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Abstract. Proving existential properties of infinite-state systems (e.g.
software non-termination, model checking of hybrid automata) comes
with a key challenge: differently from the finite-state case, witnesses may
not be in form of lasso-shaped fair paths. In this paper we propose an
approach to automatically prove existential properties for infinite state
transition systems, presenting witnesses in an indirect way. The approach
is based on the notion of well-founded funnel, where a ranking function
guarantees that the states in the source set are guaranteed to inevitably
reach the destination set. We show that, under suitable conditions, a
sequence of funnels ensures the existence of a fair path. We propose
an algorithm that, working in an abstract space induced by a set of
predicates, identifies candidate funnels, proves their well-foundedness,
and searches for a sequencing order.
An experimental evaluation shows that the approach is effective in prov-
ing existential properties on a wide range of examples taken from both
software and LTL model checking, and outperforms various competitor
tools.

Keywords: LTL model checking · LTL falsification · infinite-state sys-
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1 Introduction

Temporal logic model checking for infinite-state transition systems is a very
important direction in verification. Most of the works have been devoted to
proving universal properties, i.e. properties holding on all the traces.The dual
problem of proving existential properties, used for example for software non-
termination and model checking of hybrid automata, comes with a fundamental
difficulty: differently from the finite-state case, witnesses may not be in form of
lasso-shaped fair paths.

In this paper we propose an approach to automatically prove existential
properties for infinite state transition systems, presenting witnesses in an indi-
rect way. Our approach is based on the notion of well-founded funnel. A (well-
founded) funnel fnl comprises two sets of (source and target) states S and D,
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an underapproximation of the transition relation, and a ranking function prov-
ing that all paths of fnl from S will eventually reach D. A sequence of funnels
fnl0, . . . , fnln−1 ensures the existence of a fair path if certain conditions are
met. These include that Dn−1 must be contained in the fairness condition, the
destination Di of fnli must be contained in the source Si+1 of the next funnel
for all i > 1, and Dn−1 must be contained in S0.

We propose an algorithm that identifies candidate funnels, proves their well-
foundedness, and searches for the right sequencing order so that the existence
of a corresponding fair path is ensured. The algorithm works in an abstraction
of the infinite-state transition system induced by a set of suitable predicates.
Specifically, it uses a liveness-to-safety construction to generate lasso-shaped
paths in the abstract space. At its core, the proof of well-foundedness of each
funnel is carried out by synthesizing a suitable ranking function.

A key difference with respect to predicate abstraction is that here abstract
traces are not required to have the same number of transitions of their concretiza-
tions – in fact, each abstract state is implicitly associated with an arbitrarily high
(but finite) number of self-transitions in its concretization.

We implemented the approach in a prototype called F3, built on top of the
SMT solvers MathSAT and Z3. We carried out an extensive experimental eval-
uation, on a wide range of examples taken from both software and LTL model
checking, comparing F3 with several competitor systems. The results shows that
the proposed approach has two key advantages: first, it is very general, in that
none of the competitor tools is able to cover all the benchmarks; second, it is
very effective in proving a large number of existential properties.

The paper is structured as follows. In Section 2 we present some preliminaries.
Then, in Section 3 we define funnels and prove their properties. In Section 4 we
present the algorithm, and in Section 5 we discuss the related work. In Section 6
we briefly describe some implementation details and then discuss our experimen-
tal results. In Section 7 we draw some conclusions and outline the directions for
future work. The proofs of all the theorems contained in the paper are reported
in the Appendix B.

2 Background

We work in the setting of SMT, with the theory of quantified real arithmetic. We
assume the standard notions of interpretation, model, satisfiability, validity and
logical consequence. A symbolic fair transition system M is a tuple 〈V, I, T, F 〉,
where V is the set of state variables; I and F are formulae over V , representing
respectively the initial and fair states; T is a formula over V and V ′ representing
the transitions, where V ′=̇{v′|v ∈ V } and the primed version of a variable refers
to the next state. We write I(V ), F (V ) and T (V, V ′) to explicitly state that they
are formulae over the symbols in V (I and F ) and V ∪ V ′ (T ) respectively.

We denote with v a total assignment over V , i.e. a state. A fair path of M
is an infinite sequence of states, v0,v1, . . ., such that v0 |= I, viv

′
i+1 |= T for all

i, and for each i there exists j > i such that vj |= F . Given a formula φ(V ) we
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Fig. 1. Funnels combined into chain forming a funnel-loop.

also write φ(v) for the evaluation of φ obtained by replacing every symbol in V
with its corresponding assignment in v. We also assume the standard notions
of trace, reachability, and temporal logic model checking, using the usual defini-
tions of U,G,F for the “until”, “always” and “eventually” temporal operators
(LTL [35]).

We overload the |= symbol: when φ and ψ are SMT formulae, then φ |= ψ
stands for entailment in SMT; whenM is a fair transition system and ψ is a linear
temporal property, then M |= ψ is to be interpreted with the LTL semantics. If
ψ is a quantifier-free SMT formula and φ is a conjunction of (a subset of) the
atoms of ψ, then φ is an implicant of ψ iff φ |= ψ.

