
Department of Information Engineering and Computer Science

Master’s Degree in
Computer Science

Final Dissertation

Timed NuXmv
Formal verification of synchronous timed transition systems

Supervisors Student
Roberto Sebastiani Enrico Magnago
Alessandro Cimatti

Alberto Griggio

Academic year 2017/2018

Acknowledgments

I would like to express my gratitude to the whole Embedded System unit in FBK and its head
Alessandro Cimatti. He has given me the possibility to develop this master thesis and acquire a deeper
knowledge on the subject of model checking with particular focus on real time systems.
Other than my supervisor, Alberto Griggio, who advised and supported me during each step of this
work, I would like to thank also the researchers Marco Roveri and Stefano Tonetta. The first for his
contribution in the design of the newly implemented software modules and for lending me his deep
knowledge of the code-base. The second one for the encoding of the interval semantic required by MTL
and validation of the infinite traces representation, execution and completion.
I thank all my colleagues and friends for their support and different points of view on the many issues
faced during this thesis work. Finally a special thanks to my family in the persons of my mother Monica,
my father Pierluigi and my brother Valerio.

Contents

Summary 5

I Ground work 7

1 Introduction 7
1.1 Formal verification of real-time systems . 8

2 Background 9
2.1 Transition systems . 9
2.2 Timed transition systems . 9

2.2.1 Timed automata . 10
2.3 Propositional logic . 10

2.3.1 Validity, satisfiability, unsatisfiability, equivalence and equi-satisfiability 11
2.3.2 Complexity . 11

2.4 Temporal logics . 12
2.4.1 LTL . 12
2.4.2 MTL . 13

2.5 Formal verification of properties . 14
2.5.1 LTL model checking . 14
2.5.2 Symbolic model checking . 15
2.5.3 SAT/SMT based model checking . 15

3 State of the Art 20
3.1 Timed automata decidability . 20
3.2 Region automata . 20
3.3 Zones automata and DBM . 21

4 nuXmv 23
4.1 Input language . 23

4.1.1 Supported types . 23
4.1.2 Variables declarations . 23
4.1.3 Define declarations . 24
4.1.4 Constants declarations . 24
4.1.5 Constraints . 24
4.1.6 MODULE declarations . 24
4.1.7 Specifications . 24

4.2 Model example . 25
4.3 Trace simulation, execution and completion . 26

4.3.1 Simulation . 26
4.3.2 Execution . 26
4.3.3 Completion . 27

1

II Contribution 28

5 Input language extension 28
5.1 Definition of timed transition system . 28

5.1.1 Time domain . 28
5.1.2 Clocks . 29
5.1.3 non-continuous variables . 29
5.1.4 Constraints . 29

5.2 Specifications . 29
5.2.1 timed next, timed previous operators . 30
5.2.2 at next, at last operators . 30
5.2.3 time since, time until operators . 30

5.3 Comparison with timed automata . 31

6 Timed to Untimed system 32
6.1 variables . 32
6.2 INIT . 32
6.3 TRANS . 32
6.4 INVAR . 32
6.5 URGENT . 33

7 Timed properties verification 34
7.1 Property rewriting . 34

7.1.1 next and previous operators . 34
7.1.2 until and since operators . 34
7.1.3 at next and at last . 35
7.1.4 time since and time until . 35
7.1.5 time and iota constraints . 35
7.1.6 Diverging time . 36

8 Timed traces 37
8.1 Representation . 37

8.1.1 Discrete Infinite Trace . 37
8.1.2 Timed trace . 38

8.2 Simulation . 38
8.3 Execution . 38
8.4 Completion . 39
8.5 From discrete to timed counter-example . 40

9 Experimental evaluation 41
9.1 Description of the tools . 41

9.1.1 Uppaal . 41
9.1.2 ATMOC . 42
9.1.3 LTSmin . 43
9.1.4 Timed nuXmv . 44

9.2 Benchmarks and results . 44
9.2.1 Fischer mutual exclusion algorithm . 44
9.2.2 Diesel generator . 51

10 Conclusions 54
10.1 Future work . 54

10.1.1 Language constraints . 54
10.1.2 Continuous variables . 54
10.1.3 Timed CTL verification . 54
10.1.4 Handle more complex infinite traces . 55

2

10.1.5 Parameter synthesis . 55

Bibliography 55

3

4

Summary
Context
This thesis is placed in the context of formal verification of real-time systems. Most state-of-the-art
tools require the real-time system to be modeled as a timed automaton. This is a well known and
studied formal representation that restricts the number of handled problem instances to a decidable
fragment. The main techniques applied to solve these verification problems are described in chapter 3.
This work presents an extension of the nuXmv symbolic model checker developed by the Embedded
System unit in Fondazione Bruno Kessler. The tool previously supported the verification of discrete
finite and infinite synchronous transition systems and it is now able to handle the verification of complex
time properties on real-time systems.

Motivations
Real-time systems can be found in many technological devices and, in particular, in embedded systems.
Often they are key components of safety-critical processes and devices. Some application domains are,
for example, health-care, transportation and avionics. In recent years their complexity is steadily
growing and the need for accurate and reliable systems able to ensure their quality has become even
greater. In many safety-critical domains model checking has been adopted. These techniques are
capable of fully verifying a system design against some properties. However, most state-of-the-art
technologies available to perform this task on real-time systems suffer from limited scalability and
expressiveness with respect to properties. In particular not many of them allow to check specifications
with complex timing constraints which are fundamental for this kind of systems.

Contribution: formal verification of synchronous timed transition
systems with dense time domain
The contribution of this thesis is the development of a new version, called Timed nuXmv, of the nuXmv
model checker. The new software components are fully integrated in nuXmv and the new version is
completely back-ward compatible. Timed nuXmv supports the same main functionalities supported
by nuXmv: model compilation, simulation, counter example generation, trace visualization, trace re-
execution and trace completion. The following paragraphs give a high level description of how these
features have been designed and implemented in Timed nuXmv.

Input language extension

The nuXmv input language has been extended with a model annotation, an additional type of variables
(clock), a type modifier, a new constraint type (urgent) and four new operators are available in Linear
Temporal Logic (LTL) specifications. These new constructs allow to describe timed transition systems
with continuous time semantic. The model description is parsed and compiled in the internal data
structures that have been extended to correctly represent the new elements. A more detailed description
of the input language of Timed nuXmv is provided in chapter 5.

Reduction to discrete infinite transition system

This work refers to time-unaware structures as discrete or untimed, while untiming is the process that
reduces a time-aware representation into an equivalent untimed one. Chapter 6 describes the untiming
procedure for Timed nuXmv models: their are reduced into an equivalent representation of a discrete
infinite transition system. Section 7.1 shows the untiming procedure applied to specifications. The
obtained untimed model with the associated specifications can be stored to file as a valid discrete
SMV model. Therefore it is also possible to handle it using nuXmv without time extension. In Timed
nuXmv, to complete the reduction, the trace obtained on the discrete model is transformed into the
corresponding execution of the timed transition system that violates the specification. This procedure
is described in section 8.5.

5

Traces
nuXmv traces are able to represent only finite or lazo-shaped executions. They are not expressive
enough to represent traces of a timed transition system. In these executions the symbol representing
time does not follow these patterns: it is monotonically increasing. For this reason, in chapter 8, a
more expressive trace representation, called infinite trace, is introduced. These traces allow to specify
a subset of symbols whose value in loops is defined by a recurrence relation. These symbols, in this
work, are called diverging. Timed nuXmv can show these infinite traces in all four formats that are
available for nuXmv traces. They can also be loaded into the system from an external file.

Timed traces simulation

Timed nuXmv allows to simulate the execution of the input timed transition system. As nuXmv, it
allows to choose between two possible modes: automatic and interactive. In the automatic mode an
execution of length up to a given constant it built. In the interactive mode at each step the system asks
the user to choose between a time elapse or a discrete transition, then the user is required to choose
the next state of the execution from a list of possible states. This functionality allows to inspect the
possible behaviors of a model. A detailed description is given in section 8.2.

Timed traces execution

It is also possible to check if a given execution is valid with respect to a model description. In the case
of infinite traces this implies that the loop has to be validated with respect to the diverging symbols.
It is necessary to prove that the described system is allowed to repeat that loop infinitely many times,
therefore that the loop of the infinite trace represents a valid infinite execution of the model. This
problem is encoded as a unsatisfiability problem of a SMT formula. The formula is such that it is
satisfied by a model if and only if there exist an iteration number in which a transition of the loop
violates the conditions prescribed by the model. This formulation is shown and explained in section
8.3.

Timed traces completion

Section 8.4 describes how the completion of partial infinite traces is performed in Timed nuXmv. Due
to the complexity class of the completion problem, in this version of Timed nuXmv, a more efficient,
sound but incomplete procedure has been implemented. The system picks a possible completion and
then checks if the completed trace is a valid execution by exploiting the feature described above.

Experimental evaluation
Chapter 9 presents the experimental evaluation of Timed nuXmv. The software is compared to some
other state-of-the-art tools on the verification of some invariant and MTL specifications on two different
kinds of models. In these benchmarks the newly implemented techniques showed good scalability in
terms of time and memory consumption with respect to the model size. In section 10.1 some possible
directions to further improve and extend the implemented procedures are highlighted. Particular
attention is given to the constraints on the modeling and specification languages and to the kind of
infinite behaviors that the system is able to detect and represent. For each direction some preliminary
observations are reported.

6

Part I

Ground work

The first part of this thesis describes the theoretical background and existing tools upon which this
work relies. Chapter 1 gives an introduction to the topic of formal verification of real-time systems and
provides some motivating examples. In chapter 2 the theoretical background required to understand
this work is introduced. First the structures used to represent a model are described, then the syntax
and semantic of the formal languages used to express specifications is defined, finally the last section
of this chapter describes the main techniques used to perform the verification tasks. Chapter 3 briefly
reports the most relevant results on the decidability of some problems on models of real-time systems,
then it describes the main verification procedures for such systems used by tools in the state of the art.
Chapter 4 describes the relevant features that the symbolic model checker nuXmv supported before
this thesis work. Particular attention is given to the input language (4.1) and to the operations on
traces (4.3). These chapters do not provide a complete description, but focus only on the aspects
that are most relevant to this work. In particular some topics are only cited and some references are
provided for further readings.

The second and last part of this work (II) describes the actual contribution of this thesis. The addi-
tional features of the modeling and specification languages are described, the reduction and verification
procedures are explained, the supported operation on traces are shown and finally the implemented
techniques are compared with other state-of-the-art model checkers.

1. Introduction
In engineering solving a problem often involves the design and construction of a system (hardware,
software or both) to address specific tasks. An error in such systems might lead to undesirable effects.
In some application domains, like space, avionics, transportation and health-care, these effects can
cause heavy economic losses and physical injuries. For these reasons the definition of a development
process that minimizes the probability of such events is critical. In the past there have been many
failures of this kind, two of them are reported here as motivating examples. In 1993 a bug was
discovered in the Intel Pentium chip, floating point divisions in a certain range lead incorrect results.
$475 million was the cost sustained by Intel to replace the defective chips [1]. Between 1982 and
1985 the Therac25 radiation therapy machine was involved in at least six accidents. These machines
contained two software faults that, in some conditions, caused them to deliver a dose of beta radiations
approximately 100 times the intended one [28].
A common approach to address this issues is to perform extensive tests on a completely developed
product. This technique has two major disadvantages: it requires a fully fledged system to be performed
and, assuming the system to be deterministic, it only guarantees that it behaves correctly in that
particular cases. In this approach mistakes made in the early stages will be detected only at the end of
the development process. From these observations the need for tools that support the early phases of
the development becomes evident. Over the years many formalisms to represent different points of view

7

of a system have been proposed and used in many application scenarios. These more or less formal
representations allow the designers to provide a model that is precise enough to highlight possible
inconsistencies and ease the review process. The modeling language should provide an abstraction as
close as possible to the application scenario in order to reduce the cost of creating such model and
decreases the probability of incurring modeling errors.
For these reasons many companies and agencies, like Boeing, Airbus, ESA, NASA, Intel and RFI,
integrated in their development process formal verification procedures. Moreover, also design tools like
Simulink provide formal verification features.

This thesis work is concerned with the modeling and verification of synchronous real-time systems.
Real-time systems are becoming pervasive, often in the form of embedded devices; their application
domains range from transportation and automation in industries to economics and health-care. Over
the years their complexity has increased and people rely on them to perform critical tasks with absolute
precision and reliability.

1.1. Formal verification of real-time systems
In automated formal verification, given a description of the system and a property in some formal
language, the machine is able to determine whether the system satisfies the property in all possible
executions; if it does not a counter-example is usually provided. There are many software products,
called model checkers, that address this issue by exploiting different techniques to solve the verification
problem and by providing different languages for describing the system and specify properties. Some
examples of such tools are: ATMOC, LTSmin, nuXmv and Uppaal.

The correctness of a real-time system depends not only on the logical result of the computation
but also on the time required to compute such result. Many safety-critical systems have hard real-
time constraints; some examples are: defense and space systems, networked multimedia systems and
embedded automative electronics. In this application scenario tools that allow to verify the system
design against its real-time requirements are fundamental to achieve a better quality and reliability of
the final system. However, as highlighted in chapters 2 and 3, depending on the kind of constraints this
class of verification problems quickly becomes undecidable. Most state-of-the-art techniques carefully
limit the expressiveness of their modeling languages to restrict the input models only to decidable
instances. These restrictions forbid the verification of systems with complex time behaviors that are
not expressible in such languages. It is still possible to provide a sound/correct answer in some of
these cases, while due to the undecidability issue completeness is impossible to achieve. Increasing the
number of behaviors for which the verification procedure is able to provide an answer, broadens the
applicability of these techniques to safety-critical domains with more complex dynamics.

This work describes how the nuXmv symbolic model checker has been extended to handle the
verification of synchronous real-time systems. The new version of the tool is called Timed nuXmv.
Both language and performance of the newly implemented software are compared to other related
state-of-the-art model checkers.

8

2. Background
This chapter provides the definition of the terminology and key concepts that are used throughout this
thesis. An extensive presentation of most of the notions introduced in this chapter can be found in
the work of Baier and Katoen [5]. The chapter is organized as follows: first the formal structures used
to formally represent the systems are introduced. In particular different notations used to represent
transition systems are defined. Among these, the notion of timed transition systems is central to this
thesis. Later both syntax and semantic of the most relevant formal languages used to specify properties
on these systems are explained. In the end the three main approaches used to verify such properties
on these models are presented.

2.1. Transition systems
The formal description of the model is given as a transition system [5]. A transition system is a
directed graph in which the nodes represent all possible states of the system and the edges represent
all possible transitions from a state to another. A subset of the nodes represents the initial states:
all possible configuration from which the model can start. Every path on the graph starting from an
initial state represents a possible execution of the system and it is uniquely identified by a, possibly
infinite, sequence of states. A state s is said to be reachable if there exist a path from an initial state
to s. States with no outgoing edges are called dead-lock states. From an automata-theoretic point of
view it is possible to borrow a slightly different terminology: the set of all possible executions of the
transition system is also called language of the automata and every execution is a word.

Two transition systems T, T ′ are said equivalent if they accept the same language:
T ≡ T ′ ⇐⇒ L(T) = L(T ′), where L is a function that given a transition system it computes its
language. The synchronous composition operator given two transition systems T0, T1 computes another
transition system T such that its language L(T) is the intersection of the languages of T0 and T1:
T ..= T0 × T1 ⇐⇒ L(T) = L(T0) ∩ L(T1). This operator is defined for each kind of transition system
and its usage is shown in the formal verification procedures.

Fair transition system A fair transition system is a transition system enriched with a set of one
or more fairness conditions. These additional constraints define a list of subsets of states. Every valid
execution of the system infinitely often reaches at least one state in each one of these sets. The fair-
ness conditions allow to impose progress constraints on the model executions which are not otherwise
expressible in a transition system.

There are many different representations of transition systems, e.g. Kripke structures and Büchi
automata. They are slightly different notations to represent these objects, each of them can also
represent fairness conditions and has a synchronous product operator to compute the language inter-
section. This work focuses on symbolic transition systems. These objects can be defined as a triple
M ..= (S, I, T) where:

• S is a set of symbols, also called variables.
• I is a propositional logic formula over the variables in S, this formula represents the set of initial

states.
• T is a formula that defines the relation between the current and the next state, all transitions

that satisfy this formula are valid transitions.
Sometimes they are defined using a 4-tuple M ..= (S, I,N, T). This is an equivalent notation in which
N allows to explicitly state invariants of the transition system. The invariants can be represented in
T as N ∧N ′, where N ′ refers to the next state assignments. Thus forbidding any transition starting
from or leading to a state in which N is not satisfied.

2.2. Timed transition systems
In discrete (or untimed) transition systems changes happen atomically and the evolution of the model
is given by a sequence of discrete steps. Timed transition systems extend discrete systems with the

9

notion of time: a new kind of variables is introduced. These variables, called clocks, keep track of
time elapses. A transition in a timed system is either a discrete step or a time elapse. During a time
elapse all discrete variables retain their values while all clock variables increase of the same amount,
equal to the time elapsed.

Timed automata
A timed automaton [4] is a transition system that can be represented by a finite graph in which nodes
are called locations and edges represent discrete transitions. All clock variables are initialized to 0 and
time can elapse inside locations constrained by some location invariant. Every discrete transition is
associated with a guard condition and a set of clocks called reset. The automaton can perform a
transition only if it satisfies the guards on such edge and when such transition is performed all clock
variables specified in its reset are set to 0.
Location invariants impose progress conditions on the automaton, they forbid the system to stay in
the same location indefinitely, while guards and resets on the edges constrain its behavior.
Given a set of clocks X, a clock variable x ∈ X and a rational constant c ∈ Q, let B(X) be the language
defined by:

ϕ :: x ≤ c | c ≤ x | x < c | c < x | ϕ0 ∧ ϕ1 (2.1)

This language defines the set of clock constraints that can be expressed in a timed automaton. Notice
that it contains only conjunctions of comparisons with constants.
Formally a timed automaton M is a 6-tuple M ..= (L,L0,Σ, X, I, E) where:

• L is a finite set of locations;
• L0 ⊆ L is the set of initial location;
• Σ is the set of labels;
• X is the set of clock variables;
• I : N → B(X) maps every location to its invariant condition;
• E ⊆ L × B(X) × Σ × 2X × L is the set of edges, each edge has a starting location, a guard, a

label, a set of clock to be reset and a target location;
The syntax l g,a,r−−−→ l′ is equivalent to (l, g, a, r, l′) ∈ E, where l, l′ ∈ L are locations, g ∈ B(X) is a

guard, a ∈ Σ is a label and r ∈ 2X is the set of clock reset by the transition.
A clock interpretation µ is a function that to every clock associates a value in R, µ : X → R|X|.

