this work we presented an approach to automatically verify existential1400

properties on infinite-state fair transition systems which can also benefit from

some user-defined hints. The witness for the existential property is given as

a sequence of funnels and can represent paths that do not have a lasso-shape

structure. We evaluated a prototype implementation of the approach on a wide

variety of benchmarks. The prototype is effective and able to address verification1405

tasks successfully in many different domains. However, there are still some

classes of problems that exhibit behaviours that are outside the scope of our

prototype, as we have seen in the case of the harmonic bouncing ball.

In the future, we plan to improve the procedure by automating the sys-

tem decomposition and by investigating different heuristics for the selection of1410

funnel-loop templates and to better exploit the system decomposition. Another

interesting direction is to improve the support for nonlinear expressions, e.g. it

should be possible to integrate the technique presented in [15] in our procedure.

Finally, we plan to integrate our procedure with dual approaches used to verify

LTL properties.1415

References

[1] A. Cimatti, A. Griggio, E. Magnago, Ltl falsification in infinite-state

systems, Information and Computation (2022) 104977doi:https:

//doi.org/10.1016/j.ic.2022.104977.

URL https://www.sciencedirect.com/science/article/pii/1420

S0890540122001328

68

https://www.sciencedirect.com/science/article/pii/S0890540122001328
https://www.sciencedirect.com/science/article/pii/S0890540122001328
https://www.sciencedirect.com/science/article/pii/S0890540122001328
http://dx.doi.org/https://doi.org/10.1016/j.ic.2022.104977
http://dx.doi.org/https://doi.org/10.1016/j.ic.2022.104977
http://dx.doi.org/https://doi.org/10.1016/j.ic.2022.104977
https://www.sciencedirect.com/science/article/pii/S0890540122001328
https://www.sciencedirect.com/science/article/pii/S0890540122001328
https://www.sciencedirect.com/science/article/pii/S0890540122001328

[2] A. Cimatti, A. Griggio, E. Magnago, Proving the existence of fair paths in

infinite-state systems, in: F. Henglein, S. Shoham, Y. Vizel (Eds.), Verifi-

cation, Model Checking, and Abstract Interpretation - 22nd International

Conference, VMCAI 2021, Copenhagen, Denmark, January 17-19, 2021,1425

Proceedings, Vol. 12597 of Lecture Notes in Computer Science, Springer,

2021, pp. 104–126. doi:10.1007/978-3-030-67067-2_6.

[3] A. Cimatti, A. Griggio, E. Magnago, Automatic discovery of fair paths in

infinite-state transition systems, in: Z. Hou, V. Ganesh (Eds.), Automated

Technology for Verification and Analysis - 19th International Symposium,1430

ATVA 2021, Gold Coast, QLD, Australia, October 18-22, 2021, Proceed-

ings, Vol. 12971 of Lecture Notes in Computer Science, Springer, 2021, pp.

32–47. doi:10.1007/978-3-030-88885-5_3.

[4] D. Giannakopoulou, K. S. Namjoshi, C. S. Pasareanu, Compositional rea-

soning, in: E. M. Clarke, T. A. Henzinger, H. Veith, R. Bloem (Eds.),1435

Handbook of Model Checking, Springer, 2018, pp. 345–383. doi:10.1007/

978-3-319-10575-8_12.

[5] B. Cook, C. Fuhs, K. Nimkar, P. W. O’Hearn, Disproving termination

with overapproximation, in: Formal Methods in Computer-Aided Design,

FMCAD 2014, Lausanne, Switzerland, October 21-24, 2014, IEEE, 2014,1440

pp. 67–74. doi:10.1109/FMCAD.2014.6987597.

URL http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=

6975680

[6] A. Pnueli, The temporal logic of programs, in: 18th Annual Symposium

on Foundations of Computer Science, Providence, Rhode Island, USA, 311445

October - 1 November 1977, IEEE Computer Society, 1977, pp. 46–57.

doi:10.1109/SFCS.1977.32.

[7] M. Y. Vardi, An automata-theoretic approach to linear temporal logic, in:

Banff Higher Order Workshop, Vol. 1043 of LNCS, Springer, 1995, pp.

238–266.1450

69

http://dx.doi.org/10.1007/978-3-030-67067-2_6
http://dx.doi.org/10.1007/978-3-030-88885-5_3
http://dx.doi.org/10.1007/978-3-319-10575-8_12
http://dx.doi.org/10.1007/978-3-319-10575-8_12
http://dx.doi.org/10.1007/978-3-319-10575-8_12
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6975680
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6975680
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6975680
http://dx.doi.org/10.1109/FMCAD.2014.6987597
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6975680
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6975680
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6975680
http://dx.doi.org/10.1109/SFCS.1977.32

[8] E. M. Clarke, O. Grumberg, K. Hamaguchi, Another look at LTL model

checking, Formal Methods in System Design 10 (1) (1997) 47–71.

[9] A. Biere, C. Artho, V. Schuppan, Liveness checking as safety checking,

Electron. Notes Theor. Comput. Sci. 66 (2) (2002) 160–177. doi:10.1016/

S1571-0661(04)80410-9.1455

[10] S. Graf, H. Säıdi, Construction of abstract state graphs with PVS, in:

O. Grumberg (Ed.), Computer Aided Verification, 9th International Con-

ference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings, Vol. 1254

of Lecture Notes in Computer Science, Springer, 1997, pp. 72–83. doi:

10.1007/3-540-63166-6_10.1460

[11] J. Daniel, A. Cimatti, A. Griggio, S. Tonetta, S. Mover, Infinite-state

liveness-to-safety via implicit abstraction and well-founded relations, in:

S. Chaudhuri, A. Farzan (Eds.), Computer Aided Verification - 28th In-

ternational Conference, CAV 2016, Toronto, ON, Canada, July 17-23,

2016, Proceedings, Part I, Vol. 9779 of Lecture Notes in Computer Science,1465

Springer, 2016, pp. 271–291. doi:10.1007/978-3-319-41528-4_15.

[12] R. Alur, D. L. Dill, A theory of timed automata, Theor. Comput. Sci.

126 (2) (1994) 183–235. doi:10.1016/0304-3975(94)90010-8.

[13] A. Cimatti, A. Griggio, E. Magnago, M. Roveri, S. Tonetta, Extending

nuxmv with timed transition systems and timed temporal properties, in:1470

I. Dillig, S. Tasiran (Eds.), Computer Aided Verification - 31st Interna-

tional Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,

Proceedings, Part I, Vol. 11561 of Lecture Notes in Computer Science,

Springer, 2019, pp. 376–386. doi:10.1007/978-3-030-25540-4_21.

[14] T. A. Henzinger, The theory of hybrid automata, in: Proceedings, 11th1475

Annual IEEE Symposium on Logic in Computer Science, New Brunswick,

New Jersey, USA, July 27-30, 1996, IEEE Computer Society, 1996, pp.

278–292. doi:10.1109/LICS.1996.561342.

URL http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4265

70

http://dx.doi.org/10.1016/S1571-0661(04)80410-9
http://dx.doi.org/10.1016/S1571-0661(04)80410-9
http://dx.doi.org/10.1016/S1571-0661(04)80410-9
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/978-3-319-41528-4_15
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1007/978-3-030-25540-4_21
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4265
http://dx.doi.org/10.1109/LICS.1996.561342
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4265

[15] A. Asadi, K. Chatterjee, H. Fu, A. K. Goharshady, M. Mahdavi, Polynomial1480

reachability witnesses via stellensätze, in: S. N. Freund, E. Yahav (Eds.),

PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming

Language Design and Implementation, Virtual Event, Canada, June 20-25,

20211, ACM, 2021, pp. 772–787. doi:10.1145/3453483.3454076.

[16] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu, Bounded1485

model checking, Adv. Comput. 58 (2003) 117–148. doi:10.1016/

S0065-2458(03)58003-2.

[17] J. Leike, M. Heizmann, Ranking templates for linear loops, Log. Methods

Comput. Sci. 11 (1). doi:10.2168/LMCS-11(1:16)2015.

[18] R. Bagnara, F. Mesnard, A. Pescetti, E. Zaffanella, A new look at the1490

automatic synthesis of linear ranking functions, Inf. Comput. 215 (2012)

47–67. doi:10.1016/j.ic.2012.03.003.

[19] A. R. Bradley, Z. Manna, H. B. Sipma, Linear ranking with reachability,

in: K. Etessami, S. K. Rajamani (Eds.), Computer Aided Verification,

17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July1495

6-10, 2005, Proceedings, Vol. 3576 of Lecture Notes in Computer Science,

Springer, 2005, pp. 491–504. doi:10.1007/11513988_48.

[20] D. Déharbe, P. Fontaine, D. L. Berre, B. Mazure, Computing prime im-

plicants, in: Formal Methods in Computer-Aided Design, FMCAD 2013,

Portland, OR, USA, October 20-23, 2013, IEEE, 2013, pp. 46–52.1500

URL http://ieeexplore.ieee.org/document/6679390/

[21] A. Previti, A. Ignatiev, A. Morgado, J. Marques-Silva, Prime compilation of

non-clausal formulae, in: Q. Yang, M. J. Wooldridge (Eds.), Proceedings of

the Twenty-Fourth International Joint Conference on Artificial Intelligence,

IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, AAAI Press, 2015,1505

pp. 1980–1988.

URL http://ijcai.org/Abstract/15/281

71

http://dx.doi.org/10.1145/3453483.3454076
http://dx.doi.org/10.1016/S0065-2458(03)58003-2
http://dx.doi.org/10.1016/S0065-2458(03)58003-2
http://dx.doi.org/10.1016/S0065-2458(03)58003-2
http://dx.doi.org/10.2168/LMCS-11(1:16)2015
http://dx.doi.org/10.1016/j.ic.2012.03.003
http://dx.doi.org/10.1007/11513988_48
http://ieeexplore.ieee.org/document/6679390/
http://ieeexplore.ieee.org/document/6679390/
http://ieeexplore.ieee.org/document/6679390/
http://ieeexplore.ieee.org/document/6679390/
http://ijcai.org/Abstract/15/281
http://ijcai.org/Abstract/15/281
http://ijcai.org/Abstract/15/281
http://ijcai.org/Abstract/15/281

[22] A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, R. Xu, Proving

non-termination, in: G. C. Necula, P. Wadler (Eds.), Proceedings of the

35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming1510

Languages, POPL 2008, San Francisco, California, USA, January 7-12,

2008, ACM, 2008, pp. 147–158. doi:10.1145/1328438.1328459.