Given a fair transition system M , we are interested in the problem of de-
termining whether M admits at least one fair path. Notice that the existential
LTL model checking problem, i.e. the problem of determining whether a system
M=̇〈V, I, T,>〉 admits at least a path that satisfies a given LTL formula ϕ, can
be reduced to checking for the existence of a fair path in the fair transition
system M ×Mϕ=̇〈V ∪ Vϕ, I ∧ Iϕ, T ∧ Tϕ, Fϕ〉, where Mϕ=̇〈Vϕ, Iϕ, Tϕ, Fϕ〉 is a
symbolic encoding of an automaton accepting the language of ϕ [36], which can
be obtained e.g. with the procedure of [10].

A binary relation ρ ⊆ Q×Q is well-founded if every non-empty subset U ⊆ Q
has a minimal element wrt. ρ, i.e. there is m ∈ U such that no u ∈ U satisfies
ρ(u,m). Given a (transition) relation T over symbols V ∪V ′, a ranking function
Rf(V ) is a function from the assignments to the symbols V to some set Q, such
that the relation {〈Rf(v0),Rf(v1)〉 | v0,v

′
1 |= T} is well-founded.

3 Funnels and funnel loops

We identify fair paths by means of a composition of elements called funnels
that, like actual funnels, take items from a source and constrain them to follow
a path leading to a destination. Each funnel characterizes a set of finite paths,
each starting from the source region, remaining in it for a bounded number of
steps, and eventually ending in the destination region. Funnels are concatenated
in chains such that the destination region of a funnel is contained in the source
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region of the following one. Funnel-loops are chains of funnels in which the
destination region of the last funnel is included in the source region of first one.

We show that under certain conditions the existence of one such funnel-loop
implies the existence of a fair path for a fair transition system M .

Given a set of symbols V , a funnel is a 4-tuple 〈S(V ), T (V, V ′), D(V ),Rf(V )〉.
S and D are formulae representing respectively the source and destination re-
gions, T is the transition relation and Rf is a ranking function for S with respect
to the transition relation T . Intuitively, this structure represents a terminating
loop over S where D are the end states of the loop. Depending on the shape
of the ranking function, the loop might correspond to a simple loop or to more
complex termination arguments such as nested loops. Each path through the
funnel starts from a state in S, it remains in S by following transition T while
the ranking function Rf remains greater than the minimal element 0 and finally
reaches D when the ranking function becomes 0. If we consider a trivial ranking
function that is always equal to the minimal element 0 the 4-tuple simply asserts
that every state in S is mapped into D by a single transition T .

Definition 1 (Funnel). Given a set of symbols V , a funnel is defined as the
4-tuple

Funnel =̇ 〈S(V ), T (V, V ′), D(V ),Rf(V )〉

where: S and D are SMT formulae that represent abstract states; T is a boolean
formula with symbols in V ∪ V ′ over some combination of SMT-theories rep-
resenting a transition relation; Rf is a function from the assignments to the
symbols in V to some well-founded set with minimal element 0. Every funnel
fnl satisfies the following hypotheses.

F.1 The transition relation is total relative to the source region.

∀V ∃V ′ : S(V )→ T (V, V ′)

F.2 Every funnel keeps iterating on the source region as long as its ranking
function is greater than the minimal element.

∀V, V ′ : (S(V ) ∧Rf(V ) > 0 ∧ T (V, V ′))→ S(V ′)

F.3 Every step from the source region decreases the ranking function.

∀V, V ′ : (S(V ) ∧Rf(V ) > 0 ∧ T (V, V ′))→ Rf(V ) > Rf(V ′)

F.4 Once the ranking function is equal to 0 the funnel reaches its destination
region.

∀V, V ′ : (S(V ) ∧Rf(V ) = 0 ∧ T (V, V ′))→ D(V ′)

Given a funnel fnli we write Si, Ti, Di and Rfi to refer to its components. We
define the transition system corresponding to a funnel fnl=̇〈S, T,D,Rf〉 over
symbols V as Mfnl=̇〈V, S, T,>〉. We refer to the paths through a funnel fnl
with L(fnl) meaning the paths in the language of the corresponding transition
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system that end in D and write fnl |= φ meaning that φ holds in every path in
L(fnl). From the definition it easily follows that every funnel fnl satisfies the
following:

fnl |= S U D

We define a funnel-loop as a chain of funnels [fnli]
n−1
i=0 such that the desti-

nation region of each funnel is included in the source region of the following one
and the destination region of the last funnel is included in the source region of
the first one.

Definition 2 (Funnel-loop). A sequence of n ≥ 1 of funnels [fnli]
n−1
i=0 over

symbols V is a funnel-loop iff the following hold.

FL.1 The destination region of a funnel is included in the source region of
the following funnel.

∀0 ≤ i < n− 1, V : Di(V )→ Si+1(V )

FL.2 The destination region of the last funnel Dn−1 is contained in the source
region of the first funnel S0.