The semantic of a timed automaton is a timed transition system in which states are pairs (l, µ), where
l ∈ L is a location and µ is a clock interpretation. The transitions are defined by the following rules:

• let d ∈ R+, then (l, µ)
d−→ (l, µ + d) ⇐⇒ (µ |= I(l)) ∧ ((µ + d) |= I(l)); it is possible to perform

a time elapse of d in location l if the clock interpretation at the beginning and at the end of the
transition satisfies the location invariant of l.

• (l, µ)
a−→ (l′, µ′) ⇐⇒ ∃(l, g, a, r, l′) ∈ E : (µ |= g) ∧ (µ′ = [r 7→ 0]µ) ∧ (µ′ |= I(l′)); it is possible to

perform a discrete transition labeled with a ∈ Σ from location l to location l′ if the current clock
interpretation µ satisfies the guard g of the transition and the clock interpretation updated by
the reset r (µ′ = [r 7→ 0]µ) satisfies the location invariant of the target state l′.

An action of a timed automaton M is a pair (t, a) where a ∈ Σ is the label of the transition
taken by the automaton M after t ∈ R+ time units from the start of the system. A trace of a timed
automatonM is defined as a sequence of actions ξ ..= (t0, a0), (t1, a1), . . . such that ∀i ≥ 0 : ti ≤ ti+1. A
run or execution of a timed automaton M ..= (L,L0,Σ, X, I, E) over a trace ξ ..= (t0, a0), (t1, a1), . . .

is a sequence of transitions: (l0, µ0)
d1−→ a1−→ (l1, µ1)

d2−→ a2−→ (l2, µ2) . . . where ∀i ≥ 1 : ti = ti−1 + di and
(l0, µ0) ∈ L0. The language of the timed automaton M , written L(M), is the set of all traces ξ for
which there exist a run of M over ξ

2.3. Propositional logic
This section gives the basic definitions of the most relevant terminology used in logic. These concepts
are then used to define temporal logics, which are the most commonly used formal notation to express
properties on transition systems.

10

A boolean formula in propositional logic ϕ is either a constant (>, ⊥), a propositional atom or a
boolean operator applied to boolean formulae.

ϕ ..= > | ⊥ | atom | ϕ0 ∧ ϕ1 | ϕ0 ∨ ϕ1 | ¬ϕ0 | ϕ0 → ϕ1

where >, ⊥ are the constants representing respectively true and false and atom is an atomic
proposition: a symbol whose value is either > or ⊥. A literal is either a propositional atom or
its negation. Let Atoms be a function that computes the set of atomic propositions occurring in a
formula.

A total truth assignment µ over a formula ϕ is a function that to every atom in ϕ associates either
true or false.

µ : Atoms(ϕ)→ {>,⊥}

A partial truth assignment µ over a formula ϕ is a function that for every atom in a subset of
Atoms(ϕ) it associates either true or false.

µ : A→ {>,⊥}, A ⊆ Atoms(ϕ)

A total truth assignment µ satisfies a formula ϕ (µ |= ϕ) if and only if:
• µ |= Ai ⇐⇒ µ(Ai) = > with Ai ∈ Atoms(ϕ);
• µ |= ¬ϕ ⇐⇒ µ 6|= ϕ
• µ |= ϕo ∧ ϕ1 ⇐⇒ (µ |= ϕ0) ∧ (µ |= ϕ1)
• µ |= ϕo ∨ ϕ1 ⇐⇒ (µ |= ϕ0) ∨ (µ |= ϕ1)
• µ |= ϕo → ϕ1 ⇐⇒ (µ |= ϕ0)→ (µ |= ϕ1)

A partial truth assignment satisfies a formula if all its total extensions satisfy that formula.

Validity, satisfiability, unsatisfiability, equivalence and equi-satisfiability
A formula ϕ is said:

• valid if ∀µ : µ |= ϕ, every truth assignment satisfies the formula,
• satisfiable if ∃µ : µ |= ϕ, there is at least one truth assignment that satisfies the formula,
• unsatisfiable if ∀µ : µ 6|= ϕ, no truth assignment satisfies the formula.

From these definitions it follows that ϕ is valid if and only if ¬ϕ is unsatisfiable:
∀µ0 : µ0 |= ϕ ⇐⇒ ∀µ1 : µ1 6|= ¬ϕ. Two formulae ϕ and φ are equivalent, written ϕ ≡ φ, if and only
if ∀µ : (µ |= ϕ ⇐⇒ µ |= φ), while two formulae are equi-satisfiable if and only if
∃µ0 : µ0 |= ϕ ⇐⇒ ∃µ1 : µ1 |= φ. Notice that if two fomulae are equivalent then they are also
equi-satisfiable, but the converse does not hold.

Moreover, by induction on the structure of the formula, it can be shown that the following equiva-
lence relationships hold for every propositional formulae ϕ0 and ϕ1:

ϕ0 ≡ ¬¬ϕ0

ϕ0 ∨ ϕ1 ≡ ¬(¬ϕ0 ∧ ¬ϕ1)

ϕ0 ∧ ϕ1 ≡ ¬(¬ϕ0 ∨ ¬ϕ1)

ϕ0 → ϕ1 ≡ ¬ϕ0 ∨ ϕ1

Complexity

Given a formula ϕ with N propositional atoms (|Atoms(ϕ)| = N) there are 2N distinct truth assign-
ments. The problem of deciding whether a formula is satisfiable (is there an assignment among the 2N

that satisfies ϕ?) is a well known and studied NP-complete problem and it is usually referred to as
the SAT problem. Deciding validity and unsatisfiability of a formula are coNP-complete problems
since their language is the complementary of SAT. It is possible to check if a formula is valid by
deciding whether the negated is unsatisfiable, and a formula ϕ is unsatisfiable if and only if ϕ 6∈ SAT.

11

2.4. Temporal logics
This section provides some background on temporal logics. They extend the syntax and semantic of
propositional logic (2.3) with temporal operators. Many different temporal logics have been defined,
some examples are: LTL[30], CTL[20], CTL*[21], MTL[26][29] and TCTL[12][13]. A survey on
temporal logics can be found in [12] and [13]. This section introduces the syntax and semantic of LTL
in 2.4.1 and MTL in 2.4.2.

Temporal logic is any system of propositions qualified in terms of time, they can be categorized
in linear temporal logics and branching logics. Linear temporal logics, like LTL and MTL, consider
every execution as a single time line. Every state of a run has a single well defined successor and
consists of a path with no branches starting from an initial state. On the other hand branching logics,
like CTL, CTL* and TCTL, consider multiple time lines at a time. At every step there are multiple
next states that represent all the possible choices. In this kind of logics each run consists in a directed
graph rooted at an initial state, where the children of a node represent all possible next states of the
system.

LTL
Linear Temporal Logic (LTL)[30] is a temporal logic that reasons on model executions as single time
lines. It extends propositional logic with temporal operators that allow to predicate over previous
and next states of these executions. In this work the version of LTL extended with past operators is
considered.

Syntax

An atomic proposition is a LTL formula, a boolean operator applied to LTL formulae is a LTL formula,
a temporal operator applied to LTL formulae is a LTL formula.

ϕ :: > | ⊥ | atom | ϕ0 ∧ ϕ1 | ϕ0 ∨ ϕ1 | ¬ϕ0 | ϕ0 → ϕ1 |
Xϕ | Gϕ | Fϕ | ϕ0Uϕ1 | Y ϕ | Hϕ | Oϕ

where atom is an atomic propositional formula and >, ⊥ are the constants representing respectively
true and false. Notice that with respect to propositional logic (2.3) the only difference are the temporal
operators. X (next), G (globally), F (finally) and U (until) are the operators that predicate over future
states, while Y (yesterday or previous), H (historically), O (once) and S (since) are the operators that
allow to predicate over past states.

Semantic

The semantic of propositional boolean operators remains unchanged, the semantic of temporal opera-
tors is defined on a path π ..= s0, s1, . . . as follows:

• Xϕ holds at the current state si iff ϕ holds at the next step:

π, si |= Xϕ ⇐⇒ π, si+1 |= ϕ

• Gϕ holds at the current step si iff in all future states ϕ will always hold:

π, si |= Gϕ ⇐⇒ ∀j ≥ i : π, sj |= ϕ

• Fϕ holds in the current state si iff after finitely many steps the path reaches a state in which ϕ
holds:

π, si |= Fϕ ⇐⇒ ∃j ≥ i : π, sj |= ϕ

• ϕ0Uϕ1 holds in si iff at some point in the future ϕ1 holds and ϕ0 holds in all states from the
current step to that point in the future:

π, si |= ϕoUϕ1 ⇐⇒ ∃j ≥ i : π, sj |= ϕ1 ∧ ∀i ≤ k < j : π, sk |= ϕ0

12

• Y ϕ holds in the current state si iff there exist at least one previous state and at the step ϕ held:

π, si |= Y ϕ ⇐⇒ i > 0 ∧ π, si−1 |= ϕ

• Hϕ holds at state si iff in all previous steps ϕ held:

π, si |= Hϕ ⇐⇒ ∀j ≤ i : π, sj |= ϕ

• Oϕ is satisfied in the current state si iff there exists at least one state in the past in which ϕ
held:

π, si |= Oϕ ⇐⇒ ∃j ≤ i : π, sj |= ϕ

• ϕ0Sϕ1 holds in si iff at some point in the past ϕ1 held and ϕ0 held in all states from that step
excluded up to the current step:

π, si |= ϕoSϕ1 ⇐⇒ ∃j ≤ i : π, sj |= ϕ1 ∧ ∀j < k ≤ i : π, sk |= ϕ0

Notice that the following equivalence relationships between temporal operators hold:

¬Xϕ ≡ X¬ϕ
¬Gϕ ≡ F¬ϕ
Fϕ ≡ >Uϕ

similarly for past operators it can be shown that:

¬Y ϕ ≡ Y ¬ϕ
¬Hϕ ≡ O¬ϕ
Oϕ ≡ >Sϕ

A path π ..= s0, s1, . . . satisfies property ϕ if and only if the property holds in its initial state:
π |= ϕ ⇐⇒ π, s0 |= ϕ. A transition system M satisfies a LTL property ϕ, written M |= ϕ if and only
if ∀π ∈M , executions of the transition system, π |= ϕ.

MTL
Metric Temporal Logic (MTL)[26][29] extends LTL (2.4.1) with bounded versions of time operators. In
LTL it is possible to predicate about relative time relationships between events. Given two events, LTL
allows to check whether one happens before, together or after the other. Its not possible to quantify
the amount of time elapsed between them. MTL adds this possibility: it allows to quantitatively
predicate about time by placing explicit bounds on time operators. MTL is defined on continuous time
semantic. Each execution becomes a dense sequence of configuration, therefore the semantic of the
LTL operators X (next) and Y (yesterday) becomes ambiguous.

Syntax

An atomic proposition is a MTL formula, a boolean operator applied to MTL formulae is a MTL
formula, a temporal operator applied to MTL formulae is a MTL formula.

ϕ :: > | ⊥ | atom | ϕ0 ∧ ϕ1 | ϕ0 ∨ ϕ1 | ¬ϕ0 | ϕ0 → ϕ1 |
Gϕ | Fϕ | ϕ0Uϕ1 | Hϕ | Oϕ |
ϕ0 UI ϕ1 | GIϕ | FIϕ | HIϕ | OIϕ

I :: [l, u] | (l, u] | [l, u) | (l, u) | [l,+∞) | (l,+∞)

where l and u are integer constants, +∞ represent positive infinite, atom is an atomic propositional
formula, >, ⊥ are the constants representing respectively true and false.

13

Notice that with respect to LTL (2.4.1) the only difference are the bounded temporal operators:
UI , GI , FI , HI and OI and the absence of X and Y .

Semantic

The semantic of LTL and propositional operators is unchanged; the semantic of bounded temporal
operators is defined on a path π, where π(t) represents the total assignment over all symbols of the
model defined by such execution at time t ∈ R+.

For some time interval I, the bounded time operators are defined as follows:

• GIϕ holds at the current state π(t) iff ϕ holds in all configurations in the time interval I:

π(t) |= G[l, u]ϕ ⇐⇒ ∀k ∈ I : π(t+ k) |= ϕ

• FIϕ holds at the current state π(t) iff ϕ holds in a configuration in the time interval I:

π(t) |= FIϕ ⇐⇒ ∃k ∈ I : π(t+ k) |= ϕ

• ϕ0 UI ϕ1 holds at the current state π(t) iff ϕ1 holds at some point in the interval I and until
that time ϕ0 holds:

π(t) |= ϕ0 UI ϕ1 ⇐⇒ ∃j ∈ I, j > 0 : π(t+ j) |= ϕ1 ∧ ∀t < k < j π : s(t+ k) |= ϕ0

• HIϕ holds at the current state π(t) iff ϕ held in all configurations between in I:

π(t) |= GIϕ ⇐⇒ ∀l ∈ I : π(t− k) |= ϕ

• OIϕ holds at the current state π(t) iff ϕ held in a configuration in interval I:

π(t) |= FIϕ ⇐⇒ ∃l ∈ I : π(t− k) |= ϕ

Notice that all time intervals are interpreted relatively to the time t of the current state.

2.5. Formal verification of properties
This section provides a brief introduction of the main techniques applied to solve the model checking
problem: M |= ϕ. This thesis focuses on the verification of properties expressed in LTL and a fragment
of MTL. Three main approaches to model checking are shown: explicit state, symbolic and SAT/SMT
based. This work is mostly interested in the symbolic and SMT based techniques. The last approach
is a category of techniques that involves procedures like: bounded model checking, K-induction and
IC3.

Formal verification is concerned with proving or disproving the correctness of some system with
respect to certain specifications. A prominent approach to formal verification is model checking.
Given a formal description of the system and a specification, usually expressed in logic, it performs
an exhaustive exploration of the model in order to check whether the specification holds. When the
specification is violated these techniques are able to provide a representation of the model execution
that does not satisfy the property, this trace is called counter-example.

LTL model checking
This section shows the main result used to perform LTL model checking, both in explicit state and
symbolic approaches. The verification problem is reduced to checking the language emptiness of a
transition system.

Let M be a transition system and ϕ an LTL specification to be verified on M . The model checking
problem M |= ϕ can be stated in terms of language inclusion as L(M) ⊆ L(ϕ). This implies that
L(M) ∩ L(ϕ) = ∅, where L(ϕ) is the set of all execution that do not satisfy ϕ (set complement).
From the definition L(ϕ) = L(¬ϕ), substituting this in the previous formulation it is possible to

14

obtain L(M) ∩ L(¬ϕ) = ∅. Let M¬ϕ be a transition system such that L(M¬ϕ) = L(¬ϕ), then
L(M)∩L(M¬ϕ) = ∅. Since the language intersection of two transition system is equal to the language
of the automaton given by their synchronous composition: L(M ×M¬ϕ) = ∅.

In explicit state model checking these operations are performed on the graph that represents the
transition system, while in the symbolic technique SAT/SMT formulae that represent sets of states
are manipulated. This allows to avoid the creation of the explicit graph. The language emptiness in
explicit state techniques can be easily decided by performing a visit on the graph and searching for a
looping path starting from an initial state and such that the loop involves at least one fair state. In
symbolic techniques the same condition can be checked by resorting to symbolic CTL model checking.

Many details have been omitted in this brief explanation, in [5] it is possible to find a complete
description of both explicit state and symbolic LTL model checking. The following section provides a
more detailed description of the symbolic approach; it also highlights the main differences with respect
to explicit state techniques.

Symbolic model checking
The explicit state techniques require to explicitly create and store the transition system. The number
of configurations may be exponentially large in the number of propositional atoms of the model. In
these cases this kind of techniques quickly become too expensive to be performed. Symbolic model
checking [5] tries to avoid this issue by manipulating sets of states at a time. This is achieved by
representing them as formulae in propositional logic. In a similar way, these techniques are able to
manipulate sets of transitions represented by propositional formulae expressed in terms of current and
next state variables. It is important to notice that all logically equivalent formulae represent the same
set of states or transitions. This allows to perform all the simplifications available in propositional
logic to obtain a more compact expression. This also implies that the size of a formula is not directly
related to the cardinality of the set it represents.

More formally, each state of the transition system is represented by an array of boolean state
variables V ..= (x0, x1, . . . , xk). Let ξ(s) be the symbolic representation of the state s, which is a total
assignment over V . A subset of states Q ⊆ S is represented by

∨
s∈Q

ξ(s) and all equivalent formulae.

Set operations are mapped by boolean operators, in particular for P,Q ⊆ S:

ξ(P ∩Q) = ξ(P) ∧ ξ(Q)

ξ(P ∪Q) = ξ(P) ∨ ξ(Q)

ξ(S \ P) = ¬ξ(P)

Transitions in R ⊆ (S × S) are represented by propositional formulae over V and V ′, where V ′

is the array of boolean variables representing their values after the transition. R can be symbolically
represented by all formulae equivalent to:∨

(s,s′)∈R

ξ(s, s′) ≡
∨

(s,s′)∈R

ξ(s) ∧ ξ(s′)

where ξ(s) is a total assignment over V and ξ(s′) is a total assignment over V ′.

SAT/SMT based model checking
SAT/SMT based techniques are symbolic techniques that reduce the verification problem to a sat-
isfiability problem. They try to exploit the advancements in SAT and SMT fields to achieve better
scalability.

The SAT problem has already been introduced in section 2.3.2. Satisfiability Modulo Theory
(SMT) is the problem of deciding whether a boolean formula has at least one model with respect to
combinations of background theories (e.g. reals, uninterpreted functions, arrays and bit vectors). In
an SMT instance predicates consist of boolean expressions on some underlying theories: x − 3 < 3.5
is a SMT predicate over the reals. Some examples of SMT solvers are CVC4, MathSAT, SMT-RAT,
Yices and Z3.