URL http://dl.acm.org/citation.cfm?id=1328438

[23] H. Y. Chen, B. Cook, C. Fuhs, K. Nimkar, P. W. O’Hearn, Proving nonter-

mination via safety, in: E. Ábrahám, K. Havelund (Eds.), Tools and Algo-1515

rithms for the Construction and Analysis of Systems - 20th International

Conference, TACAS 2014, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April

5-13, 2014. Proceedings, Vol. 8413 of Lecture Notes in Computer Science,

Springer, 2014, pp. 156–171. doi:10.1007/978-3-642-54862-8_11.1520

[24] D. Larraz, K. Nimkar, A. Oliveras, E. Rodŕıguez-Carbonell, A. Rubio,

Proving non-termination using max-smt, in: A. Biere, R. Bloem (Eds.),

Computer Aided Verification - 26th International Conference, CAV 2014,

Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,

July 18-22, 2014. Proceedings, Vol. 8559 of Lecture Notes in Computer1525

Science, Springer, 2014, pp. 779–796. doi:10.1007/978-3-319-08867-9\

_52.

[25] F. Frohn, J. Giesl, Termination of triangular integer loops is decidable, in:

I. Dillig, S. Tasiran (Eds.), Computer Aided Verification - 31st Interna-

tional Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,1530

Proceedings, Part II, Vol. 11562 of Lecture Notes in Computer Science,

Springer, 2019, pp. 426–444. doi:10.1007/978-3-030-25543-5_24.

[26] M. Hosseini, J. Ouaknine, J. Worrell, Termination of linear loops over the

integers, in: C. Baier, I. Chatzigiannakis, P. Flocchini, S. Leonardi (Eds.),

46th International Colloquium on Automata, Languages, and Program-1535

ming, ICALP 2019, July 9-12, 2019, Patras, Greece, Vol. 132 of LIPIcs,

72

http://dl.acm.org/citation.cfm?id=1328438
http://dl.acm.org/citation.cfm?id=1328438
http://dl.acm.org/citation.cfm?id=1328438
http://dx.doi.org/10.1145/1328438.1328459
http://dl.acm.org/citation.cfm?id=1328438
http://dx.doi.org/10.1007/978-3-642-54862-8_11
http://dx.doi.org/10.1007/978-3-319-08867-9_52
http://dx.doi.org/10.1007/978-3-319-08867-9_52
http://dx.doi.org/10.1007/978-3-319-08867-9_52
http://dx.doi.org/10.1007/978-3-030-25543-5_24

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, pp. 118:1–118:13.

doi:10.4230/LIPIcs.ICALP.2019.118.

[27] J. Leike, M. Heizmann, Geometric nontermination arguments, in: D. Beyer,

M. Huisman (Eds.), Tools and Algorithms for the Construction and Analy-1540

sis of Systems - 24th International Conference, TACAS 2018, Held as Part

of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part

II, Vol. 10806 of Lecture Notes in Computer Science, Springer, 2018, pp.

266–283. doi:10.1007/978-3-319-89963-3_16.1545

[28] B. Cook, E. Koskinen, M. Y. Vardi, Temporal property verification as a

program analysis task - extended version, Formal Methods Syst. Des. 41 (1)

(2012) 66–82. doi:10.1007/s10703-012-0153-5.

[29] B. Cook, H. Khlaaf, N. Piterman, Verifying increasingly expressive tem-

poral logics for infinite-state systems, J. ACM 64 (2) (2017) 15:1–15:39.1550

doi:10.1145/3060257.

[30] Y. Kesten, A. Pnueli, A compositional approach to ctl* verification, Theor.

Comput. Sci. 331 (2-3) (2005) 397–428. doi:10.1016/j.tcs.2004.09.023.

[31] Y. Kesten, A. Pnueli, L. Raviv, Algorithmic verification of linear tempo-

ral logic specifications, in: K. G. Larsen, S. Skyum, G. Winskel (Eds.),1555

Automata, Languages and Programming, 25th International Colloquium,

ICALP’98, Aalborg, Denmark, July 13-17, 1998, Proceedings, Vol. 1443

of Lecture Notes in Computer Science, Springer, 1998, pp. 1–16. doi:

10.1007/BFb0055036.

[32] Y. Kesten, A. Pnueli, L. Raviv, E. Shahar, Model checking with strong1560

fairness, Formal Methods Syst. Des. 28 (1) (2006) 57–84. doi:10.1007/

s10703-006-4342-y.

[33] T. A. Beyene, C. Popeea, A. Rybalchenko, Solving existentially quantified

horn clauses, in: N. Sharygina, H. Veith (Eds.), Computer Aided Verifica-

73

http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.118
http://dx.doi.org/10.1007/978-3-319-89963-3_16
http://dx.doi.org/10.1007/s10703-012-0153-5
http://dx.doi.org/10.1145/3060257
http://dx.doi.org/10.1016/j.tcs.2004.09.023
http://dx.doi.org/10.1007/BFb0055036
http://dx.doi.org/10.1007/BFb0055036
http://dx.doi.org/10.1007/BFb0055036
http://dx.doi.org/10.1007/s10703-006-4342-y
http://dx.doi.org/10.1007/s10703-006-4342-y
http://dx.doi.org/10.1007/s10703-006-4342-y

tion - 25th International Conference, CAV 2013, Saint Petersburg, Russia,1565

July 13-19, 2013. Proceedings, Vol. 8044 of Lecture Notes in Computer

Science, Springer, 2013, pp. 869–882. doi:10.1007/978-3-642-39799-8\

_61.

[34] G. Behrmann, A. David, K. G. Larsen, A tutorial on uppaal, in:

M. Bernardo, F. Corradini (Eds.), Formal Methods for the Design of Real-1570

Time Systems: 4th International School on Formal Methods for the Design

of Computer, Communication, and Software Systems, SFM-RT 2004, no.

3185 in LNCS, Springer–Verlag, 2004, pp. 200–236.

[35] R. Kindermann, T. A. Junttila, I. Niemelä, Beyond lassos: Complete smt-

based bounded model checking for timed automata, in: H. Giese, G. Rosu1575

(Eds.), Formal Techniques for Distributed Systems - Joint 14th IFIP WG

6.1 International Conference, FMOODS 2012 and 32nd IFIP WG 6.1 Inter-

national Conference, FORTE 2012, Stockholm, Sweden, June 13-16, 2012.

Proceedings, Vol. 7273 of Lecture Notes in Computer Science, Springer,

2012, pp. 84–100. doi:10.1007/978-3-642-30793-5_6.1580

[36] R. Alur, Formal verification of hybrid systems, in: S. Chakraborty, A. Jer-

raya, S. K. Baruah, S. Fischmeister (Eds.), Proceedings of the 11th Inter-

national Conference on Embedded Software, EMSOFT 2011, part of the

Seventh Embedded Systems Week, ESWeek 2011, Taipei, Taiwan, October

9-14, 2011, ACM, 2011, pp. 273–278. doi:10.1145/2038642.2038685.1585

[37] D. Bresolin, Hyltl: a temporal logic for model checking hybrid systems, in:

L. Bortolussi, M. L. Bujorianu, G. Pola (Eds.), Proceedings Third Inter-

national Workshop on Hybrid Autonomous Systems, HAS 2013, Rome,

Italy, 17th March 2013, Vol. 124 of EPTCS, 2013, pp. 73–84. doi:

10.4204/EPTCS.124.8.1590

[38] A. Cimatti, A. Griggio, S. Mover, S. Tonetta, Verifying LTL properties of

hybrid systems with k-liveness, in: A. Biere, R. Bloem (Eds.), Computer

Aided Verification - 26th International Conference, CAV 2014, Held as

74

http://dx.doi.org/10.1007/978-3-642-39799-8_61
http://dx.doi.org/10.1007/978-3-642-39799-8_61
http://dx.doi.org/10.1007/978-3-642-39799-8_61
http://dx.doi.org/10.1007/978-3-642-30793-5_6
http://dx.doi.org/10.1145/2038642.2038685
http://dx.doi.org/10.4204/EPTCS.124.8
http://dx.doi.org/10.4204/EPTCS.124.8
http://dx.doi.org/10.4204/EPTCS.124.8

Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July

18-22, 2014. Proceedings, Vol. 8559 of Lecture Notes in Computer Science,1595

Springer, 2014, pp. 424–440. doi:10.1007/978-3-319-08867-9_28.

[39] A. Podelski, S. Wagner, Region stability proofs for hybrid systems,

in: J. Raskin, P. S. Thiagarajan (Eds.), Formal Modeling and Analy-

sis of Timed Systems, 5th International Conference, FORMATS 2007,

Salzburg, Austria, October 3-5, 2007, Proceedings, Vol. 4763 of Lecture1600

Notes in Computer Science, Springer, 2007, pp. 320–335. doi:10.1007/

978-3-540-75454-1_23.

[40] T. Nghiem, S. Sankaranarayanan, G. E. Fainekos, F. Ivancic, A. Gupta,

G. J. Pappas, Monte-carlo techniques for falsification of temporal prop-

erties of non-linear hybrid systems, in: K. H. Johansson, W. Yi (Eds.),1605

Proceedings of the 13th ACM International Conference on Hybrid Sys-

tems: Computation and Control, HSCC 2010, Stockholm, Sweden, April

12-15, 2010, ACM, 2010, pp. 211–220. doi:10.1145/1755952.1755983.