∀V : Dn−1(V )→ S0(V )

We define the paths through a funnel-loop floop, L(floop), as the infinite
paths obtained by infinite concatenation of the paths of the funnels in the corre-
sponding chain and write floop |= φ meaning that φ holds in all such paths. For
every funnel different from the last one, Hyp. FL.1 ensures that we can extend
every path of such funnel, ending in its destination region, by following the tran-
sition relation of the next funnel. Therefore, every path starting in any source
region will eventually reach the destination region of the last funnel:

floop |= (

n−1∨
i=0

Si) U Dn−1

By Hyp. FL.2 every time we reach the destination region of the last funnel asso-
ciated with floop we are also in the source region of the first funnel. Therefore,
we can extend the execution by appending another finite number of steps: a
finite path starting from S0 and ending in the last destination region Dn−1. We
can do this infinitely many times obtaining infinite paths.

floop |= G((

n−1∨
i=0

Si) U Dn−1)

We propose to identify a non-empty set of fair paths for a transition system
M as a funnel-loop floop; every path through floop must correspond to an
infinite fair execution of M . The totality of the transition relation of each funnel
(F.1) and their chaining (FL.1, FL.2) ensure that all the paths in L(floop) are
infinite. We need such paths to be fair paths, hence they must visit the fairness
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condition infinitely often. By construction of floop we know that every path goes
through each Si and each Di infinitely many times. Since by FL.1 and FL.2 for
every source region Si, there exists a destination region Dj that is contained in
it, it is sufficient to require one of the destination regions to contain only fair
states. Without loss of generality we assume such a region to be the last one.
These conditions ensure that floop represents a set of fair paths of M . However,
such set might be empty or non-reachable in M . Therefore, we finally require
the union of the source regions to contain at least one state reachable in M .
The existence of such state is sufficient to conclude non-emptiness of L(floop)
because the transition relation of each funnel always allows for a successor state
(F.1) and, by induction, this ensures that every region and the language of floop
are not empty. Th 1 shows that these requirements are sufficient for a funnel-loop
to prove the existence of a fair path in M .

Theorem 1. Let M=̇〈V, IM , TM , FM 〉 be a fair transition system. Let floop be
a funnel-loop of length n over the symbols V and funnels [fnli]

n−1
i=0 such that:

FF.1 There is at least one state reachable in M in the union of the source
regions of floop:

M 6|= G¬
n−1∨
i=0

Si

FF.2 The destination region of the last funnel must contain only fair states
of M .

∀V : Dn−1(V )→ FM (V )

FF.3 Every transition of every funnel underapproximates the transition re-
lation of M . For every funnel fnli in [fnli]

n−1
i=0 :

∀V, V ′ : Si(V ) ∧ Ti(V, V ′)→ TM (V, V ′)

Then M admits at least one fair path.

4 Automated synthesis of funnel loops

This section describes our approach to automate the synthesis of a funnel
loop. Alg. 1 describes the main steps of the procedure. We reduce the synthesis
problem to a sequence of SMT queries. In order to reduce the search space, we
only look for deterministic funnel loops by requiring that each transition relation
of each funnel is deterministic. More in detail, Alg. 1 enumerates candidate
conjunctive fair loops of the fair transition system and, for each loop, it generates
a sequence of parameterised candidate funnel loops. The procedure then tries to
find an assignment to the parameters such that the candidate funnel loop meets
all the hypotheses of Defs. 1 and 2 and of Th. 1.

In the following we consider parametric expressions that are linear combina-
tions of the variables of the system, i.e.

∑
vi∈V λi·vi, where λi are the parameters.
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Algorithm 1 search-funnel(M)

1: for 〈v0, abst s, abst t〉 ∈ generate-abstract-loops(M) do
2: for fnl template ∈ generate-templates(v0, abst s, abst t) do
3: ef constrs← fnl template.ef constraints()
4: 〈found,model〉 ← seach-parameter-assignment(ef constrs)
5: if found == > then
6: return 〈model, fnl template〉
7: end if
8: end for
9: end for

10: return unknown

We use a method called new-parametric-expr to generate such linear com-
binations of symbols and parameters, and we refer to the set of all parameters
as P .

The procedure relies on ranking functions to perform 2 different tasks. Alg. 2
tries to synthesise ranking functions to avoid considering candidate abstract
loops for which we know a ranking function exists. The existence of the ranking
function proves that the loop must eventually terminate, hence it cannot cor-
respond to an infinite path. Then, ranking function templates are also used as
components for the funnels of the funnel-loop template generated by Alg. 3. In
both cases as template for the ranking functions we consider the PR-ranking
template described in [31].

We first describe how we represent and enumerate candidate abstract loops
for the transition system M . Then, we describe how a funnel-loop template is
generated from a candidate abstract loop and the search problem associated with
a funnel-loop template. Finally, we describe the approach we adopt to perform
the search.

Given a fair transition system M=̇〈V, IM , TM , FM 〉 we describe a candi-
date conjunctive fair abstract loop of length n for M as a sequence of abstract
states abst s=̇[abst si(V )]n−1i=0 , transitions abst t=̇[abst ti(V, V

′)]n−2i=0 and an ini-
tial state v0 such that: (i) v0 |= abst s0(V ), (ii) v0 is reachable in M , (iii) one
of the abstract states underapproximates the fair states, and (iv) the abstract
path is an implicant for a path of the same length in M :

∀V0, . . . , Vn−1 : (

n−1∧
i=0

abst si(Vi) ∧
n−2∧
i=0

abst ti(Vi, Vi+1))→
n−2∧
i=0

TM (Vi, Vi+1)

∃i ∀V : abst si(V )→ FM (V ).