15

Bounded model checking

In bounded model checking [10] the execution of a model M is unrolled up to k steps. A single formula
representing all executions of length k violating the specification ϕ is built. The formal verification
task is solved by checking if there exists a model for such formula. The assignments prescribed by
this model represent a run of length k of M that violates the specification: a counter-example. This
procedure is iterated for increasing values of k until a counter-example is found. BMC is only capable
of falsifying properties: if a property holds this procedure will never halt. For this reason it is often
used in combination with K-induction (2.5.3).

LetM ..= (S, I, T) be a transition system and ϕ be a LTL formula. Let [[ϕ]]ft be the BMC expansion
of ϕ from step f ∈ N to step t ∈ N without loop-backs and l[[ϕ]]ft the encoding with loop-back from t
to l. This encoding is straightforward for standard boolean operators, while more attention is required
for temporal operators.

ϕ [[ϕ]]ft l[[ϕ]]ft
p p p

¬p ¬p ¬p
ϕ0 ∧ ϕ1 [[ϕ0]]

f
t ∧ [[ϕ1]]

f
t l[[ϕ0]]

f
t ∧ l[[ϕ1]]

f
t

ϕ0 ∨ ϕ1 [[ϕ0]]
f
t ∨ [[ϕ1]]

f
t l[[ϕ0]]

f
t ∨ l[[ϕ1]]

f
t

Xϕ0
if i ≥ k : ⊥,
else : [[ϕ0]]

f+1
t

if i ≥ k : l[[ϕ0]]
l
t,

else : l[[ϕ0]]
f+1
t

Gϕ0 ⊥
t∧

j=min(l,f)
l[[ϕ0]]

j
t

Fϕ0

t∨
j=f

[[ϕ0]]
j
t

t∨
j=min(l,f)

l[[ϕ0]]
j
t

Table 2.1: BMC encoding

Xϕ corresponds to evaluating ϕ in the next state, if such state does not exists its false. Gϕ is true
only if there is a loop and in each state of the loop ϕ holds. Fϕ holds if there exists a state from the
beginning to the k-th that satisfies ϕ. The until temporal operators has been omitted for brevity.

The BMC procedure at every step k checks if the propositional formula

I(s0) ∧
n−1∧
i=0

(T (si, si+1 ∧ ϕ(si)) ∧ ¬ϕ(sn)

is satisfiable. If a model for such formula exists, then its assignments are a counter-example for property
ϕ and it is possible to conclude that the specification is violated. Notice that the encoding generates a
symbolic representation of all paths of length k starting from the initial states such that at every step
but the last one ϕ holds. As already stated, the satisfiability check is performed by calling SAT or
SMT procedures. The BMC technique performs one SAT/SMT call for every k. Subsequent encodings
share most of the clauses, this can be exploited to improve scalability and decrease the running time.

K-induction

K-induction [31] complements BMC in the sense that it is able to verify properties. This technique
symbolically identifies all states that violate an invariant property (bad states) and tries to prove that
none of them is reachable. In order to do this it tries to show that there exist no path of length k that
ends in a bad state. As in the BMC case this is repeated for increasing values of k. The paths are
created by going backward from the bad states, if at step k no such path exists then the specification
holds, otherwise the procedure is repeated for k + 1. Notice that checking whether one of the paths
starts from an initial state leads exactly to the BMC formulation.

16

As for the BMC case, let M ..= (S, I, T) be a transition system and ϕ be a LTL formula. In the
K-induction encoding there are two main components: one rules out all loops∧

0≤i<j≤k
¬(si = sj)

and the other one builds a symbolical representation of paths of length k ending in a bad state

k∧
i=0

(T (si, si+1) ∧ ϕ(si)) ∧ ¬ϕ(sk+1).

As in the BMC case subsequent encodings share most of the formula, moreover the formula that
creates a path of length k is shared between BMC and K-induction. For this reason these two techniques
are often applied together exploiting the sharing and incrementality of these formulae to improve
performance.

IC3

Incremental Construction of Inductive Clauses for Indubitable Correctness (IC3) is a model checking
algorithm invented by Aaron Bradley in 2010. In its original form it was meant to solve reachability
problems expressed in SAT. Later works extended it to deal also with liveness, incremental reasoning
and SMT formulae. Experimentally IC3 appears to be superior to any other single solver used in
the hardware model checking competition [2]. This work first provides a high level description of the
algorithm in the propositional finite state case, as described by Aaron R. Bradley in [14], then two
relevant extensions to SMT infinite state are presented.

Propositional finite state
Let S be a transition system described by I(X), T (Y,X,X ′) that represent respectively the set of
initial states and the transition relation; X and X ′ represent current and next state variables, while Y
represents primary input variables to the system. Let P (X) describe a set of good states. The objective
of the IC3 algorithm is to prove that all states reachable by S are good. This is achieved by finding
an inductive invariant F (X) which proves that S satisfies P [17]. F (X) must be such that:

(a) I(X) |= F (X), the initial states satisfy the invariant;

(b) F (X) ∧ T (Y,X,X ′) |= F (X ′), every state reached in one step from a state that satisfies the
invariant also satisfies it;

(c) F (X) |= P (X), from the invariant its possible to conclude P .

Its easy to notice that the conjunction of these 3 requirements on F is sufficient to conclude that P
holds in every reachable configuration.

F is built by keeping a sequence, called trace, of formulae, called frames, F0(X), F1(X), . . . , Fk(X)
such that:

• F0 = I, the first formula of the trace represents the initial states of the transition system;
• ∀i > 0 Fi is a set of clauses: conjunction of disjunctions;
• ∀0 < i < k : Fi+1 ⊆ Fi, which implies Fi |= Fi+1;
• ∀0 < i < k : Fi(X)∧T (Y,X,X ′) |= Fi+1(X

′), the symbolic representation obtained by performing
a single step from a given frame is a model for the following frame;

• ∀0 ≤ i < k : Fi |= P .
Each Fi symbolically represents a superset, or over-approximation, of the set of states that the

machine M can reach in i steps. Therefore the trace F0(X), F1(X), . . . , Fk(X) represents an over-
approximation of all possible executions of length k.

The IC3 procedure can be split into two main phases: a blocking and a propagation phase. During
the blocking phase the approximation is refined by adding additional clauses. If during this operation
some frame Fi becomes such that Fi ∧ ¬P 6|= ⊥: it has a non empty intersection between the states

17

it represents and the bad states, then its possible to reconstruct a counter-example using the frames
F0, . . . , Fi. The propagation phase tries to extend the trace with an additional frame Fk+1. This
frame is generated by moving forward the clauses of the previous Fi. If during this process for some
i Fi = Fi+1 holds, then a fix point has been reached and Fi is the inductive invariant that proves the
property.

The following section gives a more detailed description on how the approximation is refined. IC3
maintains a set of proof obligations, which are pairs (s, i) such that i is the step index and s is a
counter-example to induction (CTI). A CTI is symbolic representation of a set of states that might
not be reachable from the initial states and have at least one successor that either is or can reach a
bad state. The unreachability of s from Fi−1 is recursively proved by checking whether ¬s is relative
inductive to Fi−1: Fi−1 ∧ ¬s ∧ T |= ¬s′. This can be decided by the unsatisfiability of:

Fi−1 ∧ ¬s ∧ T ∧ s′ (2.2)

If 2.2 is unsatisfiable and s does not contain any initial state, then ¬s can be used to strengthen Fi. In
particular ¬s is generalized into a formula g which is added to Fi. This generalized formula g must be
such that g |= ¬s and it is relative inductive to Fi−1: it also makes 2.2 unsatisfiable. Since the objective
of this section is to provide a high level intuition on how IC3 works, the description of the generalization
procedure is omitted. If 2.2 is satisfiable, then either s is reachable or the over-approximation Fi−1 is
too coarse grained to prove its unreachability. Let c be the symbolic representation of the set of states
such that (Fi−1 ∧ ¬s |= c) ∧ (∃Y : c(X) ∧ T (Y,X,X ′) |= s(X ′)). The states in c are a subset of the
intersection of Fi−1 and ¬s, this intersection can not be empty since 2.2 is satisfiable by hypothesis.
Moreover each state in c can reach a state in s′ in one step for some assignment over the input variables
Y : they are in the preimage of s. To decide whether ¬s is reachable or not it is sufficient to check if
c is reachable from Fi−2. This corresponds to trying to block the proof obligation (p, i − 1). This is
repeated recursively until either the unreachability is proved or the first frame (i = 0) is reached. In
the latter case the generated sequence of proof obligation represents a counter example for the property
P on S.

SMT infinite state generalization
IC3 has been generalized to be applicable to SMT problems and infinite state transition systems.
While in the previous case the problem was decidable, in this case it is not, therefore completeness is
impossible to achieve.
In the SMT case if formula 2.2 is satisfiable a total assignment c in the preimage of s is obtained.
Depending on the theory used, cmight represent a single point in an infinite space and as a consequence
lead to a high chance of divergence in the blocking phase. For this reason it is necessary to generalize
c into a set of predecessors of s.

In the literature it is possible to find different techniques to solve this problem: some rely on
quantifier elimination [17], others try to obtain better performance by embedding in the generalization
procedure theory specific procedures [22] and finally implicit abstraction techniques are less dependent
on the specific underlying theory [19]. The following paragraphs provide a high level overview of the
IC3 SMT generalization of the last two approaches.

Theory dependent generalization Hoder and Bjørner [22] in 2012 proposed an extension of
IC3 to the SMT case by embedding in the generalization of the CTI a theory dependent component.
The propositional and theory specific procedures are combined together with the objective of obtaining
a SMT formula g such that g |= ¬s and Fi−1 ∧ g ∧ T ∧ ¬g′ is satisfiable (2.2). In the case of linear
rational arithmetic (LRA) after the boolean generalization procedure the algorithm tries to weaken
inequalities of the form t ≤ c to t ≤ c+ c′ with c′ > 0 such that the SMT formula 2.2 still holds [22].

The main drawback of this approach is the requirement of a specialized generalization procedure
for each theory.

Implicit abstraction Cimatti et alii [19] in 2016 proposed IC3-IA: an abstraction based ex-
tension to the infinite state SMT case of IC3 that does not require theory specific generalization

18

procedures. Ŝ is an abstraction of the transition system S if and only if every state reachable in S has
a corresponding abstract state reachable in Ŝ. This procedure allows to reduce the size of the state
space and improve the performance of the verification procedures. The abstract state space is induced
by a set of predicates P and generated by the abstraction relation HP(X,XP) ..=

∧
p∈P

xp ↔ p(X), where

xp is a boolean variable of the abstract space. The predicate abstraction of a formula ϕ with respect
to P, written ϕ̂P is computed as:

ϕ̂P(XP) ..= ∃X,X ′ : ϕ(X), X ′ ∧HP(X,XP)

ϕ̂P(XP, X
′
P) ..= ∃X,X ′ : ϕ(X,X ′) ∧HP(X,XP) ∧HP(X ′, X ′P)

(2.3)

The IC3 procedure is modified to learn clauses over predicates in the abstract space. The predicate
abstraction (2.3) is used to obtain an abstract transition relation T̂ (X,Y ′) from T (X,X ′). This relation
is replaced in 2.2 leading to:

F (X) ∧ s(X) ∧ T̂ (X,Y ′) ∧ ¬s(X ′) ∧
∧
p∈P

(p(X ′)↔ p(Y ′)) (2.4)

s(X) is relative inductive to F (X) if formula 2.4 is unsatisfiable. If s(X) is relative inductive the
inductive strengthening procedure described for the boolean case is applied, otherwise the abstract
predecessor c can be computed from the satisfying SMT model µ as:

c ..= {p(X) | p ∈ P ∧ µ |= p(X)} ∪ {¬p(X) | µ 6|= p(X)}

Notice that it is not necessary to compute the abstract transition relation T̂ (X,Y ′) explicitly. It
can be done implicitly by adding the abstraction procedure to the SMT formulation.

If property P̂ holds in the abstract transition system Ŝ, then the original property P holds in the
original transition system S. Otherwise an abstract counter-example π̂ ..= ŝ0, ŝ1, . . . , ŝk is generated.
This execution of Ŝ might not correspond to any execution on S, it might be spurious. This can
be verified by considering the SMT formula representing all paths of the same length of π̂ on the
original model and imposing the abstraction of each step to be the abstract state prescribed by π̂. If
this formula is unsatisfiable then π̂ is spurious, otherwise the satisfying model provides an execution
π ..= s0, . . . , sk such that every ŝi ∈ π̂ is the abstract representation of si ∈ π and π 6|= P . If a spurious
counter-example is identified, the set of predicates P is updated so that at least π̂ is removed from the
language of Ŝ. In the literature many possible implementations of this refinement procedure have been
developed. However in this work they are not discussed, a more detailed explanation of this topic can
be found in [19].

It is relevant to notice that the selection of the predicates to be considered in P greatly affects the
overall performance.

19

3. State of the Art
After some general considerations about the decidability of some problem on timed automata, this
chapter provides a description of the main state-of-the-art approaches in the field of formal verification
of timed transition systems. Tools implementing these techniques are used in chapter 9 to evaluate
the performance of Timed nuXmv for invariant and MTL checking.

3.1. Timed automata decidability

Alur and Dill in [3] and [4] show some interesting results about the complexity of some problems
on timed automata. The reachability problem and checking language emptiness of timed automata
are decidable, as in the discrete case, and they belong to the PSPACE-complete class. However, in
the same publications, they show that given two timed automata M and M ′, the language inclusion
problem L(M) ⊆ L(M ′) is undecidable. Moreover, as shown in [15], it is enough to allow additive
clock constraints to the timed automata language B(X) (2.1) to make also the emptiness checking
undecidable.

3.2. Region automata

Timed automata have real valued clocks, this implies that the state space of their transition system
is infinite. Most state-of-the-art approaches build a finite state abstraction of a timed automata. The
time behavior of the system is represented by a finite set of equivalence classes called regions. This
section describes the main procedure used to create this finite state abstraction of the infinite timed
transition system [5].
The infinite state space is split into finitely many partitions by considering each of these partitions
as an abstract state. This allows to build a finite abstract state space. Every partition represents
an equivalence class over the states of the timed transition system, these states are such that they
all exhibit the same behavior in the abstract space. Notice that, from the definition of B(X) (2.1),
clocks are compared only with constants and, since the model description is finite, then for each clock
x there are finitely many of such values in Q. Let cx be the maximum constant to which the clock
x is compared to. Given two clock interpretations µ, µ′ : X → R|X|, let bµ(x)c be the integral part
of the value associated to clock x by the interpretation µ, and let frac(µ(x)) ..= µ(x)− bµ(x)c be its
fractional part. This notation allows to define the equivalence relationship over clock interpretations.
µ is equivalent to µ′, written µ ≡ µ′, if and only if the following conditions hold:

1. ∀x ∈ X : bµ(x)c = bµ′(x)c∨ (µ(x) > cx∧µ′(x) > cx), for every clock the interpretations µ and µ′

either agree on the integral part or the assigned values are greater than the maximum constant
corresponding to that clock variable.

2. ∀x, y ∈ X µ(x) ≤ cx ∧ µ(y) ≤ cy : frac(µ(x)) ≤ frac(µ(y)) ⇐⇒ frac(µ′(x)) ≤ frac(µ′(y)), for
all pairs of clocks that are mapped to values smaller than their respective maximum constants,
the two interpretations have the same ordering of the clocks based on their fractional part. Notice
that from the previous condition these two clocks share the same integral part.

3. ∀x ∈ Xµ(x) ≤ cx : frac(µ(x)) = 0 ⇐⇒ frac(µ′(x)) = 0, one interpretation assigns a value
with fractional part 0 (an integer) smaller than the maximum constant associated to a clock if
and only if also the other interpretation assign an integer value to the same clock. Notice that,
together with the first condition, this implies that they assign the same value.

These three conditions partition the infinite clock space R|X| into finitely many equivalence classes
called regions. Their number is finite since in each model there can be only a finite number of constants.

20

x

y

0 1 2 3 4
0

1

2

3

Figure 3.1: Regions of a simple timed automaton with two clock variables bounded respectively by 4
and 3

Figure 3.1 shows the regions created by a timed automaton with two clocks x, y, cx = 4 and cy = 3.
The regions are highlighted by the colors: each light gray area, red dot and orange segment identifies
a different region.

The region automaton is defined as the transition system that has a node for each region and there
exists an edge between two regions r0, r1 with label a ∈ Σ if and only if there exist two locations l0, l1
of the timed automaton such that l0 ∈ r0 and l1 ∈ r1 and there is a transition with label a from l0 to
l1. Regions preserve the behavior of the timed automaton in the sense that for every transition of the
timed automaton there is a corresponding transition of the region automata. More formally there is a
bisimulation relationship between the timed automaton and its corresponding region automaton.

• For every action transition of the timed automaton if µ0, µ1 are two clock interpretations such
that µ0 ≡ µ1 and (l, µ0)

a−→ (l′, µ′0) for some µ′0 then ∃µ′1 : µ′1 ≡ µ′0 ∧ (l, µ1)
a−→ (l′, µ′1).

• For every delay transition of the timed automaton if µ0, µ1 are two clock interpretations such
that µ0 ≡ µ1, then ∀d ∈ R ∃d′ ∈ R : µ0 + d ≡ µ1 + d′.

Tools like Atmoc (9.1.2) symbolically encode the region equivalence over clock variables and solve the
model checking problem on the region abstracted transition system.