[41] W. Damm, G. Pinto, S. Ratschan, Guaranteed termination in the ver-

ification of ltl properties of non-linear robust discrete time hybrid sys-1610

tems, Int. J. Found. Comput. Sci. 18 (1) (2007) 63–86. doi:10.1142/

S0129054107004577.

[42] E. Plaku, L. E. Kavraki, M. Y. Vardi, Falsification of LTL safety properties

in hybrid systems, Int. J. Softw. Tools Technol. Transf. 15 (4) (2013) 305–

320. doi:10.1007/s10009-012-0233-2.1615

[43] S. Grebenshchikov, N. P. Lopes, C. Popeea, A. Rybalchenko, Synthesizing

software verifiers from proof rules, in: J. Vitek, H. Lin, F. Tip (Eds.), ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI ’12, Beijing, China - June 11 - 16, 2012, ACM, 2012, pp.

405–416. doi:10.1145/2254064.2254112.1620

[44] T. A. Beyene, S. Chaudhuri, C. Popeea, A. Rybalchenko, A constraint-

based approach to solving games on infinite graphs, in: S. Jagannathan,

75

http://dx.doi.org/10.1007/978-3-319-08867-9_28
http://dx.doi.org/10.1007/978-3-540-75454-1_23
http://dx.doi.org/10.1007/978-3-540-75454-1_23
http://dx.doi.org/10.1007/978-3-540-75454-1_23
http://dx.doi.org/10.1145/1755952.1755983
http://dx.doi.org/10.1142/S0129054107004577
http://dx.doi.org/10.1142/S0129054107004577
http://dx.doi.org/10.1142/S0129054107004577
http://dx.doi.org/10.1007/s10009-012-0233-2
http://dx.doi.org/10.1145/2254064.2254112

P. Sewell (Eds.), The 41st Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’14, San Diego, CA, USA,

January 20-21, 2014, ACM, 2014, pp. 221–234. doi:10.1145/2535838.1625

2535860.

[45] A. Gurfinkel, N. Bjørner, The science, art, and magic of constrained horn

clauses, in: 21st International Symposium on Symbolic and Numeric Al-

gorithms for Scientific Computing, SYNASC 2019, Timisoara, Romania,

September 4-7, 2019, IEEE, 2019, pp. 6–10. doi:10.1109/SYNASC49474.1630

2019.00010.

[46] A. Cimatti, A. Griggio, B. J. Schaafsma, R. Sebastiani, The mathsat5 SMT

solver, in: N. Piterman, S. A. Smolka (Eds.), Tools and Algorithms for

the Construction and Analysis of Systems - 19th International Conference,

TACAS 2013, Held as Part of the European Joint Conferences on Theory1635

and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.

Proceedings, Vol. 7795 of Lecture Notes in Computer Science, Springer,

2013, pp. 93–107. doi:10.1007/978-3-642-36742-7_7.

[47] L. M. de Moura, N. Bjørner, Z3: an efficient SMT solver, in: C. R. Ra-

makrishnan, J. Rehof (Eds.), Tools and Algorithms for the Construction1640

and Analysis of Systems, 14th International Conference, TACAS 2008, Held

as Part of the Joint European Conferences on Theory and Practice of Soft-

ware, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceed-

ings, Vol. 4963 of Lecture Notes in Computer Science, Springer, 2008, pp.

337–340. doi:10.1007/978-3-540-78800-3_24.1645

[48] M. Gario, A. Micheli, Pysmt: a solver-agnostic library for fast prototyping

of smt-based algorithms, in: SMT Workshop 2015, 2015.

[49] B. Dutertre, Solving exists/forall problems with yices, in: Workshop on

satisfiability modulo theories, 2015.

[50] T. S. Motzkin, Two consequences of the transposition theorem on linear1650

inequalities, Econometrica (pre-1986) 19 (2) (1951) 184.

76

http://dx.doi.org/10.1145/2535838.2535860
http://dx.doi.org/10.1145/2535838.2535860
http://dx.doi.org/10.1145/2535838.2535860
http://dx.doi.org/10.1109/SYNASC49474.2019.00010
http://dx.doi.org/10.1109/SYNASC49474.2019.00010
http://dx.doi.org/10.1109/SYNASC49474.2019.00010
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://dx.doi.org/10.1007/978-3-540-78800-3_24

[51] J. Giesl, A. Rubio, C. Sternagel, J. Waldmann, A. Yamada, The termina-

tion and complexity competition, in: D. Beyer, M. Huisman, F. Kordon,

B. Steffen (Eds.), Tools and Algorithms for the Construction and Analysis

of Systems - 25 Years of TACAS: TOOLympics, Held as Part of ETAPS1655

2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part III, Vol.

11429 of Lecture Notes in Computer Science, Springer, 2019, pp. 156–166.

doi:10.1007/978-3-030-17502-3_10.

[52] R. Farkas, G. Bergmann, Towards reliable benchmarks of timed automata,

in: B. Pataki (Ed.), Proceedings of the 25th PhD Mini-Symposium, Bu-1660

dapest University of Technology and Economics, Department of Measure-

ment and Information Systems, 2018, pp. 20–23.

[53] G. Frehse, M. Althoff (Eds.), ARCH19. 6th International Workshop on

Applied Verification of Continuous and Hybrid Systemsi, part of CPS-IoT

Week 2019, Montreal, QC, Canada, April 15, 2019, Vol. 61 of EPiC Series1665

in Computing, EasyChair, 2019.

[54] J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto,

M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, R. Thiemann,

Proving termination of programs automatically with aprove, in: S. Demri,

D. Kapur, C. Weidenbach (Eds.), Automated Reasoning - 7th Interna-1670

tional Joint Conference, IJCAR 2014, Held as Part of the Vienna Summer

of Logic, VSL 2014, Vienna, Austria, July 19-22, 2014. Proceedings, Vol.

8562 of Lecture Notes in Computer Science, Springer, 2014, pp. 184–191.

doi:10.1007/978-3-319-08587-6_13.

[55] J. Havĺıček, Untimed ltl model checking of timed automata, Ph.D. thesis,1675

Master’s thesis. Masaryk University, Faculty of Informatics, 2013. (2013).

URL https://theses.cz/id/t1s8vb/

[56] J. Doménech, S. Genaim, irankfinder, WST 18 (2018) 83.

[57] R. Kindermann, T. A. Junttila, I. Niemelä, Bounded model checking of

an MITL fragment for timed automata, in: J. Carmona, M. T. Lazarescu,1680

77

http://dx.doi.org/10.1007/978-3-030-17502-3_10
http://dx.doi.org/10.1007/978-3-319-08587-6_13
https://theses.cz/id/t1s8vb/
https://theses.cz/id/t1s8vb/

M. Pietkiewicz-Koutny (Eds.), 13th International Conference on Applica-

tion of Concurrency to System Design, ACSD 2013, Barcelona, Spain, 8-10

July, 2013, IEEE Computer Society, 2013, pp. 216–225. doi:10.1109/

ACSD.2013.25.

[58] M. Brockschmidt, B. Cook, S. Ishtiaq, H. Khlaaf, N. Piterman, T2: tem-1685

poral property verification, in: M. Chechik, J. Raskin (Eds.), Tools and

Algorithms for the Construction and Analysis of Systems - 22nd Inter-

national Conference, TACAS 2016, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2016, Eind-

hoven, The Netherlands, April 2-8, 2016, Proceedings, Vol. 9636 of Lec-1690

ture Notes in Computer Science, Springer, 2016, pp. 387–393. doi:

10.1007/978-3-662-49674-9_22.

[59] M. Heizmann, J. Christ, D. Dietsch, E. Ermis, J. Hoenicke, M. Linden-

mann, A. Nutz, C. Schilling, A. Podelski, Ultimate automizer with smtin-

terpol - (competition contribution), in: N. Piterman, S. A. Smolka (Eds.),1695

Tools and Algorithms for the Construction and Analysis of Systems - 19th

International Conference, TACAS 2013, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy,

March 16-24, 2013. Proceedings, Vol. 7795 of Lecture Notes in Computer

Science, Springer, 2013, pp. 641–643. doi:10.1007/978-3-642-36742-7\1700

_53.

[60] A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen, Up-

paal smc tutorial, International Journal on Software Tools for Technology

Transfer 17 (4) (2015) 397–415. doi:10.1007/s10009-014-0361-y.

[61] R. Alur, T. Feder, T. Henzinger, The Benefits of Relaxing Punctuality, J.1705

ACM 43 (1) (1996) 116–146.

[62] A. Rabinovich, On the Decidability of Continuous Time Specification For-

malisms, J. Log. Comput. 8 (5) (1998) 669–678.

78

http://dx.doi.org/10.1109/ACSD.2013.25
http://dx.doi.org/10.1109/ACSD.2013.25
http://dx.doi.org/10.1109/ACSD.2013.25
http://dx.doi.org/10.1007/978-3-662-49674-9_22
http://dx.doi.org/10.1007/978-3-662-49674-9_22
http://dx.doi.org/10.1007/978-3-662-49674-9_22
http://dx.doi.org/10.1007/978-3-642-36742-7_53
http://dx.doi.org/10.1007/978-3-642-36742-7_53
http://dx.doi.org/10.1007/978-3-642-36742-7_53
http://dx.doi.org/10.1007/s10009-014-0361-y

Appendix A. Encoding of funnel-loop search in E-CHC

We described the funnel-loop synthesis problem using exist-forall quantified1710

First-Order Logic formulae and defined an ad-hoc procedure to address this

problem. In the literature it is possible to find formalism meant to decouple the

definition of the verification problem and the actual solving algorithm: they sep-

arate the proof methodology from the procedures used to address the problem.

One such formalism is Constrained Horn clauses (CHCs) [43, 44, 45], for which1715

off-the-shelf solvers have been developed. In the following, we consider an ex-

tension of CHCs, namely existentially-quantified constrained Horn-like clauses

(E-CHCs) [33]. E-CHCs are expressive enough to represent the funnel-loop

synthesis problem, hence allow an alternative representation of our synthesis

problem. However, possibly due to the complexity of solving such problems1720

in general, there is a lack of tools capable of identifying solution for E-CHCs.