Both the abstract states and the abstract transitions are built as formulae over
a finite set of predicates. Without loss of generality, and to simplify the presen-
tation, we assume the fair abstract state to be the first one. The enumeration
of abstract loops is performed by Alg. 2. The procedure is based on Bounded
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Algorithm 2 generate-abstract-loops(M)

1: 〈V, I, T, bad〉 ← encode-BMC-fair-abstract-loop(M)
2: for k ∈ [0, 1, 2, . . .] do

3: query ← I(V0) ∧
∧k−1

i=0 T (Vi, Vi+1) ∧ bad(Vk)
4: 〈sat,model〉 ← SMT-solve(query)
5: refs← []
6: while sat do
7: 〈abst s, abst t〉 ← get-implicant(model, query)
8: 〈is ranked, rf〉 ← rank-loop(abst s, abst t)
9: if is ranked then

10: 〈V, I, T, bad〉 ← remove-ranked-loops(V, I, T, bad, rf)
11: else
12: v0 ← get-loopback-state(model)
13: yield 〈v0, abst s, abst t〉
14: refs.append(¬(

∧
s∈abst s s ∧

∧
t∈abst t t))

15: end if
16: query ← I(V0) ∧

∧k−1
i=0 T (Vi, Vi+1) ∧ bad(Vk) ∧

∧
ref∈refs ref

17: 〈sat,model〉 ← SMT-solve(query)
18: end while
19: end for

Model Checking (BMC) [3], for the enumeration of candidate paths, and on the
computation of an implicant for each path.

Line 1 performs the usual BMC encoding for the search of a fair loop, where
the loop-back state is identified in the abstract space defined by the predicates
in the transition relation and fairness condition of M . The last state and the
loop-back state must agree on the truth assignment of all the predicates in the
transition relation and fairness condition, hence they may not be the very same
assignment. We then rely on a SMT-solver to identify fair lasso paths of in-
creasing length k, as done for the abstract liveness-to-safety algorithm of [14].
Then, at line 8 we first try to synthesise a ranking function for such abstract
loop. The method rank-loop implements the procedure described in [31] for
PR-ranking templates. If we succeed in identifying a ranking function, we re-
fine our transition system such that we avoid enumerating other loops ranked
by the same function, as described in [14] (remove-ranked-loops, line 10).
Otherwise, from the path we extract the assignment to the loop-back state and
return it together with the current abstract path. If no abstract loop of length
k exists, we clear the list of refinements and enumerate the candidate loops of
length k + 1.

Alg. 3 shows the procedure we use to generate a funnel-loop template from
a candidate abstract loop. We generate a funnel-loop of the same length as the
abstract loop. Line 1 selects a list of natural numbers to be used to generate the
funnel-loop templates. Each number corresponds to the amount of parametric in-
equalities added to each abstract state to define the corresponding source region
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Algorithm 3 generate-templates(v0, abst s, abst t)

1: ineqs← heuristic-pick-num-ineqs(abst s, abst t)
2: for ineq ∈ ineqs do
3: n← len(abst s)
4: funnels← []
5: for i ∈ [0..n− 2] do

6: src← abst s[i] ∧
∧ineq−1

j=0 new-parametric-expr(V ) ≥ 0
7: rf ← new-parametric-expr(V )
8: t← >
9: for vi+1 ∈ Vi+1 do

10: if vi+1 = f(Vi) ∈ abst t[i] for some function f then
11: t← t ∧ vi+1 = f(Vi)
12: else
13: t← t ∧ vi+1 = new-parametric-expr(Vi)
14: end if
15: end for
16: dst(V )← ∃V0 : src(V0) ∧ rf(V0) = 0 ∧ t(V0, S)
17: funnels.append(Funnel(src, t, rf, dst))
18: end for
19: yield Funnel-loop(funnels,v0)
20: end for

of a funnel template (line 6). The higher the number the more freedom will the
template have in shrinking the regions, but in the search problem we will have
more parameters and a larger space to explore. Notice that, since by construc-
tion of the abstract loop one of the abst s is fair, then also the corresponding
destination region in the funnel-loop template will be fair. We create the funnel
template corresponding to the ith abstract state abst s[i] and transition abst t[i]
in lines 5–18. We define the transition relation t of the funnel as a deterministic
functional assignment as follows. For each symbol vi+1 ∈ Vi+1, if abst ti already
contains a functional assignment for vi+1, then we use that (line 11). Otherwise,
we generate a functional assignment for vi+1 as a parametric expression over the
symbols in V (line 13). We define the destination region of a funnel implicitly
as the set of states reachable in one step from S(V ) ∧ Rf(V ) = 0 (line 16).
Finally, the procedure returns the funnel-loop template associated with the list
of parametric funnels and initial state v0.