3.3. Zones automata and DBM
Another technique symbolically handles multiple regions at a time using zones. A zone ψ is the
conjunction of a set of clock constraints of the form x − y ≤ c, x − y < c, x < c, x ≤ c, x = c, x > c
or x ≥ c where x, y are clocks and c is a constant. ψ can be represented in the clock space as a |X|
dimensional convex shape built by the union of a subset of regions, where |X| is the cardinality of the
set of clock variables. There are three main operations that can be performed on zones: intersection,
delay and reset.
The intersection of two zones ψ0, ψ1 is a zone ψ2

..= ψ0∧ψ1 that is the conjunction of the constraints
of ψ0 and ψ1; ψ2 is visually represented by the intersection of the two areas that describe ψ0 and ψ1.
This operator allows to compute the logical conjunction of the clock constraints represented by the
two zones.
The delay of a zone ψ ..= r0, r1, . . . , rk, where the r0, r1, . . . , rk are regions, is defined as
ψ ⇑ ..= {µ + d | ∃ri ∈ ψ : µ ∈ ri ∧ d ∈ R+}, which represents the zone made by all regions that are
reachable from ψ with delay transitions; ψ ⇑ is graphically obtained by stretching ψ along the diagonal
direction. This operator allows to compute all states reachable from a zone by performing only time
elapse transitions.
The reset of a zone ψ given a subset of clocks r ⊆ X is obtained by projecting its area along the axes
corresponding to those clock variables: ψ[r ..= 0]. This last operator allows to compute the resulting

21

zone after the resets of a transition.
The zone automaton is defined as a transition system in which states are pairs (l, ψ), where l is

a location and ψ a zone. Its transition relation is defined by:
• (l, ψ) (l, ψ ⇑ ∧I(l)), where I(l) is the location invariant of l;
• (l, ψ) (l′, ψ[r ..= 0] ∧ g ∧ I(l′)) if l g,a,r−−−→ l′

This definition of the zone automaton, corresponding to a timed automaton with initial state
(l0, µ0), guarantees that:

• soundness: ((l0, µ0) ∗ (lf , ψf))=⇒∃µf ∈ ψf : (l0, µ0)→∗ (lf , µf), if a configuration is reachable
in the zone automaton then there exists a corresponding reachable state in the timed automaton.

• completeness: (l0, µ0) →∗ (lf , µf)=⇒∃ψf : µf ∈ ψf ∧ ((l0, µ0) ∗ (lf , ψf)), if a configuration
is reachable in the timed automaton then the corresponding zone is also reachable in the zone
automaton.

Zones can be stored using Difference Bound Matrices (DBM). They efficiently support zones operations
and have a canonical representation. Let X0

..= X ∪ 0, where 0 is a reference clock. Every clock
constraint in a zone ψ is rewritten in the form x − y ◦ n where x, y ∈ X0 ∧ ◦ ∈ {<,≤}. ψ can be
represented in a |X0| × |X0| matrix M(ψ), where the first row and first column represent the reference
clock 0 and the others represent the other clocks in some order. Each cell of the matrix keeps track
of whether the bound is strict or not and the value of the bound itself: M(ψ)ij = (n, ◦) implies that
ci − cj ◦ n for some ◦ ∈ {<,≤}.

Tools like Uppaal (9.1.1) and Opaal (9.1.3) use this kind of representation to handle to behavior
over time of the model, while the discrete development is handled using explicit state techniques. This
implies that the zone representation is done for each possible discrete location. For this reason these
kind of techniques usually scale well with respect to increasing time constraints. However, they are
unable to manage complex discrete behavior since the number of states increases exponentially and
the explicit state representation of such systems becomes very large.

22

4. nuXmv
This work is grounded on the nuXmv model checker. nuXmv is actively maintained and used by the
Embedded System unit in Fondazione Bruno Kessler. It lies at the core of a set of other tools like
HyComp, Ocra and xSAP. It allows to analyze synchronous finite and infinite state systems. In this
chapter the relevant fragment of the input language of nuXmv will be described along with its main
functionalities. In particular the model simulation and trace re-execution features will be presented.
For a complete description please refer to the nuXmv user manual, [16] and [9].

4.1. Input language
In this section the main constructs of the nuXmv input language will be described. For compactness
reasons this description will focus on the subset of most relevant features that are required for a better
understanding of the extensions and reduction technique presented in chapters 5, 6 and 7.

Supported types
Boolean Like most formal languages, nuXmv supports the boolean type which comprises the
symbolic values TRUE and FALSE.

Enumeration Enumeration types are sets of values, in particular three different types of enumera-
tions are supported:

• symbolic enumeration: the elements of the set are all symbolic constants,
e.g. {a, z, e, k, ya};

• integer enumeration: the elements of the set are all integer constants,
e.g. {2, 6, 20, 17, -3};

• integer and symbolic enumeration: the elements of the set are either integer constants or
symbolic constants,
e.g. {2, h, 20, k, -3}.

Word unsigned word[N] and signed word[N] are used to represent bit vectors of fixed length
N. Signed vectors allow signed operations while unsigned vector allow unsigned operations. Signed
words are represented using the usual two’s complement.

Integer The domain of a variable of type integer is the whole set of integer numbers: Z. Therefore
is has an infinite discrete domain. However, in the input model it is possible to specify integer constants
only in the range: [−232 + 1; 232 − 1].

Real The domain of a variable of type real is the whole set of rational numbers: Q. A rational
constant can be expressed in the input model using the following syntax: f’3/4

Array Array types allow to model sequences of elements of other types. In particular it is possible
to specify the lower and upper bound for the index of the array and the type the elements in it. The
element type can be an array type itself.

Variables declarations
Variables define the set of possible states of the model. A total assignment over the variables of a
model uniquely identifies a configuration of the system. The set of all possible configurations is the
state space. Every variable is associated to one of the types described above.

State variables State variables keep the system’s configurations, their values might change as the
system evolves through transitions.

Input variables Input variables allow to model external inputs that are not under the control of
the system. In particular these kind of variables allow to put labels on the transitions.

23

Frozen variables Frozen variables are variables that retain the same value for the whole model
execution. Their initial value can be constrained in the same way of state variables. The reader may
think of fronzen variables as constant or immutable variables of other languages.

Define declarations
Defines allow to create symbols that are equivalent to another expressions. They are macros, since
whenever a define identifier is found, it is syntactically replaced by the expression it is associated with.

Constants declarations
In the nuXmv language it is possible to declare a set of symbolic constant that can be used in the
model description.

Constraints
In the following the main syntactical elements to describe a system behavior are presented.

INIT constraints INIT allows to specify the possible initial configurations of the system. This
construct allows to specify symbolically the set of initial states: every state such that all the INIT
constraints evaluate to TRUE is an initial state.

INVAR constraints INVAR allows to specify conditions that must be satisfied by every state of the
system. Every INVAR constraints identifies a subset of valid states in the state space. The intersection
of all these sets is the set of valid states of the model.

TRANS constraints TRANS constraints allow to specify how the system evolves at each step. The
language allows to access the value of a symbol x after the next transition using next(x). TRANS
constraints are predicates over current and next variables. The possible transitions of the systems are
all pairs of current and next state that satisfy such predicates. If at a given state there are multiple
transitions the system can choose any of them. Otherwise, if at a given state there are no valid
transitions, such state is called deadlock state.

MODULE declarations
A MODULE allows to encapsulate a collection of declarations, constraints and specifications in a reusable
component that has a new identifier scope. Modules can be instantiated as normal variables and each
of these instances refers to different data structures. A module has a set of formal parameters that are
matched with a set of actual parameters for each module instance. MODULE resemble the concept of
classes of Object oriented programming languages.

Specifications
This section provides a brief description of the three main kinds of properties which nuXmv is able to
verify. For a formal description of the semantic of the languages described in this section please refer
to 2.4.

Invariant specification

Invariants are propositional formulas built using standard logical and mathematical operators over
current and next states. An invariant specification is verified by a model if the initial states satisfy
such formula and all states that the system can reach starting from them also satisfy the formula. If
an invariant specification does not hold nuXmv shows a trace of the model that starting from an initial
state reaches a configuration in which the invariant is falsified. This counter-example may or may not
belong to an infinite run of the system.

LTL specification

nuXmv can also check specifications expressed using Linear Temporal Logic (LTL) extended with past
operators. A LTL property is verified by a system if such property holds in all the initial states of the
model. In LTL a single trace is considered at a time, therefore previous and next state are uniquely

24

determined. The verification procedure proves that in every such trace the specification holds. In
particular the main LTL operators are:

• X ltl_expr : holds iff ltl_expr holds in the next state.

• G ltl_expr : holds iff for all following states ltl_expr holds.

• F ltl_expr : holds iff there exists a following state in which ltl_expr holds.

• ltl_expr1 U ltl_expr2 : holds if F ltl_expr2 holds in the current state and ltl_expr1
holds in all states until the state in which ltl_expr2 holds is reached.

For the formal definition of the semantic of the LTL operators see 2.4.1.

4.2. Model example
In the following a simple example of nuXmv model is presented.

MODULE main
VAR
p0 : Philosopher(p1);
p1 : Philosopher(p2);
p2 : Philosopher(p3);
p3 : Philosopher(p4);
p4 : Philosopher(p0);

-- invariant: never happens that three or more eat together: TRUE
INVARSPEC count(p0.state = eating, p1.state = eating, p2.state = eating,

p3.state = eating, p4.state = eating) < 3;

-- infinitely often if someone wants to eat then someone eventually eats.
LTLSPEC G ((F (p0.state = trying | p1.state = trying | p2.state = trying |

p3.state = trying | p4.state = trying)) ->
F (p0.state = eating | p1.state = eating | p2.state = eating |

p3.state = eating | p4.state = eating));

MODULE Philosopher(neighbor)
VAR
fork : {down, mine, other};
state : {thinking, trying, eating};

DEFINE eat := (state=eating)? 1 : 0;

INVAR
(state = eating <-> (fork = mine & neighbor.fork = other)) &
(state = thinking <-> (fork != mine & neighbor.fork != other)) &
(state = trying <-> ((fork = mine & neighbor.fork != other) |
(fork != mine & neighbor.fork != other))) &
(neighbor.fork = other -> fork = mine)

TRANS
(state = trying -> (next(state) = trying | next(state) = eating)) &
(state = eating -> (next(state) = eating | next(state) = thinking)) &
(state = thinking -> (next(state) = thinking | next(state) = trying)) &
((state = trying & fork=down) -> (next(state) = trying & next(fork)=mine)) &
((state = trying & fork=mine & neighbor.fork = down) ->

(next(state) = eating | (next(neighbor.fork) = mine & next(fork) = mine)));

This simple example describes the popular dining philosophers problem. There are four philosophers
on a circular table, each of them has a shared fork at his right and one at his left. In order to eat they
need to take both forks. In the model there are two properties. The invariant allows to verify that
it never happens that three or more philosophers eat at the same time. The LTL specification does

25

not hold and shows that there exists a sequence of actions that makes the philosophers starve: each of
them picks one fork and waits for the neighbor to release his own.

4.3. Trace simulation, execution and completion
nuXmv provides a set of commands to generate, validate and complete traces. This section describes
and explains the SAT/SMT formulations used to perform these operations.

Simulation
Given a model description, nuXmv is able to simulate possible executions of such model. These execu-
tions, or traces, can be generated either automatically or built step by step with the user interaction.
The pick_state command allows to select the initial state of the trace from the set of all possible
initial states of the model. This set can be filtered by specifying additional constraints. The simulate
command allows to extend existing traces either automatically or interactively. When performed in
interactive mode the tool performs a sequence of SAT/SMT calls to generate the list of possible next
states.

Given a transition system M ..= (S, I,N, T) the ith possible initial state si ∈ S is generated by
identifying a total assignment that satisfies:

I ∧N ∧
i−1∧
j=0

¬sj

the first part requires an assignment that satisfies the initial conditions I and the invariants N , then
the conjunction of the negation of the previously detected assignment rules out all possible initial states
that the procedure has already found. If this formula becomes unsatisfiable then all possible initial
states have been found.

Similarly when a trace is extended of one step, the new state is selected from a list of possible ones.
The ith possible successors of state s is built by identifing a total assignment satisfying:

s ∧ T ∧N ′ ∧
i−1∧
j=0

¬s′j

where N ′ and s′ refer to the next variables. This formulation requires to find an assignment over
the next variables that is reachable in one step from s and satisfies the invariants N . The list of
assignments that have already been detected is excluded as in the previous case. If this formula
becomes unsatisfiable then all possible next states have been found.

Execution
Given a model description and a trace nuXmv is able to check if such trace belongs to the language of
the model.

Let the model be represented as a transition system M ..= (S, I,N, T) and the trace be a sequence
of k ∈ N total assignments over S: π ..= s1, s2, . . . , sk. π ∈ L(M) if and only if s1 |= I ∧ N and
∀1 ≤ i < k : si ∧ s′i+1 |= T ∧ N ′, where N ′ are the invariant conditions expressed over next state
variables and similarly s′i is the ith total assignment over next variables. These conditions encode
that the trace must start from a initial state that satisfies the system invariants N and every step of
the trace must satisfy the transition constraints T . Moreover the destination configuration of every
transition has to satisfy the invariants N . These conditions can be verified by checking the satisfiability
of the following formulae:

s1 ∧ I ∧N

and for every 1 ≤ i < k:
si ∧ s′i+1 ∧ T ∧N ′

If all these formulae are satisfiable then π is a possible execution of M , otherwise π does not belong
the the language of the transition system.

26

Completion
A partial trace is a trace that does not provide a total assignment for all state: there exist at least one
state such that the value of some variable is missing. In this case nuXmv it is able to complete these
partial assignments so that the trace represents a valid execution of the model.

Let M ..= (S, I,N, T) be a transition system representing the model and π ..= s1, s2, . . . , sk be
a partial trace: a sequence of k ∈ N partial assignments over S. The objective of the completion
procedure is to find a trace π′ ..= s′1, s

′
2, . . . , s

′
k such that π′ ∈ L(M), each assignment is total and

∀1 ≤ i ≤ k : s′i |= si. A basic approach to perform this task is to encode the unrolling of k − 1
transitions and at each step impose the values prescribed by the partial trace. Every model satisfying
this formula provides a valid completion of π, if no such model exists then the partial trace can not be
completed. Let si[j] be the assignment si over the variables at step j, similarly I[j], N [j] be the initial
and invariant constraint over the variables at step j and T [j] be the transition over the variables at
step j and j + 1.

I[0] ∧
k−2∧
i=0

(T [i]) ∧
k−1∧
i=0

(si+1[i] ∧N [i])

The first part of this formula encodes every possible path of the transition system of length k, the last
part requires the assignment at each step to agree with the ones found in the partial trace. If such
formula is satisfied by some model, then this model prescribes total assignments over all variables,
from step 0 to step k − 1. These assignments represent the trace π′, which is the completion of π.

27

Part II

Contribution

The second part of this work describes the actual contributions of this thesis. First, in chapter 5,
the new input language is described and its expressiveness is compared to the language of timed
automata. Chapter 6 explains the reduction procedure from timed to untimed synchronous infinite
transition systems. Chapter 7 provides a more in depth explanation of the newly introduced operators
and describes how properties are verified on the timed model. Chapter 8 first shows how traces for
the timed model are represented, then describes the three operations that can be performed on such
traces: simulation, execution and completion, finally this chapter explains how counter-examples are
lifted from the discrete to the timed model. In chapter 9 the work described in this thesis is compared
to some tools that implement the main state-of-the-art techniques presented in chapter 3. The first
part of this chapter describes the main features of the software used, then each benchmark is described
and performance of the tools on that benchmark are presented. The last chapter of this work (10)
briefly summarizes the most relevant contributions of this thesis also in comparison with other state-
of-the-art software and then highlights some possible directions for further development of what has
been presented.

All elements described in this part are completely integrated into the nuXmv flow. The new version
of nuXmv, Timed nuXmv, is completely backward compatible with respect to all previously supported
elements. Additionally, it enables all the main features available for discrete models also for timed
models. Each section explains one of these components in greater detail.

5. Input language extension
The input language of nuXmv, described in 4.1, has been extended to allow the definition of timed tran-
sition systems (2.2). This chapter describes in detail the newly supported constructs and the changes
made to existing features of the nuXmv language syntax and semantic. Afterwards, an explanation of
the syntax and semantic of LTL and a fragment of MTL is provided. The end of the chapter reports
some considerations about the expressiveness differences between the Timed nuXmv language and the
language of timed automata. This extended language provides full backward compatibility with the
one of the previous version of nuXmv.

5.1. Definition of timed transition system
The language allows to specify a timed transition system in which each transition is either discrete
or a time elapse. In discrete transitions the amount of time elapsed is always 0, while in time elapse
(or delta) transition the time elapse is strictly greater than 0.

Time domain
Timed nuXmv supports dense time semantic: the time domain is in bijection with R. This implies that
between two time instants there is an infinite number of steps. At the beginning of a model description

28

the annotation @TIME_DOMAIN allows to enable or disable the timed fragment of the language. The
possible values are continuous and none. This annotation is not mandatory and the default value
is none which disables all constructs specific to the timed language.

Clocks
nuXmv state variables can be declared of type clock. The domain of this new type is R and variables
of this type can be declared only if the time domain is different from none.
In delta transitions all clock variables increase their value of the same amount, equal to the amount of
time elapsed. Their value in the initial states and in discrete transitions, by default, is unconstrained.
This behavior can be overridden by specifying some constraints in the INIT, INVAR, TRANS and
ASSIGN sections, just like all other nuXmv variables types. The language provides a built-in clock
variable, accessible through the reserved keyword time. It represents the amount of time elapsed from
the initial state till now. time is initialized to 0 and its value does not change in discrete transitions.
While all other clock variables can be used in any expression in the model definition, time can be
used only in comparison with constants. In this work all variables of type different from clock will
be called discrete variables.

non-continuous variables
In time elapses, by default, all discrete variables keep their assigned values. If the declaration of a
state variable of type different from clock is followed by the type modifier noncontinuous then
the value assigned to this variable during delta transitions will be constrained only by its invariants.

Constraints
The following sections explain the changes made on the semantic of TRANS, how clock invariants
can be expressed and the newly introduced URGENT constraints. INIT and ASSIGN constraints are
unchanged with respect to the previous version of the language.

TRANS The syntax of the TRANS constraints is unchanged, however in Timed nuXmv their are not
evaluated for all transitions but only for the discrete ones. This construct allows to specify "arbitrary"
clock constraints. A clock can be reset to any value (not necessarily a constant) or can keep its own
value. Like all other nuXmv state variables, if a clock is not constrained during a discrete transition,
its next value can be chosen undeterministically among the whole time domain.

timed INVAR Clock variables can be used in an INVAR only in a particular structure of the formula:
ϕ→ φ. ϕ is a formula built using only the discrete variables and φ is convex over the clock variables.
This closely maps the concept of location invariant described for timed automata (2.2.1): all locations
satisfying ϕ have invariant φ.