Therefore, the encoding in E-CHCs has no impact on the theoretical and ex-

perimental results we present in this work. We believe that representing the

problem in a common framework to describe verification tasks could provide a

better perspective on how the approach and techniques we propose in this work1725

fit into the broader context of formal verification.

For the syntax and semantics of E-CHCs we refer to [43]. In the following we

present a sound and complete encoding for the search problem of a funnel-loop

of length one in E-CHCs. It is possible to define a similar E-CHC encoding

that also considers a set of user-defined E -components as hints, similarly to the1730

procedure described in Sec. 7. However, such encoding is rather complex and

does not provide any additional contribution to our discussion since we were

not able to obtain any tool capable of identifying solutions for E-CHCs.

Let M=̇〈V, IM , TM , FM 〉 be a fair transition system and let R(c, V),

T (V, V ′) and Rank(V, V ′) be query symbols, where c is a fresh Boolean symbol1735

(c 6∈ V). A solution to the E-CHC problem below is an intepretation for R,

T and Rank satisfying all its formulae. R represents the source region, and

c ∧ R(c, V) underapproximates the fair states. Th. 7 shows that any solution

79

to the E-CHC below corresponds to a funnel-loop and Th. 8 shows that if M

admits a funnel-loop then there exists an interpretation for the query symbols1740

satisfying the following E-CHC. Therefore, the encoding is sound (Th. 7) and

relatively complete (Th. 8). While it is possible to represent in E-CHC the

search of a funnel-loop of arbitrary length n, Th. 2 ensures that looking for

funnel-loops of length one is sufficient.

> → ∃c, V : R(c, V) ∧ IM (V) (A.1)

T (V, V ′) → ∃c : R(c, V ′) (A.2)

R(c, V) ∧ T (V, V ′) → TM (V, V ′) (A.3)

R(c, V) → ∃V ′ : T (V, V ′) (A.4)

c ∧R(c, V) → FM (V) (A.5)

¬c ∧R(c, V) ∧ T (V, V ′) → Rank(V, V ′) (A.6)

dwf (Rank) (A.7)

Let Cex=̇〈V,∃c : R(c, V), T (V, V ′),>〉 be the transition system associated1745

with an interpretation of the query symbols of the E-CHC above. Eq. (A.1)

requires the existence of some initial state of M in R: the set of initial states

of Cex is not empty. Eq. (A.2) ensures that T can only reach states in R, and

Eq. (A.3) guarantees that in such region T is an underapproximation of TM :

Cex is simulated by M , hence a path of Cex is also a path in M . Eq. (A.4)1750

requires T to be left-total with respect to R: Cex cannot reach a deadlock.

Eq. (A.5) requires R(⊥, V) to be a subset of the fair states of M . Eq. (A.6)

requires the relation T (V, V ′) describing pairs of current and next states such

that the first one is in R(⊥, V) to underapproximate some well-founded relation

Rank . The well-foundedness of Rank ensures that there is no infinite chain of1755

states in R(⊥, V), hence it must eventually reach a state in R(>, V), hence by

Eq. (A.5) must eventually reach a fair state.

Theorem 7. Given a fair transition system M=̇〈V, IM , TM , FM 〉 and an in-

terpretation for the queries R, T and Rank satisfying all Eqs. (A.1)–(A.7). Then

80

there exist a funnel-loop for M .1760

The proof of Th. 7 is reported in Appendix B.5.

Theorem 8. Let floop be a funnel-loop of length one for a transition system

M=̇〈V, IM , TM , FM 〉. Then, there exists an intepretation for the query symbols

R, T and Rank satisfying all Eqs. (A.1)–(A.7).

The proof of Th. 8 is reported in Appendix B.6.1765

Appendix B. Theorems and proofs

Appendix B.1. Funnel-loop disjoint regions

In this section we show that for every funnel-loop there exist a corresponding

one whose regions are pairwise disjoint and that admits the same paths. Let

floop=̇[fnli]
n−1
i=0 be a funnel-loop of length n over symbols V . We define a1770

corresponding funnel-loop f̂ loop=̇[f̂nli]
n−1
i=0 over symbols V̂ =̇V ∪{l} that admits

the same set of paths projected over the symbols V and whose regions are

pairwise disjoint. l is a fresh symbol (l 6∈ V) we use to keep track of the index

of the current region. More formally we have the following:

• V̂ =̇V ∪ {l}, where l 6∈ V is a fresh symbol whose domain are the integers1775

from 0 to n− 1.

• Ŝi=̇Si ∧ l = i.

• D̂i=̇Di ∧ l = (i+ 1)%n.

• R̂fi=̇Rfi.

• T̂i=̇Ti ∧ (0 < Rfi ∧ l′ = l) ∨ (Rfi = 0 ∧ l′ = (l + 1)%n)1780

Theorem 9. Let floop be a funnel-loop. Then, all [f̂nli]
n−1
i=0 satisfy the hy-

potheses of Def. 1 and f̂ loop satisfies the hypotheses of Def. 2.

Proof. We first show that each f̂nli in [f̂nli]
n−1
i=0 is a funnel and then show

that they are correctly concatenated in f̂ loop hence it is a funnel-loop.

81

F.1 By definition T̂i=̇Ti ∧ (0 < Rfi ∧ l′ = l) ∨ (Rfi = 0 ∧ l′ = (l + 1)%n).1785

In each state either Rfi = 0 holds or 0 < Rfi does. Therefore, in the

first case T̂i admits a successor in such that l′ = (l + 1)%n, in the second

case it admits a successor in which l′ = l. Since Hyp. F.1 holds for fnli,

its transition relation Ti(V, V
′) is left-total. Therefore, also T̂i is left-total

and Hyp. F.1 holds for each f̂nli in f̂ loop.1790

F.2 By definition T̂i=̇Ti ∧ (0 < Rfi ∧ l′ = l) ∨ (Rfi = 0 ∧ l′ = (l + 1)%n).

Therefore, every pair of states 〈v̂, v̂′〉 ∈ T̂i such that v̂ |= Ŝi must be such

that they assign the same value i to l. Let v and v′ be the projection of v̂

v̂′ to the symbols V , Then, 〈v,v′〉 ∈ Ti and v |= Si. Since, Hyp. F.2 holds

for fnli, then v′ |= S′i also holds. v′ |= S′i and the fact that v̂′ assigns l1795

to i implies that v̂′ |= S′. Therefore, Hyp. F.2 holds for f̂nli.

F.3 By applying the same reasoning as above, for every such step in f̂nli we

obtain a corresponding step in fnli by projecting the assignments over

the symbols in V . Hyp. F.3 holds for fnli hence those assignments must

decrease the value of the ranking function Rfi. Therefore, since Rfi does1800

not depend on l its value must decrease also in all such steps of f̂nli and

Hyp. F.3 must hold.

F.4 By applying the same reasoning as the previous two cases, for every such

step in f̂nli we obtain a corresponding step in fnli by projecting the

assignments over the symbols in V . Hyp. F.4 holds for fnli hence the1805

second projected state must be in Di. By definition of T̂ , the second state

must assign to l the index of the next region. Such an assignment agrees

with the assignment required by D̂i, therefore Hyp. F.4 holds for f̂nli.

We now show that f̂ loop is a funnel-loop.

FL.1, FL.2 Each D̂i requires the same assignment to l as Ŝ(i+1)%n. Therefore, since1810

hypotheses FL.1 and FL.2 holds for floop, they must also hold for f̂ loop.

�

82

Theorem 10. The languages of floop and f̂ loop admit the same set of paths

projected over the symbols V .

Proof. We show that f̂ loop admits all paths of floop and vice-versa by induction1815

of their funnels and the length of the path.

• Assume floop admits a path starting from some state v. Then by def-

inition v |= Si for some i. Let v̂ assign l to i and agree with v on the

assignments of all symbols in V . Then v̂ |= Ŝi and v̂ is an initial state for

f̂ loop.1820

Viceversa, assume f̂ loop admits a path starting from some state v̂. Then

by definition v̂ |= Ŝi for some i. Let v be its projection over the symbols

V , then v |= Si and is an initial state for floop.

• Let π be a path of floop ending in state v and π̂ be the correspoding path

of f̂ loop ending in v̂. Let Si be the region of floop such that v |= Si and1825

let Ŝi be its corresponding region in f̂ loop.

Assume floop admits a successor state v′ of v. Then either v′ |= S′i or

v′ |= S′(i+1)%n. Let v̂′ be the assignment that extends v′ with l′ = i in the

first case and l′ = (i+1)%n otherwise. v̂′ is a successor of v̂ corresponding

to v′ such that π extended with v′ corresponds to π̂ extended with v̂′.1830

Viceversa, assume f̂ loop admits a successor state v̂′ of v̂. Let v′ be the

restriction of v̂′ to the symbols in V . Then, v′ is a successor for v such

that π̂ extended with v̂′ corresponds to π extended with v′.

�

Appendix B.2. E-components disjoint regions1835

In this section we show that for every E -component there exist a corre-

sponding one whose regions are pairwise disjoint and that admits the same

paths. Given an E -component H=̇〈V, I(V), T (V, V ′)〉 of length m over regions

R, assumptions A, ranking functions W and responsible for Vr ⊆ V , we define

83

a corresponding E -component Ĥ=̇〈V̂ , Î(V̂), T̂ (V̂ , V̂ ′)〉 over regions R̂, assump-1840

tions A, ranking functionsW and responsible for V̂r whose regions and pairwise

disjoint. Ĥ, with respect to H, has an additional symbol l used to keep track of

the index of the current region and each region is strengthened by requiring the

correct assignment for such symbol, while the sets of assumptions and ranking

functions remain the same. More formally we have the following:1845

• V̂ =̇V ∪ {l}, where l 6∈ V is a fresh symbol whose domain are the integers

from 0 to m− 1.

• V̂r=̇Vr ∪ {l}.