We now describe the ∃∀ quantified formula that corresponds to the synthesis
problem of a funnel-loop template and the procedure we use to solve it. Every
instance of the funnel-loop template must satisfy all hypotheses of Defs. 1, and
2 and of Th. 1. In the hypotheses, for every funnel fnli=̇〈Si, Ti, Di,Rfi〉, we
replace each destination region Di with the quantified formula:

∃V0 : Si(V0) ∧Rfi(V0) = 0 ∧ Ti(V0, V ). (1)
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Every instance of the funnel-loop template must contain a fair region since
abst s0 is a subset of the fair states and S0, by construction, underapproxi-
mates abst s0. We ensure that Hyp. FR.1 holds by requiring that v0 is in the
source region of the first funnel fnl0 with the constraint:

∃P : S0(v0, P ). (2)

Hyp. F.1 holds by construction since each transition relation Ti of every fun-
nel template fnli is a functional assignment without any circular dependency.
Hyp. F.4 holds since we implicitly defined the destination region of each funnel
fnli as the set of states reachable in one step from Si ∧ Rfi = 0. Then, we
ensure that every instantiation of every funnel template fnli in the funnel-loop
template satisfies hypotheses F.2 and F.3 by requiring that the following hold:

∃P ∀V, V ′ : (Si(V, P ) ∧Rfi(V, P ) > 0 ∧ Ti(V, V ′, P ))→ Si(V
′, P ) (3)

∃P ∀V, V ′ : (Si(V, P ) ∧Rfi(V, P ) > 0 ∧ Ti(V, V ′, P ))→ Rfi(V, P ) > Rfi(V
′, P )
(4)

The funnels must be correctly chained for Hyp. FL.1 to hold. For this reason
we require every two consecutive funnel templates fnli and fnli+1 in the funnel-
loop template to satisfy the following:

∃P ∀V, V ′ : (Si(V, P ) ∧Rfi(V, P ) = 0 ∧ Ti(V, V ′, P ))→ Si+1(V ′, P ) (5)

Similarly, considering the first and last funnels fnl0 and fnln−1, for Hyp. FL.2
we require:

∃P ∀V, V ′ : (Sn−1(V, P ) ∧Rfn−1(V, P ) = 0 ∧ Tn−1(V, V ′, P ))→ S0(V ′, P )
(6)

This ensures that Dn−1 is a subset of S0. We have observed above that S0

contains only fair states, hence FR.2 holds. Finally, we require each funnel-loop
instance to underapproximate M (Hyp. FR.3) by requiring the following to hold
for every funnel fnl:

∃P ∀V, V ′ : S(V, P ) ∧ T (V, V ′, P )→ TM (V, V ′). (7)

The final synthesis problem is then given by the conjunction of all the con-
straints (1)–(7). In order to solve it, we apply a combination of the EF-SMT
procedure of [16] and the application of Motzkin’s transposition theorem [33]
to reduce the problem into a purely existentially-quantified one which can then
be solved via standard quantifier-free SMT reasoning: we first try to apply EF-
SMT, and resort to the elimination of universal quantifiers only if this fails to
provide a definite answer.

5 Related work

Most of the literature in verification of temporal properties of infinite-state tran-
sition systems, hybrid automata and termination analysis focuses on the univer-
sal case, while the existential one has received relatively little attention. The
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most closely related work is [6]. The key difference is that the procedure we
presented in [6] is partly interactive, while the approach presented here is fully
automatic. Furthermore, there is a difference at the technical level in the way the
approaches partition the problem. In [6], the idea is to synthesise a partitioned
structure called R-abstraction out of a set of components, called AG-skeletons.
Each component is obtained by considering only a subset of the symbols of the
system, and is used to describe a set of infinite paths for such symbols. Here,
instead, we act on the monolithic system, but partition the fair path into funnels.

Also related are the works concerned with proving program non-termination.
[21] and [11] are based on the notion of closed recurrence set, that corresponds to
proving the non-termination of a relation. [5] and [30] search for non-terminating
executions via a sequence of safety queries. Other approaches look for specific
classes of programs ([18] and [24] prove the decidability of termination for linear
loops over the integers), or specific non-termination arguments (in [32] non-
termination is seen as the sum of geometric series). However, none of these
works deals with fairness and they rely on the existence of a control flow graph,
whereas we work at the level of transition system.

[13] reduces the verification of the universal fragment of CTL on a infinite-
state transition system to the problem of deciding whether a program always
returns true. The approach can be applied also on LTL properties by relying on
a reduction based on prophecy variables and it relies on some off-the-shelf tool
for the analysis of the program. Therefore, its capability of proving or identify-
ing a counterexample for some property depends on the ones of the considered
underlying tool.

[12] explicitly deals with fairness for infinite-state programs supporting full
CTL*: it is able to deal with existential properties and to provide fair paths
as witnesses. The approach focuses on programs manipulating integer variables,
with an explicit control-flow graph, rather than more general symbolic transition
systems expressed over different theories (including real arithmetic). Another
approach supporting full CTL* is proposed in [25]. The work presents a model
checking algorithm for the verification of CTL* on finite-state systems and a
deductive proof system for CTL* on infinite-state systems. In the first case
they reduce the verification of CTL* properties to the verification of properties
without temporal operators and a single fair path quantifier in front of the
formula. To the best of our knowledge there is no generalisation of this algorithm,
first reported in [26] and then also in [27], to the infinite-state setting. The rules
presented in the second case have been exploited in [2] to implement a procedure
for the verification of CTL properties, while our objective is the falsification of
LTL properties. Moreover, in these settings ([12], [25]) there is no notion of
non-zenoness.