An INVAR must always hold. As in timed automata, since the constraint on clock variables is
convex it is sufficient to check that the invariant is satisfied in the starting and ending state of a
transition.

URGENT URGENT allows to specify a set of locations in which time can not elapse. In particular
the keyword URGENT is followed by a predicate over the discrete variables. In a model there can be
multiple instances of this constructs, they are combined by disjunctions

5.2. Specifications
Timed nuXmv supports invariant, LTL and a MTL fragment checking using BMC or an IC3 extension
to deal with LTL specification on timed systems described in [18] based on IC3-IA (described in section
2.5.3). The only clock variable allowed in specifications is the built-in time. In both timed and untimed
models two new LTL operators have been introduced: @F~ (at next) and @O~ (at last). Moreover,
in timed models it is possible to use four additional LTL operators: time_since, time_until, X~
(timed next) and Y~ (timed previous).

29

timed next, timed previous operators
In the Timed nuXmv language next and previous operators come in two possible versions. X~ and Y~
allow to predicate about the evolution over time of the system. They are always FALSE in discrete
steps and hold in time elapses if the argument holds in the open interval immediately after/before the
current step. The operators X and Y can hold only in discrete steps, they retain the semantic they
had in the untimed language with respect to the discrete behavior of the model. The disjunction of
these operators X(ϕ) ∨ X̃(ϕ) allows to check if the argument ϕ holds after the current state without
distinction between time or discrete evolution.

at next, at last operators
The operators at next and at last, written @F̃ and @Õ are binary operators allowed in LTL specifi-
cations. Their operands must be formulae without temporal operators over current and next variables.
Their second operand must evaluate to either > or ⊥ and their overall type is the type of the first
operand.

In models with none time domain their semantic is defined as the evaluation of their first operand
the next [last] time their second operand will hold [held]. If this last condition will never happen
[happened] the operator evaluates to a default value.

Formally over a path π ..= s0, s1, . . . @F̃ and @Õ are defined as:

si(u@F̃ϕ) ..=

{
ψ if ∃j > i : sj(u) = ψ ∧ (π, sj |= ϕ) ∧ (∀i < h < j : π, sh 6|= ϕ)

defu@F̃ϕ otherwise

si(u@Õϕ1) ..=

{
ψ if ∃j < i : sj(u) = ψ ∧ (π, sj |= ϕ) ∧ (∀i > h > j : π, sh 6|= ϕ)

defu@Õϕ otherwise

where si(u) is the evaluation of the expression u at state si ∈ π and defu@F̃ϕ, defu@Õϕ are symbols
representing their respective default values.

Their semantic in dense time domain (continuous) must be updated since there might not be a
single point after which an expression holds: ϕ might evaluate to > in an open time interval (a, b) for
some a, b ∈ R. To match more closely their intuitive definition in a dense time domain their semantic
on a path π becomes:

π(t)(u@F̃ϕ) ..=

π(t′)(u) if ∃t′ > t : π, t′ |= ϕ ∧ ∀t < t′′ < t′ π, t′′ 6|= ϕ

π(t′)(u) if ∃t′ ≥ t : π, t′ |= X̃ϕ ∧ ∀t < t′′ ≤ t′ π, t′′ 6|= ϕ

defu@F̃ϕ otherwise

π(t)(u@Õϕ) ..=

π(t′)(u) if ∃t′ < t : π, t′ |= ϕ ∧ ∀t′ < t′′ < t π, t′′ 6|= ϕ

π(t′)(u) if ∃t′ ≤ t : π, t′ |= Ỹ ϕ ∧ ∀t′ < t′′ ≤ t π, t′′ 6|= ϕ

defu@Õϕ otherwise

where π, t |= ϕ means that in path π at time instant t ϕ holds, π(t)(u) is the evaluation of expression
u at time instant t on path π and defu@F̃ϕ, defu@Õϕ are symbols representing their respective default
values. Notice that the the only difference with respect to the previous formulation is the additional
case in which the timed next and previous operators are used. The first case is identical to the untimed
case, a different syntax is used since it is no more possible to talk about a discrete sequence of states.
In words the new semantic requires the existence of either a point or a left/right open interval in
which ϕ holds. The left open interval is required for the @X̃ operator, the right open interval for the
@Ỹ operator. Recall that in discrete transitions the timed next and previous operators are always
evaluated to ⊥.

time since, time until operators
time_until and time_since are two additional unary operators that can be used in LTL specifi-
cations of timed models. Their argument must be a boolean predicate over current and next variables,
no temporal operator is allowed. time_until(ϕ) evaluates to the amount of time elapse required to

30

reach the next state in which ϕ holds, while time_since(ϕ) evaluates to the amount of time elapsed
from the last state in which ϕ held. As for the @F̃ and @Õ operators if no such state exists they are
assigned to a default value.

π(t)(time_until(ϕ)) ..=

{
π(t′)(time)− π(t)(time) if ∃t′ > t : π, t′ |= ϕ ∧ ∀t < t′′ < t′ π, t′′ 6|= ϕ

deftime_until(ϕ) − π(t)(time) otherwise

π(t)(time_since(ϕ)) ..=

{
π(t)(time)− π(t′)(time) if ∃t′ < t : π, t′ |= ϕ ∧ ∀t′ < t′′ < t π, t′′ 6|= ϕ

π(t)(time)− deftime_since(ϕ) otherwise

where π(t)(time) is the value assigned to the built-in clock variable time on path π at point t and
deftime_until(ϕ), deftime_since(ϕ) are symbols representing the default values.

5.3. Comparison with timed automata
In this section the main differences in the expressiveness of the Timed nuXmv and timed automata
languages are highlighted.

From the provided description it should be evident that the language of timed automata is a subset
of the Timed nuXmv language. The following considerations show that this inclusion relation is strict.
In the language just described it is possible to express any kind of constraint over clock variables in
discrete transitions, while in timed automata it is only possible to reset them to 0 in transitions or
compare them to constants in guards. This additional expressiveness allows to describe much more
complex behaviors with respect to time. However, it makes impossible to build the region abstracted
automaton as described in 3.2: clocks might be compared to other not constant symbols. Moreover,
the discrete variables of a timed automaton always have finite domain, thus by creating the region
abstracted machine it is possible to obtain a finite abstraction of the clock variables and therefore an
overall finite abstract transition system. In Timed nuXmv this is not the case since also the discrete
variables might have an infinite domain.

From the computability perspective the restrictions on the timed automata ensured the decidability
of some key properties of their language. In particular checking whether the language of a timed
automaton is empty is a decidable problem [8], however this is not the case for the Timed nuXmv
language since it describes an infinite transition systems. The language inclusion problem L(A) ⊆ L(B)
is undecidable for non-deterministic timed automata [4]. Therefore this decision problem is undecidable
also for the timed nuXmv language, since its language is a superset of the language of timed automata.

31

6. Timed to Untimed system
The formal verification of a property ϕt on a timed infinite transition system Mt described through
the input language of Timed nuXmv is reduced to the verification of a property ϕ on an infinite state
transition system M such that Mt |= ϕt ⇐⇒ M |= ϕ. This chapter describes how M is generated
from Mt. The Timed nuXmv description of Mf is reduced to a description of model M in the nuXmv
input language described in 4.1. Chapter 7 explains how ϕ is built from ϕt.

6.1. variables
All discrete variables are declared inM and they retain their original type. All clock variables, including
time, are declared as variables of type real. An additional input variable (__delta) of type real
is declared. This input variable defines the amount of time elapse in every delta transition. The
symbol __is_timed_trans is declared in a DEFINE section and it is a flag that allows to decide
whether the transition starting from the current state is a time elapse or not. A boolean variable
__iota is declared, this variables is used to distinguish between singular and open time intervals.
States in which __iota holds represent singular time intervals, [a; a], a ∈ R+, the states in which
such variable is assigned to ⊥ represent open time intervals (a, b), a, b ∈ R+. This semantic allows the
correct encoding of the LTL temporal operators X̃, Ỹ , @F̃ , @Õ, time_since and time_until in the
continuous time domain.

6.2. INIT
All INIT constraints of Mt are copied in M . In the untimed model description the built-in clock
variable time is initialized to 0 and, since the first time interval must be singular to include 0, __iota
is initialized to >. Notice that if the initial values of clock variables are not constrained in Mt they
will also be unconstrained in M .

6.3. TRANS
The constraints on the transitions of Mt restrict the discrete behavior of the timed transition system.
Therefore, inM , they must be considered only on transitions labeled as discrete. This label is provided
by the __is_timed_trans symbol, in particular all discrete transition have as source a state that
assigns this symbol to ⊥. Let ϕ be the conjunction of all TRANS in Mt, then the transition constraint

__is_timed_trans→ (ϕ ∧ __delta = 0 ∧ __iota ∧ next(__iota))

is added toM . Notice that the predicates over __iota forbidM to perform a discrete transition from
a state representing an open time interval.

In M the time elapse transitions must be constrained so that all clock variables increase of the
same value __delta and all discrete variables which are not declared as noncontinuous keep the
same assignment. This is encoded by the following formula:

(¬__is_timed_trans)→ (__delta > 0 ∧
(∀c ∈ C : next(c) = c+ __delta) ∧
(∀x ∈ X \Xnoncontinuous : next(x) = x))

where C is the set of variables of type clock, X is the set of discrete variables and Xnoncontinuous ⊆ X
is the set of discrete variables declared with the noncontinuous modifier.

6.4. INVAR
Invariants and "timed" invariants of Mt are added in M as invariants. There is no need to distinguish
between time elapses and discrete transitions since in the first case all discrete variables keep the same
assignments and in the second case clock updates can not violate the location invariant.

32

6.5. URGENT
URGENT constraints in Mt define a list of sets of states in which time can not elapse. Let ϕ be the
formula representing their union, computed as the disjunction of all such constraints. Since this formula
can contain both current and next variables it is encoded inM as a TRANS: ϕ→ __delta = 0. This
forbids any time elapse transition from states in which ϕ holds.

33

7. Timed properties verification
Timed nuXmv supports the verification of invariant, LTL and a MTL fragment. It is possible to use
either an implementation of an IC3 version for timed systems, described in [18], or bounded model
checking (2.5.3). The property specified on the timed model is transformed into a property on the
untimed model such that the first one holds on the timed system if and only if the second one holds
on the corresponding discrete model.

7.1. Property rewriting
The formal verification of a property ϕt on a timed infinite transition system Mt described through
the input language of Timed nuXmv is reduced to the verification of a property ϕ on an infinite state
transition system M such that Mt |= ϕt ⇐⇒ M |= ϕ. This section describes how ϕ is generated from
ϕt. ϕ is created such that ϕ ..= ψ → φ, where φ ..= D(ϕt) and ψ restricts the paths to the ones that
follow a specific behavior with respect to time and ι.

First the definition of D for every operator is provided and explained, then the definition of ψ is
given.

The function D is recursively defined on the subformulae of boolean operators:
• D(¬ϕ) = ¬D(ϕ),
• D(ϕ0 ∧ ϕ1) = D(ϕ0) ∧ D(ϕ1),
• D(ϕ0 ∨ ϕ1) = D(ϕ0) ∨ D(ϕ1)

next and previous operators
In timed models there is a discrete and a timed version of the operators next and previous. This allows
to distinguish between a step representing an evolution with respect to time or a discrete transition.

The LTL operators next and previous in timed domains refer only to the discrete evolution of the
model and do not predicate over the temporal behavior.

D(Xϕ) = ι ∧X(ι ∧ D(ϕ))

D(Y ϕ) = ι ∧ Y (ι ∧ D(ϕ))

In all time elapses they evaluate to ⊥, while in discrete steps they evaluate to > if and only if ϕ holds
in the following/previous state.

If the time domain is different from none, it is possible to use a timed version of these operators.
They allow to predicate over the behavior of the system with respect to time elapses.

D(X̃ϕ) = (¬ι ∧ D(ϕ)) ∨X(¬ι ∧ D(ϕ))

D(Ỹ ϕ) = (¬ι ∧ D(ϕ)) ∨ Y (¬ι ∧ D(ϕ))

X̃ϕ holds at time t if there exists an open time interval with lower bound t, in which ϕ holds. This
semantic definition is encoded into the model by splitting each time elapse into a sequence of singular,
open, singular intervals. Singular intervals are closed intervals of the form [a; a], a ∈ R, while open
intervals are (a, b), a, b ∈ R. The intersection of all pairs of intervals is always ∅ and the union of all
of them is the whole time domain (R). In closed intervals ι is assigned to >, while in open intervals
¬ι holds.

until and since operators
The definitions of U and S LTL operators need to be updated to take into account the possibility of
having formulas that hold in an open interval. The until operator is satisfied if the second operand
holds in a left open interval of a state in which the first operand holds. Similarly the operator since
is satisfied if the second operand holds in a right open interval of a state in which the first operand
holds. This can be achieved by exploiting the timed versions of next and previous.

D(ϕ0Uϕ1) = D(ϕ0)U(D(ϕ1) ∨ (D(ϕ0) ∧ D(X̃ϕ1)))

34

D(ϕ0Sϕ1) = D(ϕ0)S(D(ϕ1) ∨ (D(ϕ0) ∧ D(Ỹ ϕ1)))

All other LTL temporal operators can be expressed as a combination of U , S and ¬.

at next and at last
The operators @F̃ and @Õ in continuous timed systems must take into account that ϕ might hold in
an open interval and therefore there might not be t ∈ Q : π, t |= ϕ even if Fϕ holds.

D(u@F̃ϕ) =

{
D(u) if D(X̃ϕ)

D(u)@F̃ (D(ϕ) ∨X(¬ι ∧ D(ϕ)) otherwise

D(u@Õϕ) =

{
D(u) if D(Ỹ ϕ)

D(u)@Ỹ (D(ϕ) ∨ Y (¬ι ∧ D(ϕ)) otherwise

Notice that these operators in the timed case are rewritten using their semantic in the discrete model.
u@F̃ϕ evaluates to the current value of u if in the open interval following the current state ϕ holds.
Otherwise its value is the one assigned to u the first time that ϕ holds in either an open or closed
interval. The u@Õϕ case is symmetric, it refers to the past instead of the future.

at next, at last in untimed models. In discrete models for each distinct occurrence of these
operators a new monitor variable is introduced to represent their value. Let m be a new symbol and
u@F̃ϕ a LTL subformula. The following constraints are added for m:

1. ϕ → m = u, when the formula holds the monitor variable must correctly represent the value of
u.

2. next(m) 6= m→ ϕ, the value assigned to the monitor variable can change only right after ϕ held.
These two constraints force m to assume the value that u will have the next time that ϕ will hold,
since it can only change after a state that satisfies ϕ and in that state its value should match the one
of u.

Similarly for u@Õϕ, it is sufficient to replace the second constraint with next(m) 6= m→ next(ϕ).
This forces the monitor to change value only before a state in which ϕ holds.

time since and time until
In the input language the built-in variable time can only be used in comparison operations. The
operators time_since and time_until allow to express an additional type of formulae.

D(time_since(ϕ)) = D(time)−D(time@Õϕ)

D(time_until(ϕ)) = D(time@F̃ϕ)−D(time)

These operators allow to predicate over the amount of time that passes between occurrences of ϕ.
Notice that the formulae on the right side are not directly expressible in the input language.

time and iota constraints
This section provides the additional constraints of time and ι. ψ ..= ψι∧ψtime, where ψtime forces the
uniformity of time in open intervals for all predicates and ψι defines the alternation between singular
and open intervals.

Let Subtime(ϕ) be the set of atomic predicates containing time. The input language restricts such
predicates to be in the form time ./ u, u ∈ R ∧ ./∈ {<,≤, >,≥}. Then ψtime is defined as:

ψtime ..=
∧

time./u∈Subtime(ϕ)

G(¬ι→ (D(time ≤ u)→ XD(time ≤ u)) ∧

(D(time ≥ u)→ XD(time ≥ u)))

The definition ψι depends on the type of the property, if the property is an invariant (INVARSPEC),
then it can not contain any temporal operator. This allows to simplify the model behavior by avoiding

35

all open intervals:
ψι ..= Gι

If the property is a LTL specification it is defined as follows:

ψι ..= ι ∧G((ι ∧ δ = 0 ∧X(ι)) ∨ (ι ∧ δ > 0 ∧X(¬ι)) ∨ (¬ι ∧ δ > 0 ∧X(ι)))

where δ ..= next(time)−time. This constraint forces the initial value of ι to >: each execution starts
from a singular interval. The value assigned to ι can develop in two ways: in discrete steps its value is
always >, in time elapses it starts from > and goes to ⊥, at this point the system is forced to perform
another time elapse to restore the value of ι to >. This formula forces the alternation between singular
and open intervals when a LTL specification is checked.

Diverging time
In nuXmv checking a formula ϕ as INVARSPEC has a different semantic from checking Gϕ as LTLSPEC.
In the latter the tool searches for an infinite lazo-shaped execution in which there exists at least one
state where ϕ does not hold. In the first case, instead, it only checks if a state that satisfies ¬ϕ is
reachable from the initial states. nuXmv is able to manage infinite executions that can be represented
as lazo-shaped path. Each of these paths can be split into a prefix and a sequence of states that are
in a loop. A loop is detected when the system finds two reachable states with the same assignments
over all variables. In the models generated by the untiming procedure there is always at least one
variable which is monotonically increasing: time. This variable in many cases prevents the system
from finding such loops. These observations highlight the need of a more general definition of loop.
The IC3 extension presented in [18] allows to specify a single symbol that represents time. Its value
is ignored in the loop detection. The system is constrained to search for loop-backs such that every
state in the loop has time above the maximum constant to which this variable is compared. This in
conjunction with the fact that time is monotonically increasing guarantees the loop validity.