• R̂=̇{Rj ∧ l = j | Rj ∈ R}

• Î(V̂)=̇I(V) ∧
∧m−1

j=0 l = j → Rj(V) ∧Aj(V).1850

• T̂ (V̂ , V̂ ′)=̇T (V, V ′) ∧
∧m−1

j=0 l′ = j → Rj(V
′)

Notice that by construction the R̂ are pairwise disjoint. We now show that H

and Ĥ admit the same paths with respect to the assignments over the common

symbols V and that Ĥ is in fact an E -component.

Theorem 11. If H satisfies all hypotheses of Def. 3 then also Ĥ does.1855

Proof.

I By hypothesis I →
∨m−1

j=0 Rj ∧Aj holds and we need to show that

(I ∧
m−1∧
j=0

l = j → (Rj ∧Aj))→
m−1∨
j=0

Rj ∧Aj ∧ l = j

also holds. By hypothesis, for every state v in I there must exist some

j0 such that v |= Rj0 ∧ Aj0 . By definition of l,
∨m−1

j=0 l = j is valid,

hence the left-hand-side of the implication l = j → (Rj ∧ Aj) cannot1860

be always false. Consider an assignment v̂ over V̂ and let j0 such that

v̂ |= l = j0. Then, if v̂ 6|= Rj0∧Aj0 our objective formula holds. Otherwise,

v̂ |= Rj0 ∧Aj0 ∧ l = j0, hence v̂ |=
∨m−1

j=0 Rj ∧Aj ∧ l = j.

84

II, III, IV If Ĥ admits a transition between two restricted regions R̂j0 ∧ Aj0 and

R̂j1 ∧Aj1 of one of the 3 kinds then, by construction of T̂ , H must admit1865

a transition of the same kind between its restricted regions Rj0 ∧Aj0 and

Rj1 ∧ Aj1 . Let t be the kind of the transition. All three hypotheses hold

for H, hence every state in Rj0 ∧Aj0 admits at least one successor in Rj1

via a t-transition, provided Aj1 holds. For every state v̂ in R̂j0 ∧ Aj0 , let

v be its restriction to the symbols in V . v is in Rj0 ∧ Aj0 and it admits1870

a successor v′ via a t-transition. Then, v̂′ defined by extending v′ with

l′ = j1, is a t-successor for v̂ in Ĥ.

�

Theorem 12. The languages of H and Ĥ admit the same set of paths projected

over the symbols V .1875

Proof. We prove the statement by induction on the length of the path. We first

show that there is a one-to-one correspondence between the initial states and

then show that a one-to-one correspondence exists also between the transitions.

• Every initial state v0 of H must be such that I(v0) is true and, by Hyp. I

there exists 0 ≤ j0 < m such that Rj0(v0)∧Aj0(v0) also holds. We define1880

an assignment v̂0 over V̂ by extending v0 with the assignment l = j0. By

construction, Î(v̂0) and R̂j0(v̂0)∧Aj0(v̂0) hold, hence v̂0 is an initial state

for some path in L(Ĥ).

Viceversa, given an initial state v̂0 of Ĥ, we define v0 by restricting v̂0 to

the assignments of the symbols in V . By construction, I(v0) is true and1885

there exists 0 ≤ j0 < m such that Rj0(v0) ∧ Aj0(v0) holds. Therefore, v0

is an initial state for H.

• Consider a transition of H from assignment v to v′: v,v′ |= Rj ∧Aj ∧T ∧

Rj′ ∧ Aj′ for some 0 ≤ j < m and 0 ≤ j′ < m. By inductive hypothesis

there is an assignment v̂ for the symbols V̂ corresponding to v. We show1890

that Ĥ admits a successor v̂′ for v̂ that corresponds to v′. By hypothesis,

85

v′ |= Rj′ ∧ Aj′ . We define v̂′ by extending the assignment v′ with l = j′.

Then, v̂′ corresponds to v′ and v̂, v̂′ |= R̂j ∧Aj ∧ T̂ ∧ R̂j′ ∧ Âj′ .

Viceversa, consider now a transition of Ĥ from assignment v̂ to v̂′ and an

assignment v=̇v̂↓V for the symbols V corresponding to v̂. By hypothesis,1895

v̂ |= R̂j ∧ Aj and v̂′ |= R̂j′ ∧ Aj′ for some j and j′. By definition of

R̂j′ the following holds: v̂′ |= Rj′ . v′=̇v̂′↓V is an assignment over the

symbols V corresponding to v̂′. Since Rj′ and Aj′ do not depend on l and

v̂′ |= Rj′ ∧Aj′ , then v′ |= Rj′ ∧Aj′ . Hence, v,v′ |= Rj∧Aj∧T ∧Rj′ ∧Aj′ .

Therefore, v′ is a successor for v in H corresponding to v̂′.1900

�

Appendix B.3. Projection of E-components is closed

Theorem 4. The projection H↓ over indexes idxs of an E-component H over

regions R, assumptions A and ranking functions W is an E-component.

Proof. We prove that hypotheses I–IV hold for H↓.1905

I holds by construction since every state v such that I↓(v) must also satisfy∨
j∈idxs(Rj(V) ∧ Aj(V)) hence, by definition of R↓ and A↓, v is also in

some restricted region of H↓.

II For any j↓ ∈ idxs, the region R↓
j↓

, assumption A↓
j↓

and ranking function

Rf↓
j↓

are in both H↓ and H. In all transitions such that Rj ∧ Rf′j <1910

Rfj ∧R′j holds for some j ∈ idxs, T ↓ is equivalent to T . Therefore, since

Hyp. II holds for H, it must also hold for H↓: if T admits a successor for

every state in Rj ∧Aj such that Rf′j < Rfj ∧R′j hold, then so does T ↓.

III By construction of T ↓ admits no stutter transition. Therefore, the left-

hand-side of the entailment is false and Hyp. III holds.1915

IV For any j↓, j↓
′ ∈ idxs, if they do not denote consecutive regions in the

sequence, H↓ does not admit any transition between them and Hyp. IV

holds. Otherwise, j↓ and j↓
′
are the consecutive indexes of the regions R↓

j↓
,

86

R↓
j↓′ , the assumptions A↓

j↓
, A↓

j↓′ and ranking functions Rf↓
j↓

. If H does

not admit any progress transition between these regions, neither does H↓1920

and Hyp. IV holds. Otherwise if H admits at least one transition between

these regions, the following holds:

∃V, V ′ : R↓
j↓
∧A↓

j↓
∧Rf↓

j↓
= 0 ∧ T ∧R↓

j↓′ ∧A↓j↓′

Every such V and V ′ satisfies T ↓, hence it is also a transition for H↓.

Therefore, since Hyp. IV holds for H, for every state in R↓
j↓
∧A↓

j↓
∧Rf↓

j↓
=

0 H admits a successor in R↓
j↓′ ∧ A↓j↓′ . Every such transition is also1925

admitted by H↓ and Hyp. IV holds for H↓.

�

Appendix B.4. Composition of E-components is closed

Theorem 5. Given a set of E-components {Hi}ni=0, their composition

Hc=̇
⊗n

i=0H
i = 〈V, Ic, T c〉 is an E-component with respect to regions Rc, as-1930

sumptions Ac and ranking functions Wc.

Proof. We need to prove that hypotheses I–IV hold for Hc of length mc.

In the following we write Ai,6=c
ji

for
∧

h6∈{0,...,n}A
i,h
ji

(V h).

I requires us to prove that the initial states of Hc are a subset of the union

of the regions. This holds trivially from the definition of Ic since every1935

state in this set must satisfy
∨mc

jc=0R
c
jc
∧Ac

jc
.

II requires us to prove the following

∀j : 0 ≤ j < mc →

∃V, V ′ : (Rc
j ∧Ac

j ∧ T c ∧Rfcj
′ < Rfcj ∧Rc

j
′ ∧Ac

j
′) |=

∀V ∃V c′∀V 6=c′ : Rc
j ∧Ac

j ∧ 0 < Rfcj ∧Ac
j
′ → Rc

j
′ ∧ T c ∧Rfcj

′ < Rfcj

Hc=̇
⊗n

i=0H
i hence, by definition of ⊗, Rc

j and Ac
j are the conjunction of

some region and assumptions of {Hi}ni=0. Therefore, we can rewrite it as

87

follows:

∀{ji}ni=0 : (

n∧
i=0

0 ≤ ji < mi)→

∃V, V ′ : (

n∧
i=0

Ri
ji ∧ (

n∧
h=0,h6=i

Ai,h
ji

) ∧Ai,6=c
ji
∧ T i) ∧ compatible{Hi}ni=0

∧

indepRank{Hi}ni=0
∧Rfcj

′ < Rfcj ∧ (

n∧
i=0

Ri
ji

′ ∧ (

n∧
h=0,h 6=i

Ai,h
ji

′
) ∧Ai,6=c

ji

′
) |=

∀V ∃{V i′}ni=0∀V 6=c′ : ((

n∧
i=0

Ri
ji ∧ (

n∧
h=0,h6=i

Ai,h
ji

) ∧Ai,6=c
ji

) ∧Ac
j
′ ∧ 0 < Rfcj)→

((

n∧
i=0

Ri
ji

′ ∧ (

n∧
h=0,h 6=i

Ai,h
ji

′
) ∧ T i) ∧ compatible{Hi}ni=0

∧ indepRank{Hi}ni=0
∧

Rfcj
′ < Rfcj)

For any 0 ≤ i ≤ n Ai
j(V

6=c)∧
∧n

h=0,h6=iA
i,h
ji

(V h) is equivalent to Ai
j(V

6=i).