The works on timed automata are less relevant: although the concrete system
may exhibit no lasso-shaped witnesses, due to the divergence of clocks, the prob-
lem is decidable, and lasso-shaped counterexamples exist in finite bi-simulating
abstractions. This view is adopted, for example, in Uppaal [1]. Other tools di-
rectly search for non lasso-shaped counterexamples, but the proposed techniques
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are specific for the setting of timed automata [7, 28] and lack the generality of
the method proposed in this paper. Finally, our approach can be applied also to
hybrid systems. However, the implementation relies on an approximation of the
nonlinearities which, from our experiments, appears too coarse for this context.

6 Experimental evaluation

Implementation. We have implemented these procedures in a prototype, called
F33 (for FindFairFunnel), written in Python. F3 uses MathSAT5 [9] and
Z3 [34] as underlying SMT engines, interacting with them through pysmt [19].
F3 takes as input a transition system M and a fairness condition F , and tries
to identify a funnel that proves that M admits at least 1 path that visits F
infinitely-often. We then employ the usual tableau construction to support LTL
specifications via reduction to the previous case. In order to support timed sys-
tems, we use the product construction described in [8] to remove all zeno-paths
of the model. F3 enumerates funnel templates in increasing order of complexity.
By default, F3, considers a minimum of 0 and a maximum of 2 inequalities in
the implementation of heuristic-pick-num-ineqs of Alg. 3. An important op-
timization is that F3 generates ranking function templates (line 6 of Alg. 3) only
when it finds a pair of abstract states that prescribe the same assignment to the
boolean variables of M ; if the abstract states differ in their boolean variables,
rf is simply set to the constant 0. This avoids the introduction of unnecessary
parameters for funnels which do not need an explicit ranking function. Finally,
when applying the Motzkin’s transposition theorem to solve the parameter syn-
thesis problems, F3 replaces non-linear terms with fresh symbols, in order to
obtain a linear system. This simple way of handling non-linearities has the ben-
efit of being very easy to implement; on the other hand, however, it can produce
very coarse approximations, which can prevent F3 from finding counterexamples
in cases where non-linearities play a significant role.

Benchmarks. In order to evaluate the effectiveness of our method, we have
evaluated F3 on a wide range of benchmarks coming from different domains,
from software (non)termination to timed automata and infinite-state symbolic
transition systems. More specifically, we considered a total of 455 benchmarks,
divided into 6 categories:

LS consists of 52 nonterminating linear software benchmarks taken from the C
programs of the software termination competition;

NS contains 30 nonlinear software programs, of which 29 have been taken from
[11] and one from [6];

ITS are 70 LTL falsification problems on infinite-state systems; 2 of such prob-
lems are proof obligations generated in the verification of a contract-based

3 the tool and the benchmarks can be downloaded from https://github.com/

EnricoMagnago/F3

https://github.com/EnricoMagnago/F3
https://github.com/EnricoMagnago/F3
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design, 29 come from the scaling to up to 30 processes of a model of the bak-
ery mutual exclusion protocol in which we introduced a bug, other 29 come
from the scaling to up to 30 processes of a semaphore-based synchronisation
protocol, and the last 10 are instances we created;

TA contains 174 LTL falsification problems on timed automata; we consider
6 different protocols taken from [17] (critical, csma, fddi, fischer, lynch and
train) and scale each of them from 1 to 30 processes;

TTS consists of 120 LTL falsification problems on timed transition systems,
of which 116 come from the scaling from 1 to 30 processes of 4 protocols
(inspired by the csma, fischer, lynch and token ring protocols), and 4 are
handcrafted instances;

HS are 9 LTL falsification problems on hybrid systems (encoded as nonlinear
infinite-state transition systems) taken from [6].

F3 only handles symbolic transition systems, and not software programs;
therefore, we have encoded the software benchmarks as infinite-state transition
systems by introducing an explicit program counter as state variable. Moreover,
since F3 only supports systems with boolean, integer and real variables, we have
not considered programs that involve recursion or dynamic memory allocation.

Competitor tools. We compare F3 with the following state-of-the-art tools:
Anant [11], AProVe [20], DiVinE3 [22], MITLBMC [29], nuXmv [7], T2 [4],
Ultimate [23] and Uppaal [15]. Most of the other tools are however not able
to handle all the bechmarks we have considered. Therefore, we limit their appli-
cation as follows:

– we ran Anant, AProVe and T2 only on the software nontermination prob-
lems (LS and NS groups);

– we ran DiVinE3, MITLBMC and Uppaal only on the time automata
(TA) benchmarks; moreover, since Uppaal supports only a fragment of LTL
which is not sufficient to express the properties of the fischer and lynch
benchmarks, we could run it only on 116 of the 174 TA instances;

– as Ultimate doesn’t support non-linear arithmetic, we didn’t run it on the
NA family. Moreover, since it supports LTL specifications but works on
programs rather than transition systems, we translated the benchmarks to
LTL verification problems on software programs, using the same approach
described in [14].

– nuXmv is the only other tool (besides F3) that supports all the benchmarks.
Since our focus is falsification of universal properties (or dually verification
of existential ones), we ran nuXmv using only its BMC engine.