Theorem Let π be an finite execution of a timed model M with n transitions and total time elapse
tlast. Assume that there exists a step tloop ∈ π that agrees with tlast on all variable assignments but
time and this symbol is used only in comparisons with other constants. Let maxtime be the greatest
constant to which time is compared and ∀tloop ≤ t ≤ tlast : π(t)(time) > maxtime. Then π can be
extended to an infinite execution in which time diverges.
proof π(tloop) and π(tlast) are total assignments over all variables (discrete and clocks) that differ
only for the value of time. Since, by hypothesis, π(tlast)(time) ≥ π(tloop)(time) > maxtime, they
agree on the truth assignment of every predicate. For this reason from both states it is possible to
perform the same transitions: they satisfy the same conditions. The same reasoning can be repeated
for every state after tloop. Therefore the sequence of states from tloop to tlast can be repeated infinitely
many times for increasing values of time without changing the truth value of any predicate.

time since, time until This proof assumes that time is used only in comparison with constants,
however the input language of Timed nuXmv also allows to implicitly express variations of time thanks
to time_since and time_until. In order to solve this issue it is possible to consider only the
traces in which loop-back states also agree on the value assigned to these operators. This can be
achieved by declaring a monitor symbol for each expression made by these operators. This symbol
represents the evaluation of that expression. The assignment of this new variable will have to repeat
itself in loops. The rewriting of these operators, in fact, introduces a monitor variable, hence the
system will detect only loops in which the value assigned to time_since and time_until does not
diverge. This additional assumption restricts the set of executions the system is able to identify. In the
following a more precise characterization of the behavior of the values assigned to time_since(ϕ) and
time_until(ϕ) in lazo-shaped executions is provided. If in the loop states there exists at least one in
which ϕ holds, then the values of these expressions in every configuration of the loop are well-defined
and equal to the distance in time from that state. Otherwise the value of time_until(ϕ) is the default
one and for time_since(ϕ) two additional cases has to be considered. If in the trace prefix there is a
state in which ϕ holds time_since(ϕ) diverges, otherwise it is evaluated to the default value.

36

8. Timed traces
This chapter describes how nuXmv traces have been extended to better represent executions of timed
transition systems. The first section describes how the expressiveness of the trace representation has
been improved. The following sections show how the simulation, execution and completion operations
are achieved for the new trace representation. Finally, the procedure to lift the discrete counter-example
to a timed one is described.

8.1. Representation
nuXmv traces allow to represent finite or lazo-shaped executions of an infinite discrete transition
system. It is not possible to represent any kind of infinite execution that is not lazo-shaped. In these
traces the loop-back state is a configuration that agrees with the last state of the trace on the assignment
of all variables. This trace definition is not expressive enough to represent infinite executions of timed
transition system. Every infinite timed trace, by construction, has at least one diverging variable which
is time. From these observations the need to devise a more expressive representation becomes evident.
The main objective of this section is the description of such new representation.

This issue is a particular instance of a more general problem, which is the representation of non
lazo-shaped behaviors in infinite transition systems. For this reason the problem is addressed in the
discrete case and then the solution is also adopted in the timed environment. This work proposes a
solution which is expressive enough to represent timed traces, but also useful to address some specific
cases of the more general instance. The proposed technique does not allow to represent arbitrary
infinite behaviors, but only a very specific subset of them.

Discrete Infinite Trace
Infinite traces enrich nuXmv traces with a set of diverging variables. The symbols in this set are allowed
to diverge in loops. The notion of loop is redefined so that the assignment of the last and loop-back
state must agree on the assignment of all symbols not in the diverging set. Every state in the trace
loop associates every diverging symbol to an expression which is function of the previous value of the
same symbol. This defines a recurrence relation for each diverging variable, where the base condition is
given by the value assigned to these variables in the last state outside of the loop. In this way, given a
position inside the loop and an iteration number, the value assigned to all symbols is well-defined. More
formally, an infinite trace over a set of non-diverging symbols X and diverging variables D is a finite
sequence of assignments π ..= s0, s1, . . . , sk over X ∪D such that ∃0 < l < k ∀x ∈ X : sl(x) = sk(x).
sl, called loop-back state, agrees with sk on the assignment of all non diverging variables in X. For all
states not in a loop there is no distinction between variables in X and D: all of them are associated
to a concrete constant value. Each state in the loop, instead, associates to every diverging variable a
function that given the previous value of that variable returns its current value:

∀d ∈ D, l < j ≤ k ∃f ∈ type(d)2 : sj(d) = f(d)

where type(d) is the domain of the symbol d and f(x) = y ⇐⇒ (x, y) ∈ f . Notice that these recurrence
relations can refer to non-diverging symbols, upon evaluation they are simply replaced with the value
assigned to them in the previous step.

It is possible to iterate over infinite traces in two different modes. One mode allows to unroll the
infinite execution and builds the concrete assignments for every state by evaluating the recurrence
relation of the diverging symbols. The other mode is more complex: it tries to solve the recurrence
relation of every diverging symbol to obtain a closed form solution as a function of the iteration
number. The closed form of the recurrence relations is exploited to perform operation on infinite traces:
simulation, execution and completion. Currently only the very simple case in which the diverging
variable is updated by adding a constant value is handled. It could be possible to rely on external
procedures to compute the closed form of such recurrence relations, however this solution has not been
explored yet. Notice that this component is the only one that makes assumptions on the shape of the
recurrence relation.

37

Timed trace
A timed trace is an infinite trace where the built-in clock variable time is always in the set of diverging
variables: time ∈ D. The recurrence relation for this symbol is identical in every state of the loop
and is given by timecurr = timeprev + δprev, where δ is the variable representing the amount of time
elapse and it is associated to a, possibly different, actual value in every state. Similarly all clock
variables that, inside the loop, are never reset are in the diverging set and they are assigned to the
same recurrence relation as time.

Notice that model checking on infinite transition systems and therefore also on timed transition
systems is undecidable in its general formulation. For this reason, while soundness remains a necessary
condition, completeness of the proposed techniques can not be achieved. This observation motivates
the restrictions made on the traces that can be represented in the system.

8.2. Simulation
This section explains how the formulation presented in 4.3.1 has been modified to implement the
simulation functionality for timed models.
The simulation can be performed either automatically or interactively on a timed transition system
M ..= (S, I,N, T). In automatic mode the system tries to build a finite, non-looping, trace of the model
of a specified length. This is achieved by appending one configuration at a time. The initial state of
the trace is chosen among the ones that satisfy:

I ∧N

Every non-initial configuration is retrieved by a SMT call to check the satisfiability of:

s ∧N ∧ T

where s encodes the total assignment of the last configuration of the current trace. This is repeated
until either a trace of the desired length has been built or the formula becomes unsatisfiable, in which
case the simulation has reached a dead-lock state.

In interactive mode first the user has to choose the initial state from a list. The list is computed
in the very same way as in nuXmv trance (4.3.1); the ith configuration is computed as the assignment
satisfying:

I ∧N ∧
i−1∧
j=0

¬sj

where s0, . . . , si−1 are the total assignments that have been already found. Then the user can choose
if the system should perform a discrete transition or a time elapse. The configuration to be added to
the trace among the states that satisfy:

s ∧ δ > 0 ∧ T ∧N ′ ∧
i−1∧
j=0

¬s′j

if a time elapse has been requested,

s ∧ δ = 0 ∧ T ∧N ′ ∧
i−1∧
j=0

¬s′j

if the user asked for a discrete transition.

8.3. Execution
This section explains how the formulation presented in 4.3.2 has been modified to implement the
execution functionality for infinite, possibly timed, traces.
Traces without loop-back state and configurations that do not belong to the trace loop can be handled

38

in the same way explained in 4.3.2. In these cases a state and its successor are total assignments that
associate to every symbol a concrete constant value. The consistency of the trace initial state can be
easily verified by checking the satisfiability of the following formula:

s0 ∧ I ∧N

where s0 is the first state of the trace. For every configuration si : 0 ≤ i < l, where sl is the loop-back
state or the last configuration of the trace if no loop exists, the formula:

si ∧ s′i+1 ∧ T ∧N ′

must be satisfiable.

At this point the transitions between states in the loop and the loop itself must be checked for con-
sistency with the infinite [timed] transition system. The procedure showed in 4.3.3 it is not applicable
in this case. The new representation requires to prove that the recurrence relations assigned to the
diverging symbols in the loop states allow the transition system to perform infinitely many iterations.
Therefore, it is necessary to prove that the loop of the infinite trace is a valid representation of an
infinite execution of the infinite [timed] transition system.

Let π ..= s0, . . . , sl, . . . , sk be a trace of length k with loop-back state sl. Assume that each
assignment sj for l < j ≤ k associates to every diverging symbol the closed form solution of its
recurrence relation as a function of iloop. iloop is a new symbol that represents the loop iteration
number. The objective is to prove that for every iloop ∈ N each transition in the loop is valid and that
it is possible to perform a transition from s

iloop
k to siloop+1

l+1 : from the last configuration of the trace at
iteration iloop it is possible to reach the first loop state and begin iteration iloop + 1 for every iloop.

∀iloop ∈ N [(∀l ≤ j < k : (s
iloop
j ∧ siloopj+1)→ (T ∧Nj+1)) ∧ ((s

iloop
k ∧ siloop+1

l+1)→ (T ∧Nl+1))] (8.1)

To prove the validity of this formula it is possible to check the unsatisfiability of its negation using an
SMT solver. Notice that each conjunct encodes the validity of one of the transitions in the loop, the
last cube verifies that it is always possible to begin the next iteration. By negating 8.1 it is possible
to obtain:

∃iloop ∈ N [∃l ≤ j < k : (s
iloop
j ∧ siloopj+1 ∨ ¬T ∨ ¬Nj+1) ∨ (s

iloop
k ∧ siloop+1

l+1 ∨ ¬T ∨ ¬Nl+1)] (8.2)

the loop defined by states sl, . . . , sk is valid in the transition system M if this last SMT formula (8.2)
is unsatisfiable. In the case in which a satisfying model is found, such model assigns to iloop a loop
iteration number for which it is not possible to perform one of the transitions. Moreover, by asking the
SMT solver to prove the unsatisfiability of each disjunct one at a time it is also possible to precisely
identify the transition of the loop that violates the behavior prescribed by the transition system.

8.4. Completion

This section explains how the formulation presented in 4.3.3 has been modified to implement the
completion functionality for infinite, possibly timed, traces.
The completion is supported only with respect to non diverging symbols; the complete information
about the loop and the set of diverging symbols and all their recurrence relations must be provided. As
in the execution case (8.3), the same procedure explained in 4.3.3 is applied to perform the completion
of the partial assignments that do not belong to the loop.

Consider the partial assignments in the trace loop: sl, ldots, sk. It is necessary to complete their
assignment so that the loop can be repeated infinitely many times. Let completes(s, s′) hold if and
only if the total assignment s is a completion of the partial assignment s′: they agree on all values
of non-diverging symbols and assign the same recurrence relations to diverging symbols. Then it is

39

necessary to find a trace such that:

∃s′l, . . . , s′k :
k∧
j=l

completes(s′j , sj) ∧

∀iloop ∈ N [(∀l ≤ j < k : (s
′ iloop
j ∧ s′ iloopj+1)→ (T ∧Nj+1)) ∧

∀iloop ∈ N [((s
′ iloop
k ∧ s′ iloop+1

l+1)→ (T ∧Nl+1))]

(8.3)

Notice that the second part is exactly the formula 8.1 on the existentially quantified completed assign-
ments. The nesting of the different quantifiers (existential and universal) makes this formulation much
more complex with respect to the one obtained in the execution case. In more detail, considering the
propositional case, the formulation showed in 8.1 belongs to the complexity class Π1 = co-NP while
formula 8.3 is an instance of Σ2. In the general SMT formulation their decidability is conditioned to
the decidability of the underlying theories.

Given this observation the decision taken in this work is to avoid the complexity of a complete
approach in favor of a more tractable, sound but incomplete procedure. In order to do this it is
necessary to remove the outer existential quantification. One possibility is to replace the existential
quantification with a universal one. This formulation would check that every possible completion of the
trace loop is valid, therefore the completion would succeed only in such cases. Another approach is to
pick one among the possible completions and check if the resulting completed trace is valid. This can
be achieved using the execution procedure described in 8.3. This second procedure has the advantage
of being much simpler and correctly handles all cases handled by the first one.

8.5. From discrete to timed counter-example
As described in chapters 6 and 7, in this work the model checking problem on timed transition systems
is reduced to the one on discrete infinite transition systems. This reduction implies that the result
obtained in the discrete context has to be mapped back into the timed environment. If the property has
been verified, then the timed property also holds on the timed transition system. If the specification
is violated in the discrete system, the model checking procedure provides a counter-example: a trace
of the discrete model in which the property does not hold. This trace has to be mapped into a
corresponding execution of the timed system that proves that the timed specification does not hold.

Given an total assignment in the discrete trace, the corresponding total assignment of the timed
trace is built by coping the value assigned to all symbols that belong to both discrete and timed
transition system. A transition of the discrete trace is mapped into either a discrete or time elapse
based on the value assigned to δ in the source configuration. If δ = 0 then the transition is a discrete
one, otherwise it is a time elapse. From the property rewriting (7.1) it is possible to notice that there
are three possible kinds of time elapses between two configurations s0 and s1:

1. s0 |= ι and s1 |= ι: in this case both states represent singular intervals;
2. s0 |= ι and s1 |= ¬ι: in this case s0 represents a singular interval, while s1 represents a time

instant in an open interval;
3. s0 |= ¬ι and s1 |= ι: in this case s0 represents a time instant in an open interval, while s1

represents a singular interval;
In all cases the states represent total assignments over the variables, therefore they can be represented
as total assignments also in the timed trace. In the second and third case one of the states is used to
represent an open interval and in the trace it splits the left and right neighborhood of the previous
and following configurations. In these neighborhoods temporal operators like X̃, Ỹ , @F̃ and @Õ are
evaluated. For these reasons all these transitions are represented in the timed trace as a single time
elapses from s0 to s1.

40

9. Experimental evaluation
The techniques described so far have been implemented inside the workflow of the nuXmv symbolic
model checker. This implementation is compared to other state-of-the-art model checkers for timed
transition system, which implement the main approaches described in chapter 3. This chapter first
provides a description of the software to which Timed nuXmv is compared. Their descriptions are
not exhaustive, the objective is to provide a high level perspective of the features they support and
techniques they implement. Then a brief explanation of the testing environment is provided. Finally
the benchmarks models and obtained results are presented and commented.

9.1. Description of the tools
This section briefly describes the model checkers Uppaal (9.1.1), ATMOC (9.1.2) and LTSmin (9.1.3).
In 9.1.4 the verification algorithms used to evaluate Timed nuXmv are cited.

Uppaal
Uppaal was released for the first time in 1995 and it is actively developed and maintained by the
Uppsala University and Aalborg University. Uppaal supports modeling, simulation and verification of
networks of timed automata extended with shared integer variables, urgent channels and committed
locations [7]. The formal verification of properties is based on the construction of the zone automa-
ton (3.3) corresponding to the composition of the timed automata in the network. DBMs are used
to represent and execute transformations on zones [6]. Uppaal supports only bounded variable types
and therefore finite timed asynchronous transition systems. The additional constructs: shared inte-
ger variables, urgent channels and committed locations provide some synchronization primitives. In
particular: shared integer variables allow for asynchronous communication between processes, urgent
channels force the system to perform a certain transition as soon as the transition is enabled and
committed locations allow to define a sequence of action to be performed atomically without delays
or interference of the other processes. The specification language supported by Uppaal is a subset of
TCTL [12][13]:

ϕ :: AGψ | EGψ | AFψ | EFψ | ψ 99K φ

where ψ 99K φ is equivalent to AG(φ → AFψ) and ψ and φ are propositional logic predicates over
state variables, locations, shared variables and clock constraints in B(X).

Uppaal is split into two main components: a graphical user interface that helps in the definition
of the timed automata network and a verification engine that given a xml network description and a
specification checks if such network satisfies the property. The verification engine searches for a path
in the zone automaton that starts from an initial state and ends in a state such that its location is a
final one and its clock assignments satisfy the property [8].

Algorithm 1 Timed automata reachability algorithm
1: procedure Reachable((l0, D0), (lf , φf), k) . initial and final states, maximal constant
2: passed← ∅ . set of explored states
3: wait← {(l0, D0)} . states to be explored
4: while wait 6= ∅ do . until there is nothing more to visit
5: (l,D)← wait.pop() . extract one element from list
6: if l = lf ∧D ∩ φf 6= ∅ then . final states and clocks satisfy the constraints
7: return >
8: if ∀(l,D′) ∈ passed : D 6⊆ D′ then . current state not already included by other visited
9: passed← passed ∪ (l,D) . update set of visited states

10: for all (l′, D′) : (l,D) k,G (l′, D′) do
11: wait← wait ∪ (l′, D′) . add set of states reachable from (l,D)

12: return ⊥ . explored all states, not reached

The algorithm 1 is a simplified version of the reachability algorithm implemented in Uppaal [6].

41

In particular many optimization are omitted, like the usage of a specialized data structure instead of
the two sets passed and wait. Line 8 checks if among the states that have already been visited with
location l, there is one that has a clock interpretation that subsumes the current one; in this case it
is not necessary to update the list of visited states, since the current state is already represented. In
line 10 the algorithm iterates over all states reachable from the current one by performing a transition
with delay at most k and subjected to the difference clock constraints G of the automaton and the
property. The termination of procedure 1 is guaranteed by the fact that the regions are finitely many
and their power set imposes an upper bound on the number of zones. Therefore, k,G is finite and
eventually all possible states will be visited.

The description of the Uppaal GUI is out of the scope of this work, for an introduction on its
features and usage refer to [7].

ATMOC

The Aalto Timed Model Checker (ATMOC) is a symbolic timed model checker developed in 2012 by
Roland Kindermann, Tommi Junttila and Ilkka Niemelä. The tool implements the techniques they
describe in [25]: an extension of IC3 (2.5.3) and K-induction (2.5.3) to deal with symbolic timed
transition systems (STTS). ATMOC supports the verification of invariant specifications on a model
description. From the input model ATMOC implicitly generates the symbolic representation of the
region abstracted machine (3.2) to obtain a finite state representation of the STTS.