Therefore, our objective formula can be rewritten as:

∀{ji}ni=0 : (

n∧
i=0

0 ≤ ji < mi)→

∃V, V ′ : (

n∧
i=0

Ri
ji ∧A

i
ji ∧ T

i ∧Ri
ji

′ ∧Ai
ji

′
) ∧ compatible{Hi}ni=0

∧

indepRank{Hi}ni=0
∧Rfcj

′ < Rfcj |=

∀V ∃{V i′}ni=0∀V 6=c′ : ((

n∧
i=0

Ri
ji ∧A

i
ji) ∧A

c
j
′ ∧ 0 < Rfcj)→ ((

n∧
i=0

T i ∧Ri
ji

′∧

n∧
h=0,h6=i

Ai,h
ji

′
) ∧ compatible{Hi}ni=0

∧ indepRank{Hi}ni=0
∧Rfcj

′ < Rfcj)

If indepRank{Hi}ni=0
[resp. compatible{Hi}ni=0

] does not hold in the left-

hand-side of the entailment the formula is trivially true. By definition

of indepRank{Hi}ni=0
[resp. compatible{Hi}ni=0

], if it holds in the left-

hand-side of the entailment it must also hold on the right-hand-side,

since on both sides V and V ′ belong to the same regions. Therefore,

compatible{Hi}ni=0
must hold and when both sides of the implication on

the right-hand-side of the entailment hold,
∧n

i=0

∧n
h=0,h 6=iA

i,h
j′i

(V h′) must

88

be true. We can further simplify our objective formula as follows:

∀{ji}ni=0 : (

n∧
i=0

0 ≤ ji < mi)→ ∃V, V ′ : (

n∧
i=0

Ri
ji ∧A

i
ji ∧ T

i ∧Ri
ji

′ ∧Ai
ji

′
)∧

compatible{Hi}ni=0
∧ indepRank{Hi}ni=0

∧Rfcj
′ < Rfcj |= ∀V ∃{V i′}ni=0∀V 6=c′ :

((

n∧
i=0

Ri
ji ∧A

i
ji) ∧A

c
j
′ ∧ 0 < Rfcj)→ ((

n∧
i=0

T i ∧Ri
ji

′
) ∧Rfcj

′ < Rfcj)

If the left-hand-side of the entailment is false, then the formula is trivially

true. Therefore, assume that there exists a transition performing a self-

loop on the restricted region Rc
j ∧Ac

j with independent ranks in which the

sum of the ranking function decreases. Under this assumption, we need

to prove the following for any j=̇〈j0, . . . , jn〉 satisfying the above:

∀V ∃{V i′}ni=0∀V 6=c′ :

((

n∧
i=0

Ri
ji ∧A

i
ji) ∧A

c
j
′ ∧ 0 < Rfcj(V))→ ((

n∧
i=0

T i ∧Ri
ji

′
) ∧Rfcj

′ < Rfcj)

Since indepRank{Hi}ni=0
holds for indexes 〈j0, . . . , jn〉 we have:

n∧
i=0

(∀V : (

n∧
h=0

Rh
jh
∧Ah

jh
)→ Rfiji = 0)∨

∃V, V ′ : (

n∧
h=0

Rh
jh
∧Ah

jh
∧ Th ∧Rh

jh

′ ∧Ah
jh

′
)∧

Rfiji
′
< Rfiji ∧ (

n∧
k=0,k 6=h

Rfiji
′

= Rfiji) ∧ compatible{Hi}ni=0

In addition, since there exists a transition in the restricted regions such

that Rfcj decreases, there must be some 0 ≤ ir ≤ n such that ∃V :

(
∧n

h=0R
h
jh

(V)∧Ah
jh

(V 6=h))∧ 0 < Rfirjir (V). Then, there exist compatible

transitions in which its ranking function decreases Rfirjr (V ′) < Rfirjr (V),

while all other ranking function remain constant
∧n

i=0,i6=ir
Rfiji(V

′) =

Rfiji(V). Hyp. II holds for Hir :

∀jr : 0 ≤ jr < mir → ∃V, V ′ : (Rir
jr
∧Air

jr
∧ T ir ∧Rfirjr

′
< Rfirjr ∧R

ir
jr

′ ∧Air
jr

′
) |=

∀V ∃V ir ′∀V 6=ir ′ : Rir
jr
∧Air

jr
∧ 0 < Rfirjr ∧A

ir
jr

′ → Rir
jr

′ ∧ T ir ∧Rfirjr
′
< Rfirjr

89

and Hyp. III holds for all {Hi}ni=0,i6=ir
:

∀ji : 0 ≤ ji < mi → ∃V, V ′ : (Ri
ji ∧A

i
ji ∧ T

i ∧Rfiji
′

= Rfiji ∧R
i
ji

′ ∧Ai
ji

′
) |=

∀V ∃V i′∀V 6=i′ : Ri
ji ∧A

i
ji ∧A

i
ji

′ → Ri
ji

′ ∧ T i ∧Rfiji
′

= Rfiji

If there is no transition in the intersection of the restricted regions such

that Rfcj decreases or they are not compatible, the objective formula triv-

ially holds because the left-hand-side of the entailment is false. Then, the

conjunction of the hypotheses for the {Hi}ni=0 implies:

∀{ji}ni=0 : (

n∧
i=0

0 ≤ ji < mi)→

∃V, V ′ : (

n∧
i=0

(Ri
ji ∧A

i
ji ∧ T

i ∧Ri
ji

′ ∧Ai
ji

′
) ∧Rfirjr

′
< Rfirjr ∧

n∧
i=0,i6=r

Rfiji
′

= Rfiji) |=

∀V ∃V ir ′∀V 6=ir ′ : Rir
jr
∧Air

jr
∧ 0 < Rfirjr ∧A

ir
jr

′ → Rir
jr

′ ∧ T ir ∧Rfirjr
′
< Rfirjr∧

n∧
i=0,i6=r

∀V ∃V i′∀V 6=i′ : Ri
ji ∧A

i
ji ∧A

i
ji

′ → Ri
ji

′ ∧ T i ∧Rfiji
′

= Rfiji

The left hand side of the entailment must hold, otherwise our objective

formula is trivially true.

∀V ∃V ir ′∀V 6=ir ′ : Rir
jr
∧Air

jr
∧ 0 < Rfirjr ∧A

ir
jr

′ → Rir
jr

′ ∧ T ir ∧Rfirjr
′
< Rfirjr∧

n∧
i=0,i6=r

∀V ∃V i′∀V 6=i′ : Ri
ji ∧A

i
ji ∧A

i
ji

′ → Ri
ji

′ ∧ T i ∧Rfiji
′

= Rfiji

If a ∀V ∃V i′∀V 6=i′ quantified implication holds, then for every assignment

to the symbols V such that Ri
ji

(V), Ai
ji

(V 6=i) and, if i = ir, also 0 <

Rfirjr (V) hold, there exists an assignment to V i′ satisfying the assumptions

of all other E -components
∧n

s=0,s6=iA
s,i
js

(V i′), for all assignments to the

V 6=i′. Therefore, we can write the following:

∀V ∃{V i′}ni=0∀V 6=c′ : (Rir
jr
∧Air

jr
∧ 0 < Rfirjr ∧A

ir,6=c
jr

′
→ Rir

jr

′ ∧ T ir ∧Rfirjr
′
< Rfirjr)∧

n∧
i=0,i6=r

Ri
ji ∧A

i
ji ∧A

i,6=c
ji

′
→ Ri

ji

′ ∧ T i ∧Rfiji
′

= Rfiji

90

0 < Rfirjr (V) implies 0 < Rfcj(V) and, since (a → b) ∧ (c → d) implies

(a ∧ c)→ (b ∧ d), the formula above implies:

∀V ∃{V i′}ni=0∀V 6=c′ : (0 < Rfcj ∧ (

n∧
i=0

Ri
ji ∧A

i
ji ∧A

i,6=c
ji

′
))→

Rfirjr
′
< Rfirjr ∧ (

n∧
i=0,i6=ir

Rfiji
′

= Rfiji) ∧
n∧

i=0

Ri
ji

′ ∧ T i

The formula Rfirjr (V ′) < Rfirjr (V)) ∧ (
∧n

i=0,i6=ir
Rfiji(V

′) = Rfiji(V)) im-

plies Rfcj(V
′) < Rfcj(V) and

∧n
i=0A

i
ji

(V 6=c) is equivalent to Ac
j(V

6=c)

Therefore, we obtain the implied statement:

∀V ∃{V i′}ni=0∀V 6=c′ :

((

n∧
i=0

Ri
ji ∧A

i
ji) ∧A

c
j
′ ∧ 0 < Rfcj)→ ((

n∧
i=0

T i ∧Ri
ji

′
) ∧Rfcj

′ < Rfcj)

which is exactly the formula we wanted to prove.

III requires us to prove the following

∀j : 0 ≤ j < mc →

∃V, V ′ : (Rc
j ∧Ac

j ∧ T c ∧Rfcj
′ = Rfcj ∧Rc

j
′ ∧Ac

j
′) |=

∀V ∃V c′∀V 6=c′ : Rc
j ∧Ac

j ∧Ac
j
′ → Rc

j
′ ∧ T c ∧Rfcj

′ = Rfcj

By definition of ⊗ and since Hc=̇
⊗n

i=0H
i we can rewrite it as:

∀{ji}ni=0 : (

n∧
i=0

0 ≤ ji < mi)→

∃V, V ′ : (

n∧
i=0

Ri
ji ∧ (

n∧
h=0,h 6=i

Ai,h
ji

) ∧Ai,6=c
ji
∧ T i) ∧ compatible{Hi}ni=0

∧

indepRank{Hi}ni=0
∧Rfcj

′ = Rfcj ∧ (

n∧
i=0

Ri
ji

′ ∧ (

n∧
h=0,h 6=i

Ai,h
ji

′
) ∧Ai,6=c

ji

′
) |=

∀V ∃{V i′}ni=0∀V 6=c′ : ((

n∧
i=0

Ri
ji ∧ (

n∧
h=0,h6=i

Ai,h
ji

) ∧Ai,6=c
ji

) ∧Ac
j
′)→ ((

n∧
i=0

Ri
ji

′∧

(
∧

h=0,h6=i

Ai,h
ji

′
) ∧ T i) ∧ compatible{Hi}ni=0

∧ indepRank{Hi}ni=0
∧Rfcj

′ = Rfcj)