Results. We performed our experiments on a machine running Ubuntu 20.04
equipped with an Intel(R) Xeon(R) Gold 6226R 2.90GHz CPU, using a 1h time-
out and a memory limit of 30 GB for each benchmark. A summary of the evalu-
ation results is reported in Table 1. The table shows, for each tool, the number
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Table 1. Summary of experimental results (number of solved instances per
benchmark family).
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LS (52) 52 38 43 – – 28 38 49 –
NS (30) 29 25 5 – – 14 2 – –
ITS (70) 57 – – – – 4 – 8 –
TA (174) 137 – – 43 151 90 – 0 103
TTS (120) 55 – – – – 8 – 1 –
HS (9) 0 – – – – 0 – – –
Total (455) 330 63 48 43 151 144 40 58 103
Entries marked with “–” denote that the tool cannot handle the given benchmarks.

of solved instances in each benchmark family. When a tool is not applicable to a
specific family, this is marked with “-”. (More detailed information on the com-
parison of F3 with the other tools on individual benchmark families is available
in Appendix A.) From the table, we can see that F3 not only solved the highest
number (by far) of instances overall, but it is also the tool that solved the highest
number of instances in all categories with the exception of timed automata. In
this category F3 is outperformed only by MITLBMC, which implements a tech-
nique explicitly developed for timed automata. This demonstrates the generality
of our approach, although (unsurprisingly) it is possible to define more efficient
procedures to target specific classes of problems. On the software benchmarks
(linear and non-linear) F3 fails to provide an answer in only 1 case (the nonlinear
one taken from[6]). Therefore, while being coarse-grained, the approximation of
the nonlinear terms used by F3 appears to be sufficient in these cases. However,
the hybrid benchmarks highlight the limitations of such approximation. In fact,
F3 was unable to provide an answer in all 9 cases. These instances can be solved
successfully with the approach of [6], which however requires user guidance and
is therefore not fully automatic. In fact, we are not aware of any automatic tool
that is able to solve them. Finally, we should remark that unlike F3 several of
the competitor tools (with the exception of MITLBMC and nuXmv in BMC
mode) are also able to prove that a universal property holds, whereas F3 can
only find counterexamples. On the other hand, however, our techniques can be
easily integrated with approaches focusing on proving properties, such as [8,14].

7 Conclusions and future work

In this paper we presented an automated approach to the verification of exis-
tential properties for infinite-state systems. We adopt an approach to build an
implicit presentation of fair paths, that may not have a lasso-shape structure,
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using an abstract representation of the trace in form of a sequence of funnels.
The approach alternates between finding candidate counterexample skeleta in
the abstract space, and proving whether they admit a concretization.

The experimental evaluation, carried out on a wide set of benchmarks, demon-
strates that the approach is very effective, being able to solve realistic bench-
marks from many different domains, and also general, being competitive with
other specialized tools.

In the future, we plan to integrate the partitioning techniques presented
in [6] in an automated setting, and to explore the possibility of hierarchically
decomposed proofs.
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tutorial. International Journal on Software Tools for Technology Transfer 17(4),
(2015).

16. Dutertre, B.: Solving exists/forall problems with yices. In: SMT Workshop (2015)
17. Farkas, R., Bergmann, G.: Towards reliable benchmarks of timed automata. In:

Proceedings of the 25th PhD Mini-Symposium (2018)



16 Alessandro Cimatti, Alberto Griggio, and Enrico Magnago

18. Frohn, F., Giesl, J.: Termination of triangular integer loops is decidable. In: CAV,
vol. 11562 of LNCS, Springer (2019).

19. Gario, M., Micheli, A.: Pysmt: a solver-agnostic library for fast prototyping of
smt-based algorithms. In: SMT Workshop (2015)

20. Giesl, J., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Otto, C., Plücker, M.,
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Fig. 2. Execution time of F3 compared to Anant, AProVe, nuXmv, T2 and Ulti-
mate on software benchmarks.

A Experimental evaluation plots

In the plots we use • to indicate instances in which both tools provided an
answer, J [resp. H] to indicate instances in which the other tool [resp. F3 ] did
not provide an answer and + for instances in which both tools failed to provide
an answer.

The plots in Fig. 2 compare F3 with Anant [11], AProVe [20], T2 [4]
and nuXmv [7] on linear and non-linear software benchmarks and with Ul-
timate [23] only on the linear benchmarks since Ultimate does not support
non-linear expressions. We consider 52 linear software benchmarks taken from
the software termination competition and 30 nonlinear software benchmarks, 29
of which taken from [11] and one taken from [6]. We encode each of them as a
infinite state transition system for F3 with an explicit program counter as state
variable. Notice that in doing this we are loosing the structure of the program.
F3 handles only transition systems with boolean, integer and real variables, for
this reason we have not considered software benchmarks that involve recursion
or dynamic memory allocation. F3 provides an answer in all cases but on the
nonlinear instance we introduced in [6].

Fig. 3 reports the comparison of F3 with Ultimate and nuXmv on 70 LTL
falsification problems on infinite state systems. 2 of such problems are proof
obligations generated in the verification of a contract-based design, 29 come
from the scaling to up to 30 processes of a model of the bakery mutual exclusion
protocol in which we introduced a bug, other 29 come from the scaling to up to
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Fig. 3. Execution time of F3 compared to nuXmv and Ultimate on infinite state
transition systems.

Fig. 4. Execution time of F3 compared to DiVinE3, MITLBMC, nuXmv, Ultimate
and Uppaal on timed automata.