K-induction ATMOC adds an additional constraint on the K-induction paths: no two states of
each path can belong to the same region. This is done symbolically by constraining the integral and
fractional part of the clock interpretations. In this way the K-induction technique is forced to look
only at paths that visit at most one state for each region [25]. The following formula constrains two
states indexed by i, j to belong to different regions:∨

x∈X
x[i] 6= x[j] ∨ (9.1a)∨

c∈C
(c

[i]
int 6= c

[j]
int ∧ (¬max[i]c ∨ ¬max[j]c)) ∨ (9.1b)∨

c∈C
(¬max[i]c ∧ ¬(c

[i]
fract = 0 ⇐⇒ c

[j]
fract = 0)) ∨ (9.1c)∨

c∈C

∨
d∈C\{c}

(¬max[i]c ∧ ¬max
[i]
d ∧ ¬(c

[i]
fract ≤ d

[i]
fract ⇐⇒ c

[j]
fract ≤ d

[j]
fract)) (9.1d)

whereX is the set of discrete (non clock) variables, C is the set of clocks, c[i]int is the integral part of clock
c at state i, c[i]fract is the fractional part of clock c at state i, max

[i]
c

..= c
[i]
int > mc∨(c

[i]
int = mc∧cfract > 0)

and mc is the maximum constant to which c is compared.

This formulation can be more easily understood by looking at the matrix representation of regions
shown in figure 3.1. The clause 9.1a encodes that if the two states disagree on the assignment of at
least one discrete variable then they belong to different regions. 9.1b ensures that if in both states c is
within its maximum relevant value and the integral part is different then they can not be in the same
region. The clause 9.1c distinguishes between the regions that assign to c a value in Z and the ones
that have fractional part different from 0. The subformula 9.1d checks that for every pair of distinct
clocks they do not belong to the same side of the "diagonals".

IC3 A similar approach is taken to extend IC3 (2.5.3) to handle STTS [25]. As in the previous case
the objective is to lift the procedure to reason on the region abstraction. This is achieved by replacing
in every SMT call each concrete state with a representation of its region. Given a state s its region

42

representation ŝ is built so that for every state µ in the same region of s: µ |= ŝ.

ŝ ..=
∧
x∈X

x = s(x) ∧ (9.2a)∧
c∈C:s(c)>mc

c > mc ∧ (9.2b)

∧
c∈C:s(c)≤mc

{
c = s(c) if fract(s(c)) = 0

c < ds(c)e ∧ c > bs(c)c if fract(s(c)) 6= 0
∧ (9.2c)

∧
c∈C:s(c)≤mc

∧
d∈C\{c}:s(d)≤md

d = fract(s(c)) + bs(d)c, if fract(s(c)) = fract(s(d))

d > fract(s(c)) + bs(d)c, if fract(s(c)) < fract(s(d))

c > fract(s(d)) + bs(c)c, if fract(s(c)) > fract(s(d))

(9.2d)

where X is the set of discrete variables, C is the set of clocks, s(c) is the interpretation of variable c at
state s, mc is the maximum value to which the clock variable c is compared and fract(k) ..= k − bkc.

Formula 9.2 is built using the same observations done for 9.1. However, the latter encodes the fact
that two states belong to different regions while the first one creates a symbolic representation of a
region given one of the states in it. As in the previous case the visualization of regions shown in 3.1
might provide a better intuition. The cube 9.2a encodes the fact that all states in the same region
must agree on the assignment over the discrete variables, this is the negation of the clause 9.1a. The
constraint 9.2b ensures that all states agree on the set of clock variables assigned to values above their
maximum relevant value. The cube 9.2c is the negation of clause 9.1b. It encodes the fact that all
states in the same region of s have the same integral part and if s(c) ∈ Z they have exactly the same
value for every clock variable that does not exceed the maximum relevant value. The subformula 9.2d
constrains the relationship between the fractional parts of clock assignments for states in the same
region. The formulation is similar to clauses 9.1c and 9.1d: the assignment of every pair of clocks lies
on, above or below the "diagonal".

In the IC3 version just described the generalization procedure is applied to ŝ instead of s and
equation 2.2 becomes:

Fi−1 ∧ ¬ŝ ∧ T ∧ ŝ′ (9.3)

Further optimization of these techniques is possible by noticing that if a region is unreachable then
also all its time-predecessor regions are. This observation allows ATMOC to exclude more regions at
a time [25].

In a later work [24] Kindermann, Junttila and Niemelä extend this approach to support also the
verification of a fragment of MTL, called MITL0,+∞, on timed automata using bounded model checking.
Timed nuXmv supports the same fragment, their performance are compared on the benchmark used
in [24].

LTSmin
LTSmin is a model checker for labeled transition systems developed by the University of Twente. It
is characterized by a highly modular structure; there are three main components: a language front-
end, a simplification module and an algorithmic back-end [27]. Each of this components relies on a
unifying interface called Partitioned Next-State Interface (PINS). The language front-end parses the
input model and specification from some formal specification language (like the Uppaal language)
and encodes it using the structures provided by PINS. The simplification module consists of a set
of functions that perform transformations on the PINS structures to obtain an equivalent but more
compact representation. The algorithmic backend can be one of some already provided engines or even
an external one. They take as input the PINS structure are perform the verification task [11].

A model described using PINS is a Partitioned Transition System (PTS) P ..= (SP ,→P , s0, L),
where:

• SP = S1 × S2 × . . .× SN is the set of states, each state s ∈ Sp is a N ∈ N dimensional vector.

43

• →P

K⋃
i=1
→i is the labeled transition relation, it is composed by K transition groups

→i⊆ SP ×A× Sp, where A is the set of action labels.
• s0 ∈ SP is the initial state.
• L : SP × L 7→ N, where L is the set of state labels, is the state labeling function,

let L(s) ..= {l|L(s, l) 6= 0}.
LTSmin allows to specify dependencies between the transition groups and slots of the state vector.
These information allow the tool to extract some properties of the transition groups: read independence
(every transition in the group is independent to the value of a particular slot), write independence (every
transition in the group does not modify the value of a particular slot) and label independence (the same
label is assigned to states that differ for the value of a particular slot). Guards are associated to each
transition group and not to single transitions [23].

LTSmin supports the language front-end of Uppaal through Opaal. Given a Uppaal model Opaal
generates the corresponding C code that implements the PINS. Opaal creates the zone abstraction
of the timed automaton which is encoded into a PTS and passed to the simplification module. This
module is able to check for subsumption relation between two states on-the-fly. This allows to prune
the PTS and reduce the size of the state space.

LTSmin supports LTL model checking through the LTL layer. This layer computes the Büchi
automaton corresponding to the negated formula. Then the product of the model and this automaton
is computed on the fly. The resulting machine is given to the analysis algorithms that search for an
accepting cycle. If such cycle exists then the original property does not hold, otherwise the language
of the product machine is empty and the specification holds.

The tool provides different analysis back-ends and allows to specify different search strategies, some
of which run multiple parallel visits. NDFS is the well known nested depth first search algorithm,
CNDFS run multiple, synchronized depth first searches in parallel, DFSFIFO combines CNDFS with
breadth first search to detect livelocks [27].

Timed nuXmv
Timed nuXmv can exploit all verification engines implemented in nuXmv, thanks to the reduction to
discrete infinite model checking described in chapters 6 and 7. The following paragraph reports the
verification algorithms exposed by Timed nuXmv interface. For invariant verification it is possible to
exploit an implementation of the IC3 extensions presented in paragraphs 2.5.3 and 2.5.3. The second
one is the default algorithm and the user can request the first one by specifying an additional command
line option that disables the implicit abstraction. For LTL and MTL checking Timed nuXmv allows
to choose between two algorithms: one is the extension of IC3 with implicit abstraction (2.5.3) and
the other one is based on bounded model checking (2.5.3).

9.2. Benchmarks and results
This section describes the benchmarks used to evaluate the different tools and shows the obtained
results in terms of time and space required to perform a single model checking task. Unfortunately, in
the literature there are not many publicly available models suitable for timed systems and even less
for synchronous systems. In this evaluation two popular benchmarks are used. The first one has been
taken from the Uppaal test suite, while the second one has been taken from the ATMOC examples.
Timed nuXmv has been run using both algorithms for invariant verification: IC3 with and without
implicit abstraction.

Fischer mutual exclusion algorithm
The Fischer mutual exclusion algorithm was first proposed by Michael Fischer. A mutual exclusion
algorithm is a procedure that allows two or more processes to coordinate so that they access a shared
resource (critical section) one at a time. The fischer mutual exclusion is based on real-time assumptions:
every process in the system has access to a synchronized clock. Every process that wants to access
the critical section sets a shared variable id to 0, then it waits for at most c time units before setting
id to its own pid; at this point the process has to wait at least c time units. If, after this amount of
time, the shared variable id is still equal to its own pid, then the process can safely enter in the critical

44

section, otherwise the procedure is repeated. c is a constant known to every process and should be an
upper bound of the execution time between successive steps. The key component of this algorithm are
the delays. For this reason this procedure is widely used as a benchmark for timed automata model
checking.

Algorithm 2 Fischer mutual exclusion
1: procedure Fischer(pid, c, id) . process id, constant c, shared variable
2: loop
3: while id 6= 0 do . wait if someone else is trying to access CS
4: skip

5: x← random(0, c) . random delay in the interval
6: wait_at_most(c) . wait at most c before going on
7: id← pid . process pid wants to access CS
8: wait_at_least(c) . wait at least c before proceeding
9: if id = pid then

10: Critical Section
11: id← 0

This simple algorithm has been modeled in the input languages of Timed nuXmv, ATMOC and
Uppaal using c = 2. The language supported by Opaal is the same as Uppaal. It allows to specify
a network of timed automata, therefore it allows to directly model the asynchronous composition of
the different processes. The languages of Timed nuXmv and ATMOC are very similar, there are
some minor differences on the timed fragment of the syntax. Neither of these two languages provides
specialized elements to directly model asynchronous systems. For this reason it has been necessary
to embed an explicit scheduler in the model. The scheduler is an unconstrained variable that decides
which process is allowed to perform a transition. All four model checkers are asked to prove the
mutual exclusion invariant property on systems with an increasing number of processes implementing
the Fischer protocol.

In [24] four MTL properties are used as benchmarks. In this work the very same properties are
used to compare Timed nuXmv with the tool proposed in that publication. The first specification asks
to prove that in the unbounded time interval [0,∞) if a process asks to access the critical section then
it eventually enters the waiting state. The second specification tries to prove that in the unbounded
interval [0,∞) there is no execution that visits infinitely often the critical section and the non-critical
section. The third specification is the bounded version of the first one: it tries to prove that the process
enters the wait state in at most 2 time units. The fourth and last specification is the bounded version
of the second one: it tries to prove that a process enters the critical section in at most 3 time units.

Results

This section shows the result obtained by measuring the performance in the verification of the invariant
mutual exclusion property and the four MTL specifications on the Fischer protocol.

Invariant

These tests were executed on a machine running Ubuntu 16.04 and equipped with 16 GB RAM
and as processor an Intel Xeon with a base frequency of 3.70 GHz. Each model checking task has been
executed with a time limit of 1 hour and 20 GB of maximum virtual memory. A job was stopped as
soon as the execution exceeded one of these boundaries. Each model checker was asked to prove the
mutual exclusion property for an increasing number of processes: from 2 to 40.

45

5 10 15 20 25 30
number of processes

10 1

100

101

102

103

tim
e

(s
)

nuxmv-no-abstraction
atmoc
uppaal
nuxmv
ltsmin

Figure 9.1: Fischer mutual exclusion, runtime

Figure 9.1 shows the CPU time (y-axis) required by the different tools to solve each invariant
checking task for increasing number of processes (x-axis). The time is reported in log-scale. Uppaal
and LTSmin-Opaal, which are based on zone abstraction, show a similar behavior and they achieve
the best results for the smaller models. However, once the size of the model is above 8 processes their
running time follows a very steep exponential increment. The default configuration of Timed nuXmv
shows poor performance in this benchmark, but with the implicit abstraction disabled it is able to
solve the highest number of instances (30 processes) before reaching the time limit. From this plot it
is possible to notice that the symbolic techniques require more time with respect to explicit state ones
on smaller problem instances, but show a better scalability and eventually achieve better results for
large enough models. This behavior might be explained by the exponential growth of the number of
states in the explicit approach. In this benchmark the behavior of the discrete component of the model
is trivial, therefore one might expect explicit techniques based on zone abstraction to be particularly
effective. They seem to require less time up to 13 processes.

46

5 10 15 20 25 30
number of processes

0

2000

4000

6000

8000

10000

12000

sp
ac

e
(M

B)

nuxmv-no-abstraction
atmoc
uppaal
nuxmv
ltsmin

Figure 9.2: Fischer mutual exclusion, memory usage

Figure 9.2 shows the resident memory (y-axis) required by the different tools to solve each invariant
checking task for an increasing number of processes (x-axis). All tools require a little amount of
memory up to 8 processes. It is relevant to notice that none of the tools gets stopped due to a memory
out, but always because of the time limit. As for the runtime, also in this case, the behavior of
Uppaal and LTSmin-Opaal are quite similar, with Uppaal being able to handle a few more instances
before the exponential increase of memory usage. Timed nuXmv without the implicit abstraction has
better memory performance with respect to Uppaal and LTSmin-Opaal for models with more than 12
processes, notice that it also achieves better time performance after 13. ATMOC shows very small
memory requirements, with an almost linear increase of about 2 MB for each additional process.

MTL

These tests executed on a machine running Fedora with Scientific Linux 7.3 and equipped with 46
GB RAM and as processor an Intel Xeon with a base frequency of 2.50 GHz. Each model checking
task has been executed with a time limit of 1 hour and 40 GB of maximum virtual memory. A job was
stopped as soon as the execution exceeded one of these boundaries. Each model checker was asked to
prove one MTL property at a time for an increasing number of processes: from 2 to 20.

There are four MTL specifications:
0. The first specification, identified by 0, asks to prove that in the unbounded time interval [0,∞)

if a process asks to access the critical section then it eventually enters the waiting state.

G(state = req → (F[0;∞) state = wait))

1. The second specification, identified by 1, tries to prove that there is no execution in which a

47

process enters infinitely often the non-critical sections and the critical in the unbounded interval
[0,∞).

¬GF (state = idle ∧ (F[0,∞) state = cs))

2. The third specification, identified by 2, is the bounded version of the first one: it tries to prove
that the process enters the wait state in at most 2 time units.

G(state = req → (F[0;2] state = wait))

3. The fourth and last specification, identified by 3, is the bounded version of the second one: it
tries to prove that a process enters the critical section after at most 3 time units.

¬GF (state = idle ∧ (F[0,3] state = cs))

Timed nuXmv has been run using both algorithms available for MTL verification: one is based on IC3-
IA (2.5.3) and the other based on BMC (2.5.3). Their running time and memory usage are compared
with the ones achieved by the software described in [24], called ATMOC-mtlbmc.

2 4 6 8 10 12 14 16
number of processes

101

102

103

tim
e

(s
)

nuxmv

(a) Fischer MTL property 0, runtime

2 4 6 8 10 12 14 16 18
number of processes

101

102

103

tim
e

(s
)

nuxmv

(b) Fischer MTL property 2, runtime

Figure 9.3: Fischer true MTL properties, runtime

The plots in 9.3 show the time required to verify the properties with id 0 and 2. These specifications
hold, therefore the BMC (2.5.3) based approaches, nuxmv-bmc and ATMOC-mtlbmc, are unable to
terminate. The default algorithm of nuXmv, based on IC3, is able to give an answer. The required
time seems to increase as the number of processes increases however their dependency is not as clear
as in the invariant checking case. Notice that in figure 9.3b the tool reaches the time limit for models
with 6, 9, 13, 14, 15, 16 and 17 processes, while it is able to give an answer within this limit for 18.

48

2 4 6 8 10 12 14 16 18 20
number of processes

10 1

100

101

102

103
tim

e
(s

)
nuxmv-bmc
nuxmv
atmoc-mtlbmc

(a) Fischer MTL property 1, runtime

2 4 6 8 10 12 14 16 18 20
number of processes

100

101

tim
e

(s
)

nuxmv-bmc
nuxmv
atmoc-mtlbmc

(b) Fischer MTL property 3, runtime

Figure 9.4: Fischer false MTL properties, runtime

Figure 9.4 shows the time required to find a counter-example for the properties with id 1 and 3. The
two algorithms of Timed nuXmv have a very similar behavior, while ATMOC-mtlbmc requires much
less time. Timed nuXmv is unable to obtain an answer for property 3 since the rewriting of the property
(7.1) introduces some monitors for the time_since and time_until operators that diverge. This
kind of behavior is not recognized at the moment and the procedure never halts (7.1.6). This might
also be the cause for the additional time required to identify the counter-example to property 1. Timed
nuXmv is unable to consider all that executions, therefore it has to search for longer paths that violate
the property. ATMOC-mtlbmc is able to identify these behaviors thanks to the region abstraction,
which can not be used by Timed nuXmv due to the additional expressiveness of its input language.

2 4 6 8 10 12 14 16
number of processes

100

200

300

400

sp
ac

e
(M

B)

nuxmv

(a) Fischer MTL property 0, memory usage

2 4 6 8 10 12 14 16 18
number of processes

50

100

150

200

250

300

350

400

450

sp
ac

e
(M

B)

nuxmv

(b) Fischer MTL property 2, memory usage

49

2 4 6 8 10 12 14 16 18 20
number of processes

0

50

100

150

200

250

300

350

sp
ac

e
(M

B)

nuxmv-bmc
nuxmv
atmoc-mtlbmc

(c) Fischer MTL property 1, memory usage

2 4 6 8 10 12 14 16 18 20
number of processes

20

25

30

35

40

45

50

sp
ac

e
(M

B)

nuxmv-bmc
nuxmv
atmoc-mtlbmc

(d) Fischer MTL property 3, memory usage

Figure 9.5: Fischer MTL properties, memory usage

Figure 9.5 shows the memory used by the three tools to perform the verification of the four different
MTL properties. Only nuXmv is reported for specifications 0 and 2 since it is the only one capable of
providing an answer for them. Only ATMOC-mtlbmc is shown for specification 3, since, as explained
before, Timed nuXmv is unable to provide an answer in this case. In 9.5c it is possible to see that, as
in the invariant case, ATMOC requires much less memory with respect to Timed nuXmv.

Generalized Fischer The Fischer model considered so far embeds a numeric constant (2) that
controls how much each process has to wait. However, this protocol should be verified for any such
constant greater than 0. This can be encoded in Timed nuXmv models by adding a new infinite state
symbol delay with type real declared as FROZENVAR (constant). This symbol is constrained to have
value greater than 0. Notice that this simple model can not be expressed as a timed automaton since
clocks need to be compared with this new symbol. Therefore ATMOC, ATMOC-bmcmtl, LTSmin
and Uppaal input languages are unable to accept such model. However, Timed nuXmv is still able to
prove the correctness of the mutual exclusion protocol and perform the MTL checking. The following
measurements have been retrieved using 1 hour timeout, a maximum virtual memory of 10 GB on a
Ubuntu 16.04 machine with 16 GB of memory and an Intel Xeon with base frequency of 3.70 GHz.