91

On both sides of the entailment Rfcj(V
′) = Rfcj(V) holds, hence

indepRank{Hi}ni=0
is trivially true: the left-hand-side of the implication

in its definition is false. In addition, for any 0 ≤ i ≤ n Ai
j(V

6=c) ∧∧n
h=0,h6=iA

i,h
ji

(V h) is equivalent to Ai
j(V

6=i). Therefore, our objective for-

mula can be rewritten as:

∀{ji}ni=0 : (

n∧
i=0

0 ≤ ji < mi)→

∃V, V ′ : (

n∧
i=0

Ri
ji ∧A

i
ji ∧ T

i ∧Ri
ji

′ ∧Ai
ji

′
) ∧Rfcj

′ = Rfcj ∧ compatible{Hi}ni=0
|=

∀V ∃{V i′}ni=0∀V 6=c′ : ((

n∧
i=0

Ri
ji ∧A

i
ji) ∧A

c
j
′)→ ((

n∧
i=0

T i ∧Ri
ji

′ ∧
∧

h=0,h6=i

Ai,h
ji

′
)∧

Rfcj
′ = Rfcj ∧ compatible{Hi}ni=0

)

If compatible{Hi}ni=0
(V, V ′) does not hold, then the left-hand-side of

the entailment is false, hence the entailment is true. Otherwise,

compatible{Hi}ni=0
holds and since it holds on the left-hand-side of

the entailment, it must also hold on the right-hand-side; when both

sides of the implication on the right-hand-side of the entailment hold,∧n
i=0

∧n
h=0,h 6=iA

i,h
j′i

(V h′) must be true since compatible{Hi}ni=0
holds. We

can further simplify our objective formula as follows:

∀{ji}ni=0 : (

n∧
i=0

0 ≤ ji < mi)→

∃V, V ′ : (

n∧
i=0

Ri
ji ∧A

i
ji ∧ T

i ∧Ri
ji

′ ∧Ai
ji

′
) ∧Rfcj

′ = Rfcj ∧ compatible{Hi}ni=0
|=

∀V ∃{V i′}ni=0∀V 6=c′ : ((

n∧
i=0

Ri
ji ∧A

i
ji) ∧A

c
j
′))→ ((

n∧
i=0

T i ∧Ri
ji

′
) ∧Rfcj

′ = Rfcj)

If the left-hand-side of the entailment is false, then the formula is trivially

true. Therefore, assume that there exists a transition performing a self-

loop on the restricted region Rc
j∧Ac

j in which the ranking function remains

constant. Under this assumption, we need to prove the following for any

92

j=̇〈j0, . . . , jn〉 satisfying the above:

∀V ∃{V i′}ni=0∀V 6=c′ : ((

n∧
i=0

Ri
ji ∧A

i
ji) ∧A

c
j
′)→ (Rfcj

′ = Rfcj ∧
n∧

i=0

T i ∧Ri
ji

′
)

Hyp. III holds for all E -components {Hi}ni=0:

∀ji : 0 ≤ ji < mi →

∃V, V ′ : (Ri
ji ∧A

i
ji ∧ T

i ∧Rfiji
′

= Rfiji ∧R
i
ji

′ ∧Ai
ji

′
) |=

∀V ∃V i′∀V 6=i′ : Ri
ji ∧A

i
ji ∧A

i
ji

′ → Ri
ji

′ ∧ T i ∧Rfiji
′

= Rfiji

By assumption there exists a transition in the intersection of their re-

stricted regions such that Rfcj(V
′) = Rfcj(V), and hence Rfiji(V

′) =

Rfiji(V) for all i. Therefore, their conjunction implies:

n∧
i=0

∀V ∃V i′∀V 6=i′ : Ri
ji ∧A

i
ji ∧A

i
ji

′ → Ri
ji

′ ∧ T i ∧Rfiji
′

= Rfiji

If a ∀V ∃V i′∀V 6=i′ quantified implication holds then for every assignment

to the symbols V such that Ri
ji

(V) ∧ Ai
ji

(V 6=i) ∧ Ai
ji

(V 6=i′) holds, there

exists an assignment to the V i′ satisfying the assumptions of all other

E -components
∧n

s=0,s6=iA
s,i
js

(V i′), for all assignments to the V 6=i′. There-

fore, we can write the following:

∀V ∃{V i′}ni=0∀V 6=c′ :

n∧
i=0

((Ri
ji ∧A

i
ji ∧A

i,6=c
ji

′
)→ (Ri

ji

′ ∧ T i ∧Rfiji
′

= Rfiji))

Since (a → b) ∧ (c → d) implies (a ∧ c) → (b ∧ d) and
∧n

i=0 Rfiji(V
′) =

Rfiji(V) implies Rfcj(V
′) = Rfcj(V), the formula above implies:

∀V ∃{V i′}ni=0∀V 6=c′ : (

n∧
i=0

Ri
ji ∧A

i
ji) ∧A

c
j
′ → (Rfcj

′ = Rfcj ∧
n∧

i=0

T i ∧Ri
ji

′
)

which is exactly the formula we wanted to prove.

IV requires us to prove the following

∀j, j′ : 0 ≤ j < mc ∧ 0 ≤ j′ < mc →

∃V, V ′ : (Rc
j ∧Ac

j ∧ T c ∧Rfcj = 0 ∧Rc
j′
′ ∧Ac

j′
′) |=

∀V ∃V c′∀V 6=c′ : Rc
j ∧Ac

j ∧Rfcj = 0 ∧Ac
j′
′ → Rc

j′
′ ∧ T c

93

By definition of ⊗ and since Hc=̇
⊗n

i=0H
i we can rewrite it as:

∀{ji}ni=0, {j′i}ni=0 : (

n∧
i=0

0 ≤ ji < mi ∧ 0 ≤ j′i < mi)→

∃V, V ′ : (

n∧
i=0

Ri
ji ∧ (

n∧
h=0,h6=i

Ai,h
ji

) ∧Ai,6=c
ji
∧ T i) ∧ compatible{Hi}ni=0

∧

indepRank{Hi}ni=0
∧Rfcj = 0 ∧ (

n∧
i=0

Ri
j′i

′ ∧ (

n∧
h=0,h 6=i

Ai,h
j′i

′
) ∧Ai,6=c

j′i

′
) |=

∀V ∃{V i′}ni=0∀V 6=c′ : ((

n∧
i=0

Ri
ji ∧ (

n∧
h=0,h6=i

Ai,h
ji

) ∧Ai,6=c
ji

) ∧Rfcj = 0 ∧Ac
j′
′)→

((

n∧
i=0

Ri
j′i

′ ∧ T i ∧
n∧

h=0,h6=i

Ai,h
j′i

′
) ∧ compatible{Hi}ni=0

∧ indepRank{Hi}ni=0
)

If j 6= j′, indepRank{Hi}ni=0
trivially holds, since the left-hand-side of

the implication in its definition is false. Otherwise, if j = j′, Rfcj(V) =

0 contradicts Rfcj(V
′) < Rfcj(V) and again indepRank{Hi}ni=0

trivially

holds because the left-hand-side of the implication in its definition is false.

In addition, for any 0 ≤ i ≤ n Ai
j(V

6=c) ∧
∧n

h=0,h6=iA
i,h
ji

(V h) is equivalent

to Ai
j(V

6=i). Therefore, our objective formula can be rewritten as:

∀{ji}ni=0, {j′i}ni=0 : (

n∧
i=0

0 ≤ ji < mi ∧ 0 ≤ j′i < mi)→

∃V, V ′ : (

n∧
i=0

Ri
ji ∧A

i
ji ∧ T

i ∧Ri
j′i

′ ∧Ai
j′i

′
) ∧ compatible{Hi}ni=0

∧Rfcj = 0 |=

∀V ∃{V i′}ni=0∀V 6=c′ : ((
n∧

i=0

Ri
ji ∧A

i
ji) ∧Rfcj = 0 ∧Ac

j′
′)→

((

n∧
i=0

T i ∧Ri
j′i

′ ∧
n∧

h=0,h6=i

Ai,h
j′i

′
) ∧ compatible{Hi}ni=0

)

If compatible{Hi}ni=0
(V, V ′) does not hold, then the left-hand-side of

the entailment is false, hence the entailment is true. Otherwise

compatible{Hi}ni=0
holds and since it holds on the left-hand-side of

the entailment, it must also hold on the right-hand-side; when both

sides of the implication on the right-hand-side of the entailment hold,∧n
i=0

∧n
h=0,h 6=iA

i,h
j′i

(V h′) must be true since compatible{Hi}ni=0
holds. We

94

can further simplify our objective formula as follows:

∀{ji}ni=0, {j′i}ni=0 : (

n∧
i=0

0 ≤ ji < mi ∧ 0 ≤ j′i < mi)→

∃V, V ′ : (

n∧
i=0

Ri
ji ∧A

i
ji ∧ T

i ∧Ri
j′i

′ ∧Ai
j′i

′
) ∧ compatible{Hi}ni=0

∧Rfcj = 0 |=

∀V ∃{V i′}ni=0∀V 6=c′ : (Rfcj = 0 ∧
n∧

i=0

Ri
ji ∧A

i
ji ∧A

i,6=c
j′i

′
)→ (

n∧
i=0

T i ∧Ri
j′i

′
)

If the left-hand-side of the entailment is false, then the formula is trivially

true. Therefore, assume that there exists a transition from a state in

Rc
j ∧Ac

j ∧Rfcj = 0 to Rc
j′ ∧Ac

j′ Under this assumption, we need to prove

the following for any j=̇〈j0, . . . , jn〉 satisfying the above:

∀V ∃{V i′}ni=0∀V 6=c′ : (Rfcj = 0 ∧
n∧

i=0

Ri
ji ∧A

i
ji ∧A

i,6=c
j′i

′
)→ (

n∧
i=0

T i ∧Ri
j′i

′
)

Each E -component Hi allows for a transition from its restricted region

with index ji to the one with index j′i. In this transition since Rfcj(V) = 0,

then Rfiji(V) = 0 holds in the source state. The following holds since

Hyp. IV holds for all {Hi}ni=0.