30 processes of a semaphore based synchronisation protocol and the last 10 are
instances we created.

In Fig. 4 we compare F3 with DiVinE3, MITLBMC, nuXmv, Ultimate
and Uppaal on LTL falsification problems on timed automata. We consider 174
instances, coming from the scaling from 1 to 30 processes of 6 different protocols
taken from [17]: critical, csma, fddi, fischer, lynch and train. Uppaal supports
only a fragment of LTL and we could not express in such fragment the properties
of the fischer and lynch examples, all such instances are marked as unknowns
in the plots.
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Fig. 5. Execution time of F3 compared to nuXmv and Ultimate on timed transition
systems.

We compare F3 with Ultimate and nuXmv on the falsification of LTL
specifications for timed transition systems in Fig. 5. We consider 120 instances,
116 of which come from the scaling from 1 to 30 processes of 4 protocols and 4
additional instances we created. The scaling models are inspired by the csma,
fischer, lynch and token ring protocols.

We compare F3 with nuXmv on 9 instances of LTL falsification of hybrid
systems taken from [6]. The hybrid systems are encoded as nonlinear infinite
state transition systems and F3 fails to provide an answer in all such cases. While
the approximation of non-linear terms was sufficient for most of the nonlinear
software benchmarks it appears to be too coarse in these cases.

B Theorems and proofs

B.1 Proof of Th. 1

Theorem Let M=̇〈V, IM , TM , FM 〉 be a fair transition system. Let floop be a
funnel-loop of length n over the symbols V and funnels [fnli]

n−1
i=0 such that:

FF.1 There is at least one state reachable in M in the union of the source
regions of floop:

M 6|= G¬
n−1∨
i=0

Si

FF.2 The destination region of the last funnel must contain only fair states
of M .

∀V : Dn−1(V )→ FM (V )

FF.3 Every transition of every funnel underapproximates the transition re-
lation of M . For every funnel fnli in [fnli]

n−1
i=0 :

∀V, V ′ : Si(V ) ∧ Ti(V, V ′)→ TM (V, V ′)

Then admits at least one fair path.
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Proof. We first prove that every path in L(floop) is infinite. Then we prove that
every such path is fair with respect to the fairness condition FM and that every
step in every such path satisfies the transition relation TM . Finally, we prove
that L(floop) allows for at least one path which is a suffix of some path of M .

– Every path in L(floop) is infinite. Consider a funnel fnl=̇〈S, T,D,Rf〉 in
floop. Hyp. F.1 ensures that its transition relation T allows for a successor
state for every state in S. Hyp. F.2 ensures that every path of fnl remains
in S while Rf > 0. Hyp. F.3 ensures that every such path will eventually
reach a state in S ∧ Rf = 0. Hyp. F.4 ensures that every state in such
region in one T step reaches a state in D. Therefore, every path starting
from the source region S of each funnel can be extended until it reaches its
destination region D. If fnli−1 has a successor fnli in floop, by Hyp. FL.1
the destination region Di−1 is included in Si: every state in Di−1 is also in
Si. Therefore, the concatenation of fnli−1 and fnli allows to extend every
path starting from either Si−1 or Si until it reaches Di. By induction this
shows that the funnel chain allows the extension of every path starting from
the union of the source regions until it reaches the last destination region:

floop |= (

n−1∨
i=0

Si) U Dn−1

Hyp. FL.2 requires the last destination region Dn−1 to be a subset of the
first source region S0. As stated above, we can extend every path starting in
every region until it reaches Dn−1, hence from S0 we reach Dn−1 again in a
finite number of steps and at least one. Therefore, since we can extend each
path of a finite non-zero number of steps infinitely many times every prefix
path in L(floop) can be extended to an infinite path.

– Every infinite path of floop visit FM infinitely often. Hyp. FR.2 ensures
that Dn−1 underapproximates the fair states FM . We have already shown
above that every infinite path of floop reaches a state Dn1 infinitely often.
Therefore, such paths visit FM infinitely often.

– Every step of every path in L(floop) satisfies TM . Every step of every path
in L(floop), by definition, corresponds to a transition of some funnel fnl. By
hypotheses F.2, F.4, FL.1 and FL.2 every such path remains within the union
of the regions and visits them following the order of the funnels. Therefore,
every transition in every path of floop must satisfy S ∧ T for some funnel
fnl in the sequence. Hyp. FR.3 ensures that if S ∧ T holds that also TM is
true. Therefore every step of every path of floop is also a step of M .

– L(floop) allows for at least one path which is a suffix of some path of M .
Hyp. FR.1 ensures that there exists a finite path πpref of M starting in IM
and ending in some state v such that v |=

∨n−1
i=0 Si. Therefore, v must be

in Sj for some 0 ≤ j < n. Then, in floop we can extend v to an infinite
fair path πsuf starting in v. As shown above every step of πsuf satisfies
the transition relation of M and visits its fairness condition FM infinitely
often. The concatenation π of πpref and πsuf without repetition of v, starts
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from a state in IM , every steps satisfies TM and visits FM infinitely often.
Therefore, π is a fair path for M : π ∈ L(M) and π |= GFFM .


	Automatic discovery of fair pathsin infinite-state transition systems