2 3 4 5 6
number of processes

100

101

102

103

tim
e

(s
)

nuxmv-bmc
nuxmv

(a) Fischer MTL property 1, time usage

2 3 4 5 6
number of processes

0

50

100

150

200

250

300

sp
ac

e
(M

B)

nuxmv-bmc
nuxmv

(b) Fischer MTL property 1, memory usage

Figure 9.6: Generalized Fischer MTL property

Figure 9.6 shows the time and memory used by the two algorithms available in Timed nuXmv
to find the counter-example for property 1. The BMC based procedure seems to perform better for

50

smaller models and has smaller memory requirements.

2 4 6 8 10 12 14
number of processes

10 1

100

101

102

103

tim
e

(s
)

nuxmv
nuxmv-no-abstraction

(a) Fischer mutual exclusion property, time usage

2 4 6 8 10 12 14
number of processes

0

1000

2000

3000

4000

sp
ac

e
(M

B)

nuxmv
nuxmv-no-abstraction

(b) Fischer mutual exclusion property, memory usage

Figure 9.7: Generalized Fischer mutual exclusion properties

Figure 9.7 shows the time and memory required by Timed nuXmv to verify the mutual exclusion
property. It is possible to notice that in this case the time out is reached for 15 processes while in the
previous case (9.1, 9.2) Timed nuXmv was able to provide an answer for all model with less than 31
processes.

Diesel generator
The diesel generator benchmark is an industrial model of an emergency diesel generator intended
for the use in a nuclear power plant. The benchmark comes in three different sizes: small, medium
and large. The largest version represents the whole system and has 24 clock variables and 130 state
variables. The medium and smaller models represent only a subset of components which are sufficient
to prove some of the properties. The medium sized has 7 clocks and 64 variables and the smallest 6
clocks and 36 state variables. These models are not suitable to be represented explicitly, due to the
high number of possible states. For this reason only the symbolic techniques have been applied. Each
model contains some properties, the tool is asked to verify one property at a time. The specifications
are all invariants since ATMOC does not support LTL verification. These models describe synchronous
components, therefore no explicit monitor is required.

Results

These tests were executed on a machine running Fedora with Scientific Linux 7.3 16.04 and equipped
with 46 GB RAM and as processor an Intel Xeon with a base frequency of 2.50 GHz. Each model
checking task has been executed with a time limit of 2 hours and 40 GB of maximum virtual memory.
A job was stopped as soon as the execution exceeded one of these boundaries. Each model checker
was asked to prove one invariant property at a time for the three different sizes of the model.

property number ATMOC (s) nuXmv (s) nuXmv without abstraction (s)
0 0.5 0.1 0.1
1 0.5 0.0 0.0
2 0.5 0.1 0.1
3 0.5 0.0 0.0
4 0.5 0.2 0.1
5 0.5 0.0 0.0

Table 9.1: diesel generator, small

51

Table 9.1 shows the time required by ATMOC and the two algorithms implemented in Timed
nuXmv to verify 6 different invariant properties on the smallest model of the diesel generator. The
time required by both tools to complete all of these task is very small. It might be dominated by
bootstrapping tasks rather than the verification procedure.

property number ATMOC (s) nuXmv (s) nuXmv without abstraction (s)
0 1.4 0.4 0.3
1 1.5 0.0 0.0
2 1.4 0.4 0.3
3 1.4 0.0 0.0
4 1.5 0.2 0.2
5 1.5 0.0 0.0
6 1.5 0.7 0.1
7 1.6 0.0 0.0
8 1.5 0.5 0.3
9 1.6 0.0 0.0
10 1.5 0.1 0.1
11 1.6 0.8 0.4
12 1.6 0.0 0.0

Table 9.2: diesel generator, medium

Table 9.2 shows the time required by ATMOC and the two algorithms implemented in Timed
nuXmv to verify 13 different invariant properties on the medium sized model of the diesel generator.
Timed nuXmv completes this tasks in less than half the time required to ATMOC, moreover by
disabling the implicit abstraction it becomes even faster in most of these cases.

property number ATMOC (s) nuXmv (s) nuXmv without abstraction (s)
0 time-out 86.1 34.5
1 4.2 0.1 0.1
2 4.3 1.3 0.8
3 4.2 0.1 0.1
4 time-out 295.9 617.7
5 4.3 0.1 0.1
6 time-out 192.5 168.9
7 4.4 0.1 0.1
8 time-out 592.8 33.4
9 4.3 0.1 0.1
10 4.3 0.1 0.1
11 4.3 2.6 1.2
12 4.4 0.1 0.1
13 3.8 0.1 0.1
14 3.6 0.1 0.1

Table 9.3: diesel generator, large

Table 9.3 shows the time required by ATMOC and the two algorithms implemented in Timed
nuXmv to verify 15 different invariant properties on the largest model of the diesel generator. Also
in this case Timed nuXmv, in both configurations, appears to be faster than ATMOC. Properties
number 4, 6 and 8 seem to be the most difficult to verify. In these cases ATMOC runs out of time
and for specifications 4 and 8 there is a huge difference in the running time of the two Timed nuXmv

52

configurations. The default one is much faster in property 4, while by removing the implicit abstraction
the time required to verify property 8 is reduced by one order of magnitude.

These experimental results highlight that the technique designed and implemented in this work
is at least competitive with some state-of-the-art tools. It is relevant to notice that most of these
comparisons have been performed on systems representable as timed automata, while Timed nuXmv
supports the verification of a more general form of timed transition systems. Most of the considered
properties were invariant since there is little support for generalized LTL and MTL model checking on
timed transition systems. The Fischer benchmarks highlighted that the default configuration of Timed
nuXmv sometimes leads to poor performance. In this cases a little exploration of different possible
configurations might lead to much better results.

53

10. Conclusions
This work presented and explained the new features implemented in the nuXmv symbolic model
checker. The contribution of this thesis can be summarized in six main different aspects:

1. language definition (chapter 5),
2. model compilation and reduction (chapter 6),
3. verification of properties (chapter 7),
4. system simulation (section 8.2),
5. definition and representation of infinite traces (section 8.1),
6. trace execution and completion (sections 8.3 and 8.4).

Together they led to the development of a new version of the software called Timed nuXmv. This
new version is fully backward compatible and extends all high-level functionalities available in nuXmv
to the timed case. The tool is now able to handle the formal verification of invariant, LTL and
MTL specifications over timed transition systems expressed in an extension of the smv language. The
additional expressiveness of the Timed nuXmv input language, with respect to other state-of-the-art
tools, does not allow to rely on the region and zone abstraction of the time behavior. However, as
shown in chapter 9, the performance in terms of execution time and memory usage are comparable
with other model checkers for real-time systems. Among all the tools analyzed, in these benchmarks,
Timed nuXmv shows the best scalability in reachability analysis. It has the ability of proving positive
results for MTL specifications, however, for negative results, it suffers from the limited capacity to
identify and represent diverging variables.

10.1. Future work
This section briefly discusses some possible further developments of the work presented in this thesis:
Timed nuXmv. The extensions can be organized in five main possible directions. Each of the following
paragraphs analyses one of them.

Language constraints
The language of Timed nuXmv, while more expressive then the one of timed automata, still has
some limitations (chapter 5). A possible future development would be to relax some of them. For
example: allowing non-convex invariant conditions, the usage of clocks in specification or removing
some constraints on the usages of the built-in time symbol.

Non-convex invariant conditions would allow to specify more complex relationship between the
discrete and time behaviors of the system. Notice that, in this case, showing that the invariant
condition holds during the time elapses is not trivial as in the previous case. In fact it is necessary to
prove that it holds in every point in time in the continuous interval. In order to relax the constraints
over clock variables and time it is necessary to device other ways to restrict the model executions to
the ones in which time is allowed to diverge. This might be achievable at level of the problem encoding
by modifying the reduction to the discrete case, or at the level of the SMT engine. The first option
has the advantage to be potentially independent to the solver used, while in the second case the solver
can potentially be more efficient by exploiting the additional knowledge.

Continuous variables
Continuous variables are symbols whose assignment is a function of time. These kind of variables
are used to model hybrid systems. An additional layer could be added on top of Timed nuXmv to
handle this feature and allow the system to perform model checking on hybrid systems. As for the
non-convexity over clock constraints, one of the major issues in this case is to ensure the validity of
the invariants during time elapses. The possibility of a unifying approach should be explored.

Timed CTL verification
Timed nuXmv at the moment supports the verification of invariant, LTL and a fragment of MTL
specifications. These languages are semantically defined over linear time, adding the support for
branching time logics like CTL and TCTL is another interesting direction. These languages would

54

allow to specify properties that are not otherwise expressible, thanks to the path quantifiers. A similar
approach to the one presented in section 7.1 could be used to reduce the CTL verification problem
in the timed environment to CTL model checking on an infinite discrete transition system. In the
LTL rewriting presented in this work fairness conditions where added to the corresponding discrete
specification. This kind of constraints are not expressible in the CTL language, it might be possible
to perform a reduction to fair CTL model checking.

Handle more complex infinite traces
The current implementation of Timed nuXmv is able to detect only the simplest infinite behaviors in
which the only diverging variable is the built-in time. For this reason the user has to pay attention
on how the system is described. If the model allows even a single state variable to diverge on at least
one execution, then the verification procedures will never halt. As described in section 8.1, this issue
can be seen at two different levels. One possibility is to consider the timed transition system level,
trying to allow diverging clock variables and time_until, time_since expressions. Otherwise at
the discrete transition system level to handle diverging infinite state variables. Solving the problem in
the second context would provide a more general and reusable procedure, however in the first case it
could be possible to make additional assumptions on the behavior of these diverging symbols.

Parameter synthesis
Many application domains can be described in terms of parameterized systems, where parameters are
variables whose value is invariant. Choosing an appropriate value for these parameters is a widely
spread engineering problem, a form of design space exploration where the parameters can represent
different designs or deployment decisions. Examples of domains that require the analysis of various
solutions include function allocation, automated configuration of communication media, product lines,
schedulability analysis, and sensor placement for fault detection and identification. In the context of
timed transition systems, parameter synthesis would allow to synthesize guards on clocks such that
some property is verified. For example, it could be possible to automatically find the timing constraints
of a timed transition system so that it guarantees that two events always happen within a given time
interval.

55

Bibliography

[1] Pentium processors, statistical analysis of floating point flaw. https://web.archive.
org/web/20010504180148/http://support.intel.com:80/support/processors/
pentium/fdiv/wp/, 1994. [Online; accessed 10-September-2018].

[2] Hardware model checking competition. http://fmv.jku.at/hwmcc/, 2010 - 2014. [Online;
accessed 28-August-2018].

[3] Rajeev Alur and David Dill. Automata for modeling real-time systems. In Michael S. Paterson,
editor, Automata, Languages and Programming, pages 322–335, Berlin, Heidelberg, 1990. Springer
Berlin Heidelberg.

[4] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–235,
April 1994.

[5] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking, volume 26202649. 01 2008.

[6] Gerd Behrmann, Johan Bengtsson, Alexandre David, Kim G. Larsen, Paul Pettersson, and Wang
Yi. Uppaal implementation secrets. In Proc. of 7th International Symposium on Formal Tech-
niques in Real-Time and Fault Tolerant Systems, 2002.

[7] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on uppaal. In Marco Bernardo
and Flavio Corradini, editors, Formal Methods for the Design of Real-Time Systems: 4th Inter-
national School on Formal Methods for the Design of Computer, Communication, and Software
Systems, SFM-RT 2004, number 3185 in LNCS, pages 200–236. Springer–Verlag, September 2004.

[8] Johan Bengtsson and Wang Yi. Timed Automata: Semantics, Algorithms and Tools, pages 87–124.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[9] Armin Biere and Roderick Bloem, editors. Computer Aided Verification - 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
July 18-22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer Science. Springer, 2014.

[10] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu.
Bounded model checking, 2003.

[11] Stefan Blom, Jaco van de Pol, and Michael Weber. Ltsmin: Distributed and symbolic reachability.
In Tayssir Touili, Byron Cook, and Paul Jackson, editors, Computer Aided Verification, pages
354–359, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[12] Patricia Bouyer. Model-checking timed temporal logics. In Carlos Areces and Stéphane Demri,
editors, Proceedings of the 4th Workshop on Methods for Modalities (M4M-5), volume 231 of
Electronic Notes in Theoretical Computer Science, pages 323–341, Cachan, France, March 2009.
Elsevier Science Publishers.

[13] Patricia Bouyer, François Laroussinie, Nicolas Markey, Joël Ouaknine, and James Worrell. Timed
temporal logics. In Luca Aceto, Giorgio Bacci, Giovani Bacci, Anna Ingólfsdóttir, Axel Legay,
and Radu Mardare, editors, Models, Algorithms, Logics and Tools: Essays Dedicated to Kim Guld-
strand Larsen on the Occasion of His 60th Birthday, volume 10460 of Lecture Notes in Computer
Science, pages 211–230. Springer, August 2017.

56

https://web.archive.org/web/20010504180148/http://support.intel.com:80/support/processors/pentium/fdiv/wp/
https://web.archive.org/web/20010504180148/http://support.intel.com:80/support/processors/pentium/fdiv/wp/
https://web.archive.org/web/20010504180148/http://support.intel.com:80/support/processors/pentium/fdiv/wp/
http://fmv.jku.at/hwmcc/

[14] Aaron R Bradley. Sat-based model checking without unrolling. In International Workshop on
Verification, Model Checking, and Abstract Interpretation, pages 70–87. Springer, 2011.

[15] B. Bérard and Catherine Dufourd. Timed automata and additive clock constraints. In Information
Processing Letters, pages 75–1, 2000.

[16] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti,
Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The nuxmv symbolic model
checker. In Biere and Bloem [9], pages 334–342.

[17] Alessandro Cimatti and Alberto Griggio. Software model checking via ic3. In P. Madhusudan and
Sanjit A. Seshia, editors, Computer Aided Verification, pages 277–293, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[18] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. Verifying ltl properties
of hybrid systems with k-liveness. In International Conference on Computer Aided Verification,
pages 424–440. Springer, 2014.

[19] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. Infinite-state invariant
checking with ic3 and predicate abstraction. Formal Methods in System Design, 49(3):190–218,
Dec 2016.

[20] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Trans. Program. Lang. Syst., 8(2):244–263,
April 1986.

[21] E. Allen Emerson and Joseph Y. Halpern. “sometimes” and “not
never” revisited: On branching versus linear time temporal logic. J. ACM, 33(1):151–
178, January 1986.

[22] Kryštof Hoder and Nikolaj Bjørner. Generalized property directed reachability. In International
Conference on Theory and Applications of Satisfiability Testing, pages 157–171. Springer, 2012.

[23] Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom, and Tom van Dijk.
Ltsmin: High-performance language-independent model checking. In Christel Baier and Cesare
Tinelli, editors, Tools and Algorithms for the Construction and Analysis of Systems, pages 692–
707, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[24] Roland Kindermann, Tommi Junttila, and Ilkka Niemelä. Bounded model checking of an mitl
fragment for timed automata. In Application of Concurrency to System Design (ACSD), 2013
13th International Conference on, pages 216–225. IEEE, 2013.

[25] Roland Kindermann, Tommi A. Junttila, and Ilkka Niemelä. Smt-based induction methods for
timed systems. CoRR, abs/1204.5639, 2012.

[26] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems,
2(4):255–299, Nov 1990.

[27] Alfons Laarman, Jaco van de Pol, and Michael Weber. Multi-core ltsmin: Marrying modularity
and scalability. In Mihaela Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi, edi-
tors, NASA Formal Methods, pages 506–511, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[28] Nancy G Leveson and Clark S Turner. An investigation of the therac-25 accidents. IEEE computer,
26(7):18–41, 1993.

[29] Joël Ouaknine and James Worrell. On the decidability of metric temporal logic. In Logic in
Computer Science, 2005. LICS 2005. Proceedings. 20th Annual IEEE Symposium on, pages 188–
197. IEEE, 2005.

57

[30] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of Com-
puter Science (sfcs 1977), pages 46–57, Oct 1977.

[31] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety properties using induction
and a sat-solver. In Warren A. Hunt and Steven D. Johnson, editors, Formal Methods in Computer-
Aided Design, pages 127–144, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

58

	Summary
	I Ground work
	Introduction
	Formal verification of real-time systems

	Background
	Transition systems
	Timed transition systems
	Timed automata

	Propositional logic
	Validity, satisfiability, unsatisfiability, equivalence and equi-satisfiability
	Complexity

	Temporal logics
	LTL
	MTL

	Formal verification of properties
	LTL model checking
	Symbolic model checking
	SAT/SMT based model checking

	State of the Art
	Timed automata decidability
	Region automata
	Zones automata and DBM

	nuXmv
	Input language
	Supported types
	Variables declarations
	Define declarations
	Constants declarations
	Constraints
	MODULE declarations
	Specifications

	Model example
	Trace simulation, execution and completion
	Simulation
	Execution
	Completion

	II Contribution
	Input language extension
	Definition of timed transition system
	Time domain
	Clocks
	non-continuous variables
	Constraints

	Specifications
	timed next, timed previous operators
	at next, at last operators
	time since, time until operators

	Comparison with timed automata

	Timed to Untimed system
	variables
	INIT
	TRANS
	INVAR
	URGENT

	Timed properties verification
	Property rewriting
	next and previous operators
	until and since operators
	at next and at last
	time since and time until
	time and iota constraints
	Diverging time

	Timed traces
	Representation
	Discrete Infinite Trace
	Timed trace

	Simulation
	Execution
	Completion
	From discrete to timed counter-example

	Experimental evaluation
	Description of the tools
	Uppaal
	ATMOC
	LTSmin
	Timed nuXmv

	Benchmarks and results
	Fischer mutual exclusion algorithm
	Diesel generator

	Conclusions
	Future work
	Language constraints
	Continuous variables
	Timed CTL verification
	Handle more complex infinite traces
	Parameter synthesis

	Bibliography