∃V, V ′ : (Ri
ji ∧A

i
ji ∧ T

i ∧Rfiji = 0 ∧Ri
j′i

′ ∧Ai
j′i

′
) |=

∀V ∃V i′∀V 6=i′ : (Ri
ji ∧A

i
ji ∧Rfiji = 0 ∧Ai

j′i

′
)→ Ri

j′i

′ ∧ T i

If a ∀V ∃V i′∀V 6=i′ quantified implication holds then for every assignment

to the symbols V such that Ri
ji

(V) ∧ Ai
ji

(V 6=i) ∧ Ai
j′i

(V 6=i′) holds, there

exists an assignment to the V i′ satisfying the assumptions of all other

E -components
∧n

s=0,s6=iA
s,i
j′s

(V i′), for all assignments to the V 6=i′. There-

fore, we can write the following:

∀V ∃{V i′}ni=0∀V 6=c′ :

n∧
i=0

((Ri
ji ∧A

i
ji ∧Rfiji = 0 ∧Ai,6=c

j′i

′
)→ (Ri

j′i

′ ∧ T i))

Since (a → b) ∧ (c → d) implies (a ∧ c) → (b ∧ d) and
∧n

i=0 Rfiji(V) = 0

implies Rfcj(V) = 0, we can write the following implied statement:

∀V ∃{V i′}ni=0∀V 6=c′ : (Rfcj = 0 ∧
n∧

i=0

Ri
ji ∧A

i
ji ∧A

i,6=c
j′i

′
)→ (

n∧
i=0

T i ∧Ri
j′i

′
)

95

which is exactly the formula we wanted to prove.

�1940

Appendix B.5. E-CHC encoding of funnel-loop search is sound

Theorem 7. Given a fair transition system M=̇〈V, IM , TM , FM 〉 and an in-

terpretation for the queries R, T and Rank satisfying all Eqs. (A.1)–(A.7). Then

there exist a funnel-loop for M .

Proof. We first show that, R(c, V) and T (V, V ′) correspond to a funnel and1945

then show that such funnel corresponds to a funnel-loop of length one. We define

a funnel fnl=̇〈S(V), Tfnl(V, V
′), D(V),Rf(V)〉, where (i) S(V)=̇∃c : R(c, V),

(iv) Tfnl(V, V
′)=̇T (V, V ′) ∧ (D(V ′)↔ Rf(V) = 0), (iii) D(V)=̇∃c : c ∧R(c, V)

and (iii) Rf(V) is a ranking function witnessing the well-foundedness of relation

Rank(V, V ′). Rf is such that Rf(V) = 0 for all V such that there exist no V ′1950

making ¬c ∧R(c, V) ∧ T (V, V ′) ∧ ∧c′R(c′, V ′) hold:

∀c, V, c′ : ¬(∃V ′ : ¬c ∧R(c, V) ∧ T (V, V ′) ∧ c′ ∧R(c′, V ′))→ Rfi(V) = 0

and in all other cases (R(c, V) ∧ T (V, V ′) ∧ R(c, V ′) holds for all V , V ′) the

following must hold:

∀V, V ′ : (¬c ∧R(c, V) ∧ T (V, V ′) ∧R(c, V ′))→ Rf(V) ≥ Rf(V ′) + 1

These two constraints allow for many different interpretations of Rf. Every

such interpretation satisfies our requirements and it is sufficient for such set1955

to be non-empty. The well-foundedness of Rank implies, by Eq. (A.6), that

¬c ∧ R(c, V) ∧ T (V, V ′) ∧ R(c, V ′) is well-founded. Therefore, there must exist

some V such that Rf(V) = 0: in particular all the states in ¬c ∧ ¬R(c, V)

and all the states in ¬c ∧ R(c, V) for which T does not admit any successor

in the same region. Since ¬c ∧ R(c, V) ∧ T (V, V ′) ∧ R(c, V ′) is well-founded it1960

cannot allow for any infinite chain of states, hence it cannot allow any loop of

states. Therefore, the constraints above do not contain any circular dependency

96

in the definition of the assignments to the Rf(V) and there exists at least one

interpretation for Rf.

We now show that fnl satisfies all hypotheses required by Def. 1.1965

F.1 follows directly from Eq. (A.4) and the fact that Rf = 0 implies that T

does not admit any successor in ¬c ∧ R(c, V), hence it must admit some

successor in c ∧R(c, V), which by definition is in D.

F.2 By construction S contains all states of ∃c : R(c, V). Eq. (A.2) ensures

that this is an invariant, hence Hyp. F.2 holds.1970

F.3 By construction, Rf assigns decreasing integers to the chains described by

the relation ¬c ∧ R(c, V) ∧ T (V, V ′) ∧ R(c, V ′). Therefore, at every such

step Rf must decrease and Hyp. F.3 holds.

F.4 Eq. (A.2) and the well-foundedness of ¬c∧R(c, V)∧T (V, V ′), ensures that

from a state in ¬c∧R(c, V) in a finite number of T steps we must reach a1975

state in c∧R(c, V). We defined Rf such that Rf = 0 in the states whose

T successors are in c ∧R(c, V), hence in D. Therefore, Hyp. F.4 holds.

We now show that fnl is a funnel-loop: it meets all hypotheses of Def. 2

FL.1 trivially holds since fnl is the only funnel.

FL.2 We defined S as the union of c ∧ R(c, V) and ¬c ∧ R(c, v) and D as1980

c ∧R(c, V). Therefore D → S and Hyp. FL.2 holds.

Finally, we show that this funnel-loop represents at least one fair path of M

by showing that it meets all hypotheses of Th. 1.

FF.1 holds since Eq. (A.1) ensures that R(c, V) has a non-empty intersection

with the initial states IM .1985

FF.2 holds since Eq. A.5 ensures that every state in c∧R(c, V) satisfies FM (V).

We defined D=̇R(>, V), hence D → FM and Hyp. FF.2 must hold.

FF.3 follows directly from Eq. (A.3).

�

97

Appendix B.6. E-CHC encoding of funnel-loop search is complete1990

Theorem 8. Let floop be a funnel-loop of length one for a transition system

M=̇〈V, IM , TM , FM 〉. Then, there exists an intepretation for the query symbols

R, T and Rank satisfying all Eqs. (A.1)–(A.7).

Proof. Given a floop of length one, we define an interpretation for the

query symbols R, T and Rank for the E-CHC. Let fnl=̇〈S, Tfnl, D,Rf〉 be the1995

funnel of floop. By Th. 1 there exists a finite sequence of states π such that: it

starts from an initial state of M , follows the transition relation of M and ends

in a state in the source region S. Without loss of generality we assume π does

not contain any state in S other than the last one. In the following we write

π(V) for the predicate that holds iff V is in π and π(V, V ′) for the predicate2000

that holds iff V and V ′ are two consecutive states in π. We define the inter-

pretation for the queries as follows: (i) R(c, V)=̇(π(V) ∨ S(V)) ∧ (c ↔ D(V)),

(ii) T (V, V ′)=̇π(V, V ′) ∨ (S(V) ∧ Tfnl(V, V ′)) and (iii) Rank(V, V ′)=̇π(V, V ′) ∨

Rf(V ′) < Rf(V). We now show that this interpretation satisfies all Eqs. (A.1)–

(A.7).2005

Eq. (A.1) By construction ¬c ∧R(c, V) contains all states in π. By hypothesis, the

first state of π is an initial state of M . Therefore, Eq. (A.1) holds.

Eq. (A.2) R(c, V) contains all states of π and of S. T either follows the transitions of

π or, once it reaches S follows the transition relation of fnl. By hypothe-

ses F.2, F.4, FL.1 and FL.2 such transitions must remain in S. Therefore,2010

from every state not in S and not in π T is false and the left-hand-side

of Eq. (A.2) is false; otherwise, every T transition must remain within

R(c, V) and Eq. (A.2) is true.

Eq. (A.3) Every step in π is also a step in M and by Hyp. FF.3 every step of

floop underapproximates the transition relation ofM . Therefore, T (V, V ′)2015

underapproximates TM and Eq. (A.3) holds.

Eq. (A.4) Since Hyp. F.1 must hold for fnl and every state in π must admit a suc-

cessor until a state in S is reached, by construction T (V, V ′) always allows

98

from some successor state in each region R(V, c). Therefore, Eq. (A.4)

holds.2020

Eq. (A.5) By Hyp. FF.2 the destination region D underapproximates the fair states.

By construction c∧R(c, V) is equivalent to such region. Therefore, Eq. A.5

holds.

Eq. (A.6) holds by construction of the interpretation for Rank .

Eq. (A.7) holds since π is a finite sequence of states and each Rf is a ranking function2025

with respect to Tfnl and the corresponding S.

�

99

	Introduction
	Background
	Symbols, formulae, implicants and entailment
	Well-founded relations and ranking functions
	LTL model checking

	Overview of the approach
	Segmentation: funnels
	Decomposition: existential components
	Search procedure

	Running example
	Segmenting paths with funnels
	Funnels
	Funnel-loops
	Example

	Model decomposition via Existential Components
	E-component
	Example decomposition
	From funnel-loops to E-components
	Operators over E-component
	Example E-components composition
	From E-components to funnel-loops

	Search procedure
	Example funnel-loop search
	Candidate fair loops: representation and enumeration
	Funnel-loop templates
	Funnel-loop synthesis problem

	Related work
	Experimental Evaluation
	Implementation
	Benchmarks
	Competitor tools
	Evaluation

	Conclusions
	Encoding of funnel-loop search in E-CHC
	Theorems and proofs
	Funnel-loop disjoint regions
	E-components disjoint regions
	Projection of E-components is closed
	Composition of E-components is closed
	E-CHC encoding of funnel-loop search is sound
	E-CHC encoding of funnel-loop search is complete

